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Abstract

This is a presentation of a paper by Parikh and Wilczek[1] wherein
they derive Hawking radiation from particles tunneling through the event
horizon of a black hole. 1 The motivation is to provide a more mecha-
nistic or heuristic-friendly derivation of Hawking radiation as a tunneling
phenomena.

A key feature of this treatment is that a dynamical geometry is used
(the black hole mass is allowed to vary) with conservation of energy strictly
enforced. This gives rise to higher order terms in the Hawking radiance!
It is thought that a black hole cannot be precisely thermal, because the
mass of the black hole changes as it radiates. These higher order terms
impose energy corrections for ω

M
not so small, where ω is the energy of

the radiated particle and M is the mass of the black hole.

1 Introduction

The common heuristic explanation of Hawking radiation being caused by pair
production near the horizon where a negative energy particle falls in and the
positive energy particle is radiated out is used as the key mechanism in this
derivation of black hole radiation.

Beneath the event horizon there is a space-like killing vector. This allows
negative energy states. These states are classically restricted to the interior
of the event horizon. But they can tunnel out Quantum Mechanically. This
causes pair creation with a positive energy particle outgoing and a negative
energy antiparticle ingoing[2].

Parikh and Wilczek consider two possible scenarios. Pair production can
occur just inside the horizon with a positive energy particle tunneling out and
the pair production can occur just outside the event horizon with a negative
energy particle tunneling in.

Classically speaking a particle inside the event horizon of a blackhole is
trapped within and cannot escape. We consider a thin shell of energy ω tun-
neling through the event horizon and escaping to an outgoing geodesic. The

1I do not strictly follow the method of Parikh and Wilczek. Instead of taking the WKB
result to be true, namely ψ ∝ exp ı

h̄

∫
dxP , I derive the formula beginning with a minimally

coupled scalar field. As a result I immediately get the ingoing and outgoing, particle and
antiparticle wavefunctions and am able to use fewer tricks initially.
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tunneling process will be treated semiclassically with the transmission coeffi-
cient determined, via WKB method, from the classical action of the particle.

2 Method

2.1 Nonsingular Coordinates

The first step is to choose coordinates which are not singular across the horizon.
A transformation is made from Schwarzschild to Painlevé coordinates. This was
our first homework assignment.

Beginning with Schwarzschild coordinates, we shift Schwarzchild time tS by
a function of r, f(r).

ds2 = −
(

1− 2M

r

)
dt2S +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (1)

tS = t + f(r) (2)

ds2 = −
(

1− 2M

r

)
dt2 − 2f ′(r)

(
1− 2M

r

)
dtdr (3)

+

((
1− 2M

r

)−1

− f ′(r)2
(

1− 2M

r

))
dr2 + r2dΩ2 (4)

Next the metric is made to be spherical for constant time slices. This fixes
f(r) and rids us of the singularity.

1 =
(

1− 2M

r

)−1

− f ′(r)2
(

1− 2M

r

)
(5)

f ′(r)
(

1− 2M

r

)
=

√
2M

r
(6)

ds2 = −
(

1− 2M

r

)
dt2 + 2

√
2M

r
dtdr + dr2 + r2dΩ2 (7)

2.1.1 Radial, Null Geodesics

With the new metric we can now solve for the only curves that are both radial
and null.

0 =
(

ds

dt

)2

(8)

0 = −
(

1− 2M

r

)
+ 2

√
2M

r
ṙ + ṙ2 (9)

ṙ = ±1−
√

2M

r
(10)
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Where the ± accounts for the outgoing (ṙ > 0) and ingoing (ṙ < 0) geodesics
when outside the event horizon. When inside the event horizon, both geodesics
are ingoing. These curves are obviously null rays in the asymptotically flat space
far away from the black hole.

2.2 WKB Approximation

Consider the s-wave of a minimally coupled scalar field for an arbitrary metric.
We begin the WKB approximation by casting the field as an exponential and
explicitly separating the real and imaginary parts which give the amplitude and
the phase.

h̄2∇2φ = −m2φ (11)
φ(x) = eT (x)+ıS(x) (12)

∇2 (T + ıS) + (∇T + ı∇S)2 = −m2

h̄2 (13)

∇2T + (∇T )2 − (∇S)2 = −m2

h̄2 (14)

∇2S + 2∇S · ∇T = 0 (15)

As this is a semiclassical approximation, we expand both T and S as a power
series in h̄. They must start at least with an h̄−1 term or the equations cannot
be satisfied.

