Supplement for Phys675, Fall 2004, T. Jacobson

Determinant $=$ volume ratio

The determinant of a linear transformation in n-dimensions is the factor by which the transformation changes n-volumes. To demonstrate this we need two facts:

1. The volume of a parallelopiped formed by n vectors $V_{1} \ldots V_{n}$ in an n-dimensional space is given by

$$
\begin{equation*}
\operatorname{vol}\left(V_{1}, \ldots, V_{n}\right)=\epsilon_{a_{1} \ldots a_{n}} V_{1}^{a_{1}} \ldots V_{n}^{a_{n}}, \tag{1}
\end{equation*}
$$

where $\epsilon_{a_{1} \ldots a_{n}}$ is the volume element, equivalently, its components are the alternating symbol in an orthonormal basis.
2. The determinant of a linear transformation L satisfies

$$
\begin{equation*}
L_{b_{1}}^{a_{1}} \ldots L_{b_{n}}^{a_{n}} \epsilon_{a_{1} \ldots a_{n}}=\operatorname{det} L \epsilon_{b_{1} \ldots b_{n}} . \tag{2}
\end{equation*}
$$

Now, compute the volume of the parallelopiped formed by the n vectors $L V_{1} \ldots L V_{n}$:

$$
\begin{align*}
\operatorname{vol}\left(L V_{1}, \ldots, L V_{n}\right) & =\epsilon_{a_{1} \ldots a_{n}}\left(L_{b_{1}}^{a_{1}} V_{1}^{b_{1}}\right) \ldots\left(L_{b_{n}}^{a_{n}} V_{n}^{b_{n}}\right) \tag{3}\\
& =\operatorname{det} L \epsilon_{b_{1} \ldots b_{n}} V_{1}^{b_{1}} \ldots V_{n}^{b_{n}} \tag{4}\\
& =\operatorname{det} L \operatorname{vol}\left(V_{1}, \ldots, V_{n}\right) . \tag{5}
\end{align*}
$$

