HW#1S Phys675, Fall 2005 Prof. T. Jacobson

(Relativistic Beaming)

Consider a source of radiation that emits isotropically in its own rest frame S_* with energy flux per unit time per unit solid angle f_* . If the source is moving with velocity v in the x-direction of an inertial frame S, the flux $f(\theta)$ will not be isotropic in S but will rather be concentrated towards the forward direction. This is called relativistic beaming.

- 1. (a) A photon with frequency ω_* travels with angle θ_* from the x-direction in the frame \mathcal{S}_* . Find the frequency ω , and the tangent of the angle θ of travel from the x-axis in the frame \mathcal{S} . To what angle θ does $\theta_* = \frac{\pi}{2}$ correspond?
 - (b) Show that $\theta \approx \theta_*/\gamma(1+v)$ in the limit of small angles.
- 2. (a) Write an expression for the energy flux $f(\theta)$ in terms of f_* , θ , θ_* , and v. (It is possible to eliminate θ_* and obtain a nice expression using part 1a, but the algebra can be time consuming so we omit that step here.)
 - (b) Find the forward flux ratio $f(0)/f_*$ and show that, in the limit where v is very close to the speed of light, it becomes $8\gamma^2$ (where γ is the usual relativistic gamma factor).

[Hint for part 2a: Compare the radiation energy that emerges between the angles θ_* and $\theta_* + d\theta_*$ during a time dt_* in the frame S_* with the corresponding energy in the frame S_* .]