Prof. Ted Jacobson Room PSC 3151, (301)405-6020 jacobson@umd.edu

- 1. Nonrelativistic limit of Dirac equation
 - (a) With Dirac matrices in the representation $\beta = I \otimes \sigma^z$ and $\alpha^i = \sigma^i \otimes \sigma^x$, write the free-particle Dirac equation in terms of the upper two components of the Dirac spinor ψ_+ and the lower two components ψ_- . Show that $\psi_- = 0$ for the solutions with E = m (and zero momentum), and $\psi_+ = 0$ for the solutions with E = -m.
 - (b) Show that for nonrelativistic positive energy free particle solutions, ψ_{-} is smaller than ψ_{+} by a factor of order v/c. Thus ψ_{+} are called the "large components" in the nonrelativistic setting.
 - (c) Again for positive energy free particle solutions, solve for ψ_{-} in terms of ψ_{+} , and use that to obtain an equation for ψ_{+} alone. Show that in the limit $(E-m)/m \rightarrow 0$ (sometimes thought of as the " $c \rightarrow \infty$ " limit) one obtains the nonrelativistic Schrodinger equation.
 - (d) Now consider a nonrelativistic, positive energy Dirac particle with charge -e in a magnetic field. Find the Schrödinger equation for ψ_+ , and identify the magnetic moment $\boldsymbol{\mu}$ from the $-\boldsymbol{\mu} \cdot \mathbf{B}$ term in the Hamiltonian. Show that $\boldsymbol{\mu} = -g_s \mu_B \mathbf{S}/\hbar$, where $g_s = 2$ and $\mu_B = e\hbar/2m$ is the Bohr magneton (magnitude of the magnetic dipole moment of an orbiting electron with an orbital angular momentum \hbar).
- 2. See web page.
- 3. See web page.
- 4. See web page.