T (x) = h̄−1
(
T0(x) + h̄T1(x) + h̄2T2(x) + · · ·) (16)

S(x) = h̄−1
(
S0(x) + h̄S1(x) + h̄2S2(x) + · · ·) (17)

The zero’th order terms are as follows.

(∇T0)2 − (∇S0)2 = −m2 (18)
∇T0 · ∇S0 = 0 (19)

In the WKB approximation we set the amplitude to be slowly varying as
compared to the phase, ∇T0 = 0.

(∇S0)2 = m2 (20)

Now let us solve for S0 for a massless field given our choice of metric.

gµν =


 − (

1− 2M
r

) √
2M
r√

2M
r 1


 (21)
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gµν =


 −1

√
2M
r√

2M
r 1− 2M

r


 (22)

0 =
(

∂S0

∂r

)2

−
(

∂S0

∂t
−

√
2M

r

∂S0

∂r

)2

(23)

0 =
∂S0

∂t
+

(
±1−

√
2M

r

)
∂S0

∂r
(24)

0 =
∂S0

∂t
+ ṙ

∂S0

∂r
(25)

S0 = ±ω

(
t−

∫ r dr

ṙ

)
(26)

Where the term in equation [24] we recognize as ṙ for the radial, null geodesic.
Via saddle point approximation the semiclassical kernel K1→2, that propa-

gates the particle between x1 and x2 in configuration space, can now be evalu-
ated.

K1→2 = N e
ı
h̄ S0|x2

x1 (27)

S0 here acts as the classically evaluated action (note that it does indeed have
units of action). Parikh and Wilczek will refer to it as such.

We can use standard results of the WKB method for the calculation of the
transmission coefficient for tunneling through a potential barrier that would be
forbidden by classical law. The WKB method is used to find solutions before,
in, and after the classically forbidden region. The coefficients are matched for
continiuty and the resulting transmission coefficient is

Γ = e−
2
h̄ Im S|x2

x1 (28)

Where x1 and x2 denote the beginning and the end of the classically forbid-
den region.

2.3 Tunneling

2.3.1 Particle Channel

Consider pair production occurring just beneath the event horizon with the
positive energy particle tunneling out. Here is a diagram of the heuristic process.
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With respect to the vacuum, this is an occupied negative energy state that
is tunneling out causing the pair creation process.[2]

We are looking for the imaginary part of the action over the classically
forbidden region.

Im S = Im
∫ rout

rin

dr p (29)

Im S = Im
∫ rout

rin

dr

∫ p

0

dp′ (30)

First the classical momentum is expanded into an integral. Next Hamilton’s
equation is used to transform variables from momentum to energy.

dH

dp
= ṙ (31)

Im S = Im
∫ rout

rin

dr

∫ M−ω

M

dH
1
ṙ

(32)

In this last equation we have used the fact that if the particles have tunneled
out, then the black hole will have lost some energy ω.

Next we switch integration variables from H to the particle energy ω.

H = M − ω′ (33)
dH = −dω′ (34)

Im S = Im
∫ rout

rin

dr

∫ ω

0

(−dω′)
1
ṙ

(35)

From my derivation of the WKB solution, we could have come to equation
[35] in two steps. Normally it would not occur to expand the energy out into
an integral. What this will do is continuously tunnel the particle through the
event horizon as opposed to all at once. The authors do not mention this and
because of their different route in derivation I am inclined to believe that they

5



may not be aware of it. The affect of this will be correct higher order terms in
the Hawking radiance.

Im S = ±Im
∫ rout

rin

dr
ω

ṙ
(36)

Im S = ±
∫ ω

0

dω′
∫ rout

rin

dr
1
ṙ

(37)

Now because the particle is tunneling out, we use the outgoing null geodesic
and what is the closest thing to an outgoing geodesic within the event horizon.
It is almost as if there is a classical turning point just beneath the horizon,
asymptotically in the infinite past. Though truely these are not classical turn-
ing points, but the WKB approximation does not care. The action becomes
imaginary and we can match coefficients in the three regions. That is all that
matters.

