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we obtain from (20a), after a partial integration,
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Since the values of 8z, are arbitrary, it follows from this that

Ko =0 ; : ; . (20c¢)

are the equations of the geodetic line.

If ds does not vanish along the geodetic line we may
choose the “length of the arc ” s, measured along the geodetic
line, for the parameter . Then w = 1, and in place of (20c)

we obtain
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or, by a mere change of notation,
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Jao ds? ot _”__Su..u Q.”_mm|,.w_,» ds =0 . ¢ Awom_.v

where, following Christoffel, we have written
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Finally, if we multiply (20d) by gor (outer multiplication with
respect to 7, inner with respect to o), we obtain the equations
of the geodetic line in the form

Az, dz, dz,
a8 thwm=ES a0 (29)

where, following Christoffel, we have set
o, hgdfmpa] . . 0@8)
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§ 10. The Formation of Tensors by Differentiation

With the help of the equation of the geodetic line we can
now easily deduce the laws by which new tensors can be
formed from old by differentiation. By this means we are
able for the first time to formulate generally covariant
differential equations. We reach this goal by repeated appli-
cation of the following simple law :—

If in our continuum a curve is given, the points of which
are specified by the arcual distance s measured from a fixed
point on the curve, and if, further, ¢ is an invariant function
of space, then d¢/ds is also an invariant. The proof lies in
this, that ds is an invariant as well as dé¢.

As
d$ _ ¢ daz,
ds . ds
therefore
_ 2% o,
e dz, ds

is also an invariant, and an invariant for all curves starting
from a point of the continuum, that is, for any choice of the
vector dz,. Hence it immediately follows that
26
=L . 5 : y o (24
A Az, (24)
is a covariant four-vector—the ¢ gradient ”’ of ¢.
According to our rule, the differential quotient
_dy
X=ds
taken on a curve, is similarly an invariant. Inserting the
value of 4, we obtain in the first place
i dw, dz, P dz,

X = Yz, ds ds T dw, dst
The existence of a tensor cannot be deduced from this forth-
with. But if we may take the curve along which we have
differentiated to be a geodetic, we obtain on substitution for
d*z,/ds* from (22),

o2 o v&a,. dz,

x= Ag_? = e T s @

Since we may interchange the order of the differentiations,
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and since by (23) and (21) {u», 7} is symmetrical in x and »,
it follows that the expression in brackets is symmetrical in w
and ». Since a geodetic line can be drawn in any direction
from apoint of the continuum, and therefore dz,/ds is a four-
vector with the ratio of its components arbitrary, it follows
from the results of § 7 that

2 2

= — = 4 " . w
Ay ) {uv, iuﬁ (25)
18 a covariant tensor of the second rank. We have therefore
come to this result: from the covariant tensor of the first

rank
By
2i AT,y
we can, by differentiation, form a covariant tensor of the
second rank
e )

dz,

We call the tensor A, the “ extension ” (covariant derivative)
of the tensor A, In the first place we can readily show that
the operation leads to a tensor, even if the vector A, cannot
be represented as a gradient. To see this, we first observe
that

is a covariant vector, if 4 and ¢ are scalars. The sum of
four such terms
e AW
_ po? )

S, = ua=+ + .k A YT
1s also a covariant vector, if Y0, M . . . ¥ $® are scalars.
But 1t is clear that any covariant vector can be represented
in the form 8,. For, if A, is a vector whose components are
any given functions of the z,, we have only to put (in terms
of the selected system of co-ordinates)

YO = A, $0 =g,
T R
Jva_ = A, ﬁ@ = &g,

YO = A, ¢ =g,
in order to ensure that-S, shall be equal to A,.
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Therefore, in order to demonstrate that A,, is a tensor if
any covariant vector is inserted on the right-hand side for A,
we only need show that this is so for the vector S,. But for
this latter purpose it is sufficient, as a glance at the right-
hand side of (26) teaches us, to furnish the proof for the case

Now the right-hand side of (25) multiplied by +,
Uw
Voml — fur, gt

2,0,

is a tensor. Similarly

A

X, 0T,
being the outer product of two vectors, is a tensor. By ad-
dition, there follows the tensor character of

(P 52) - b (o 52)

As a glance at (26) will show, this completes the demon-
stration for the vector
¥ 2P
Az,
and consequently, from what has already been proved, for any
vector A,.

