
Homework 1 solution, Physics 776, Spring 2005

Painlevé-Gullstrand coordinates

The line element for the unique spherically symmetric, vacuum solution
to the Einstein equation can be written as

ds2 = dT 2 − (dr +

√
2M

r
dT )2 − r2dΩ2 (1)

Note that a surface of constant T is a flat Euclidean space.

1. Which value of r corresponds to the event horizon? Give a clear and pre-
cise explanation of your answer, using the properties of the metric extracted
directly from the above expression (i.e. without reference to some other co-
ordinate system, for example).

To eliminate clutter let’s adopt units with 2M = 1. It is convenient to
first expand out the square:

ds2 = (1− r−1)dT 2 − 2r−1/2 dT dr − dr2 − r2dΩ2.

Let me give two different ways to locate/define the horizon in this context.
(a) The surface r = 1 is null: the angular directions on it are spacelike but
the T -translation direction is null. Therefore this surface describes an out-
going spherical congruence of light rays whose cross-sectional area remains
fixed. (This is called a marginally outer-trapped surface.) (b) No causal sig-
nal inside r = 1 can exit this region. To see why, recall that a causal curve
has ds2 ≥ 0. When r < 1 the dT 2 term is negative, so a causal curve must
have dTdr < 0. If the curve is future oriented1, dT > 0, so dr < 0, i.e. it
must go to smaller values of r, and in particular cannot escape to the region
with r > 1. Thus r = 1 = 2M is a causal horizon.

1This deserves a bit more discussion. Recall that the surfaces T = constant are space-
like, so as T increases they foliate spacetime in one causal direction, which we’ll call the
future.
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2. Find the coordinate transformation relating these coordinates to the usual
Schwarzschild coordinates (t, r, θ, φ).

We seek a new coordinate t = t(T, r, θ, φ) that yields the Schwarzschild
line element

ds2 = (1− r−1)dt2 − (1− r−1)−1dr2 − r2dΩ2.

Spherical symmetry tells us that t should depend only upon T and r. Since
T -translation at fixed (r, θ, φ) and t-translation at fixed (r, θ, φ) are both
symmetries of the geometry, dt must be proportional to dT at fixed r, with
an r-independent constant of proportionality. To match the line elements at
r →∞ this constant must be unity, hence we seek t of the form t = T +h(r).
To find h(r) substitute dT = dt − h′dr into the Painlevé-Gullstrand (PG)
line element and impose the requirement that there is no dtdr term. This
implies that h′(r) = −r1/2/(r − 1). When this holds the line element takes
the Schwarzschild form. Integration (with Mathematica, in my case) yields
h(r) = −2r1/2 + ln[(r1/2 + 1)/(r1/2 − 1)]. Thus,

t = T − 2r1/2 + ln

(
r1/2 + 1

r1/2 − 1

)

The factors of 2M can be restored in general units by dimensional analysis.

3. The radial curves with dr = −
√

2M
r

dT are timelike, and T is the proper

time along these curves. Show that (a) these curves are geodesics which are
asymptotically at rest at infinity, and (b) they are orthogonal (in the sense
of the spacetime metric) to the surfaces of constant T .

As r → ∞ these curves have dr/dT → 0, hence they are asymptotically
at rest wrt the black hole as T → −∞. But are they geodesics? Remember
the variational formulation of the geodesic equation for affinely parametrized
geodesics:

δ
∫ 1

2
gαβẋαẋβ dλ = 0,

where the overdot means d/dλ. This is equivalent to the Euler-Lagrange
equations (d/dλ)(∂L/∂ẋα)− ∂L/∂xα = 0 for the Lagrangian L = 1

2
gαβẋαẋβ.

For the PG line element this Lagrangian is

L =
1

2

[
Ṫ 2 − (ṙ + r−1/2Ṫ )2 − r2(θ̇2 + sin2θφ̇2)

]
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Consider what happens when the Euler-Lagrange equation is evaluated for
a radial curve with (ṙ + r−1/2Ṫ ) = θ̇ = φ̇ = 0. Because these quantities
appear quadratically in the Lagrangian, those terms make no contribution
to the Euler-Lagrange equations. Hence the r, θ, and φ equations are satisfied
trivially. The T equation is simply T̈ = 0, which is the statement that T is an
affine parameter for the geodesic. Hence these curves are indeed geodesics.
We already know directly from the line element that T is the proper time
along them, so it is no news that T is an affine parameter along them.

One way to see that these curves are orthogonal to the surfaces of constant
T is to compute directly the inner product between the tangent vector to
one of these curves and any vector lying in the T = const. surface. In the
PG coordinate system the tangent vector to the curves is Uα = (Ṫ , ṙ, 0, 0)
and a vector in the surface is V α = (0, V r, V θ, V φ). Their inner product is
gαβUαV β = gTrṪ V r + grrṙV

r = −V r(r−1/2Ṫ + ṙ) = 0.
The same conclusion can be reached just by inspection of the line ele-

ment in the form (1). The angles are irrelevant, so just focus on the two-
dimensional (T, r) space at fixed angles. The fact that there is no cross term
between dT and (dr + r−1/2dT ) in the line element tells us that a displace-
ment on which dT = 0 is orthogonal to one on which (dr + r−1/2dT ) = 0,
which means that these geodesics are orthogonal to the surfaces of constant
T .

It is worth viewing this more generally. Suppose the metric tensor takes
the form

gab = e(1)
a e

(1)
b + e(2)

a e
(2)
b + e(3)

a e
(3)
b + e(4)

a e
(4)
b (2)

where e(i)
a are four co-vectors. A co-vector defines a three-dimensional “ker-

nel” of vectors with which it has vanishing contraction. Consider the inner
product gabV

aW b of two vectors V a and W b. If V a is in the kernel of e(2,3,4)
a

and W b is in the kernel of e
(1)
b then gabV

aW b = 0. This is just the situtation
we have above. The four co-vectors are dT , (dr+r−1/2dT ), rdθ, and r sin θdφ.
The tangent vector to our geodesics is in the kernel of the last three, while
any vector tangent to the surface of constant T is in the kernel of the first.

4. Draw a spacetime diagram of the (r, T ) plane showing lines of constant
r as vertical and lines of constant T as horizontal. Indicate (a) a radial

geodesic dr = −
√

2M
r

dT , (b) the light cone at various values of r, and (c) a
line of constant Schwarzschild time t.
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