We also take the initial point to be just inside the event horizon. We take
the final point to be just outside the event horizon as well, but it must be taken
into account that with the black hole losing energy, the event horizon is in a
different location after the particle has tunneled out.

Finally, self gravitation of the shell of energy is taken into account replacing
M with M −ω in the metric in which the particle travels. This result is derived
by Kraus and Wilczek[3].

ṙ = +1−
√

2(M − ω′)
r

(38)

rin = 2M − ε (39)
rout = 2(M − ω) + ε (40)

Im S = −Im
∫ 2(M−ω)

2M

dr

∫ ω

0

dω′
1

1−
√

2(M−ω′)
r

(41)

Im S = π

∫ ω

0

dω′ 4(M − ω′) (42)

Im S = 4πω
(
M − ω

2

)
(43)

In equation [41] the contour integral is a right-handed semicircle around the
pole by deforming the contour down on the E plane. This gives a prefactor of
πı. This gives a positive temperature.

A second calculation will now be performed where the integrals will be eval-
uated in reverse order. This will reassert the choice of rout as the correct choice.

Im S = Im
∫ rout

rin

dr

∫ M−ω

M

dE
1

1−
√

2E
r

(44)
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Im S = π

∫ rout

2M−ε

dr (−r) (45)

r2
out = 4M2 − 2

π
Im(S) (46)

r2
out = (2(M − ω))2 (47)

In equation [44] the contour integral is a right-handed semicircle around the
pole by deforming the contour down on the E plane. This gives a prefactor of
πı.

This calculation shows that the value of rout is consistent with the previous
calculation of the imaginary part of the action. Note that the first calculation
did not depend on precise location of rout, but only that it encompassed a pole
along with rin.

Equation [8] of Wilczek and Parikh[1] contains an typesetting error. The
last term has both the ı striped out and Im applied. Doing both sets the term
to zero and nullifies the equality.

2.3.2 Antiparticle Channel

Now consider pair production occurring just outside the event horizon with the
negative energy particle tunneling in, in reverse time. Mathematically this is
the exact same process as the first, the integrals will come out to be exactly the
same. Physically there is no reason that this would be restricted to antiparticles
and the other channel restricted to particles. I think the paper is confusing how
negative energy particles are interpreted in QFT with the really negative energy
states that can occur when you have a space-like killing vector for t.

This is the reverse-time diagram for the actual calculation that is made.
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Here is what I think would actually have to happen, in forward time, for any
of this to make sense.
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Positive energy must be coming out in forward time for the black hole to be
shrinking. The pair creation is also stated to occur outside the event horizon.
This leaves the negative energy particle to necessarily fall, not tunnel, but fall
into the black hole.

And now on to the calculation. First let us switch to the reversed time
metric.

ds2 = −
(

1− 2M

r

)
dt2 + 2

√
2M

r
dtdr + dr2 + r2dΩ2 (48)

tR = −t (49)

ds2 = −
(

1− 2M

r

)
dt2R − 2

√
2M

r
dtRdr + dr2 + r2dΩ2 (50)

ṙR = ±1 +

√
2M

r
(51)

Now we must choose the incoming geodesic. And we must note to add to the
mass of the black hole to take into account the self gravitation of the particle.

ṙR = −1 +

√
2(M + ω′)

r
(52)

Im S = Im
∫ rin

rout

dr

∫ M+ω

M

dH
1
ṙ

(53)

Im S = Im
∫ rin

rout

dr

∫ −ω

0

(−dω′)
1
ṙ

(54)

Im S = −Im
∫ 2(M+ω)

2M

dr

∫ −ω

0

dω′
1

−1 +
√

2(M+ω′)
r

(55)

Im S = −2π

∫ −ω

0

dω′ 2(M + ω′) (56)

Im S = 4πω
(
M − ω

2

)
(57)
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2.4 Hawking Radiation

To combine the two contributions Parikh and Wilczek simply add the amplitudes
of the Feynman diagrams. However the channels are stated to be for particle
and antiparticle, so that wouldn’t be allowable. But really both channels could
be for either and both. But none of this matters any way because we will get
the same exponential term.