By means of the extension of the vector, we may easily
define the “extension’ of a covariant tensor of any rank.
This operation is a generalization of the extension of a vector.
We restrict ourselves to the case of a tensor of the second
rank, since this suffices to give a clear idea of the law of
formation.

As has already been observed, any covariant tensor of the
second rank can be represented * as the sum of tensors of the

* By outer muliplication of the vector with arbifrary components Ay, Ay,
Ay, Ay, by the vector with components 1,0, 0, 0, we produce a tensor with
components

»: ‘?Hw b.—« »FH%

00 FOEOR, 50

0 0o 0 o

07 ;050 00,
By the addition of four tensors of this type, we obtain the fensor A, with any
ssigned components,
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type A,B,. It will therefore be sufficient to deduce the ex-
pression for the extension of a tensor of this special type.
By (26) the expressions

A,
S {op, THA-,
2B,
R {ov, T} B,

are tensors. On outer multiplication of the first by B,, and
of the second by A,, we obtain in each case a tensor of the
third rank. By adding these, we have the tensor of the third
rank
A,
Ao = = {op, THAr — {ov, THA,, . . @n

fifre s

where we have put A, = A,B,. As the right-hand side
of (27) is linear and homogeneous in the A,, and their first
derivatives, this law of formation leads to a tensor, not only
in the case of a tensor of the type A,B,, but also in the case
of a sum of such tensors, i.e. in the case of any covariant
tensor of the second rank. We call A,,, the extension of the
tensor A,,.

It is clear that (26) and (24) concern only special cases
of extension (the extension of the tensors of rank one and
zero respectively).

In general, all special laws of formation of tensors are in-
cluded in (27) in combination with the multiplication of
tensors.

§ 11. Some Cases of Special Importance

The Fundamental Tensor.—We will first prove some
lemmas which will be useful hereafter. By the rule for the
differentiation of determinants

dg = g*9dgu = - Guwgdg” : 5 (28)

The last member is obtained from the last but one, if we bear
in mind that g.g*” = &), so that g..g» = 4, and conse-
quently

Judg™” + g*dguy = 0.
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From (28), it follows that

Lo s a L eel i), B G dg
Mwlr)mﬂuuw.lumwlf%,,gnlgzgq. (29)

Further, from g,.9*° = &, it follows on differentiation that

.Q_ u.&%.qu. paath s 7 Q—.Qmﬂ.ﬂ_tq
e Dy i eoresni(E)

= — g
Ino UH? Q WH>

From these, by mixed multiplication by g¢°" and g, re-
spectively, and a change of notation for the indices, we have

dg = - g dgep)

5 TS
gt ¥ b ARt Ao i 3
die, 9“9 2,
and oy
AGuy = = Jualvs AG*
UQ_E.. v.e.nn . . . Aw&u
2, = = GJualfvg 2y

The relation (31) admits of a transformation, of which we
also have frequently to make use. From (21)

UUM.‘% a _”Q.o.- \mwu + _”mo.. Q.u . 0 : Awwv
Inserting this in the second formula of (31), we obtain, in
view of (23)

dgH
fr.

Substituting the right-hand side of (34) in (29), we have

= — Q.—S:?.Q.. u._.“. — QS.A.HQ.\. _.Fv i . ﬁw%v
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e
The “ Divergence” of a Contravariant Vector.—If we
take the inner product of (26) by the contravariant funda-
mental tensor g*, the right-hand side, after a transformation
of the first term, assumes the form

U 1 U%‘r—‘ ._.9 NQ q. U@.en 1 w.Q.E_.v —.
srlobe) - 3T - a4 5 - o