Γ ∝ e−2 Im ST otal (58)

∝ e−8πω(M−ω
2 ) (59)

For small energy ω, this reduces to, e−8πMω, a Boltzmann factor for energy
ω at the Hawking temperature 1

8πM

2.4.1 The Higher Order Term

The higher order term enforces energy conservation. Firstly consider the ef-
fective temperature 1

8π(M−ω
2 ) . The negative sign ensures that the temperature

increases with radiation.
Secondly consider if the emitted particle takes all of the mass of the black

hole with it. This would have a transmission rate of

Γ(ω = M) ∝ e−4πM2
(60)

There can only be one of these outgoing states. But there are eSBH , where
SBH is the Berkenstein-Hawking entropy, states in total, so the probability of
finding that states is one in that number or

P (ω = M) ∝ e−SBH (61)

P (ω = M) ∝ e−
A
4 (62)

P (ω = M) ∝ e−4πM2
(63)

So the higher order correction is in agreement with the Berkenstein-Hawking
entropy.

2.5 Charged Black Holes

It is a trivial extension to consider uncharged radiation from charged black holes.
We begin with the corresponding Panlevé coordinates and then calculate their
radial, null geodesics.

ds2 = −
(

1− 2M

r
+

Q2

r2

)
dt2 + 2

√
2M

r
− Q2

r2
dtdr + dr2 + r2dΩ2 (64)
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rH = M ±
√

M2 −Q2 (65)

ṙ = ±1−
√

2M

r
− Q2

r2
(66)

The imaginary part of the action for the outgoing, positive energy particle
is

Im S = Im
∫ ω

0

(−dω′)
∫ rout

rin

dr
1

1−
√

2(M−ω′)
r − Q2

r2

(67)

A change of variables before the residue is taken can simplify this integral
greatly.

u =
√

2(M − ω′)r −Q2 (68)

du =
−r

u
dω′ (69)

Im S = Im
∫ √

2(M−ω)r−Q2

√
2Mr−Q2

du

∫ rout

rin

dr
u

r − u
(70)

Im S = −π

∫ (M−ω)+
√

(M−ω)2−Q2

M+
√

M2−Q2
dr r (71)

Im S = π
r2

2

∣∣∣∣
M+

√
M2−Q2

(M−ω)+
√

(M−ω)2−Q2

(72)

Im S = π
(
2ω

(
M − ω

2

)
(73)

−
(
(M − ω)

√
(M − ω)2 −Q2 −M

√
M2 −Q2

))
(74)

Γ ∝ e−2 Im S (75)

Γ ∝ e
−2π

(
2ω(M−ω

2 )−
(
(M−ω)

√
(M−ω)2−Q2−M

√
M2−Q2

))
(76)

This equation [76] is incorrectly multiplied by 2 in Parikh and Wilczek.
In the next step we will taylor expand the exponent and take the linear terms

to find the Hawking temperature. We have

Γ = e−βω+α2ω2+α3ω3+··· (77)

βH = 2π

(
M +

√
M2 −Q2

)2

√
M2 −Q2

(78)

2.5.1 Higher Order Terms

A similar analysis of the higher order terms was not given in the paper. I
attempting to calculate the shell energy ω associated with a probability of 1 in
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the number of states, one will find that it must be the case that Q = 0 or the
conditions cannot be satisfied. Such a process of uncharged radiation from a
charged black hole cannot happen.

3 Discussion

3.1 Results

Using the humble tools of WKB tunneling, the Hawking temperature is derived
for charged and uncharged black holes. The dynamical geometry, along with
continuous tunneling reveals higher order terms which enforce energy conserva-
tion and are in agreement with the Berkenstein-Hawking entropy.

3.2 Further Research

It may or may not be important to note that the limit of ω comparable to M
has been investigated, and yet the particle is treated semiclassically while the
metric is only treated classically. Perhaps it would be wise to consider using
the Wheeler-DeWitt equation, combining the Hamiltonians for the metric and
particle, given that the metric can only vary by M .

I have just begone the most rudimentary investigation and have discovered
this so far. The Painlevé coordinates already naturally foliate space and time
in the manner needed to use the WDW equation. However the 3-metric qij is
simply the flat spherical metric. The Hamiltonian constraint is identically zero
even though you may vary M in time. What is lost are the surface integrals from
the action. This contributes to the WDW equation in a most curious manner.
This has all been investigated before by Teitelboim and I am just beginning to
read his papers.
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