www.physics.umd.edu/grt/taj/624a/

This is Problem 4 only. Three other problems are listed at the course webpage.

Why a massless spin-1 field with Lorentz symmetry must have gauge symmetry

a) Show that a transformation $x^{\alpha} \to \Lambda^{\alpha}{}_{\mu}x^{\mu}$ preserves the invariant interval $ds^2 = \eta_{\mu\nu}dx^{\mu}dx^{\nu}$ if and only if

$$\Lambda^{\alpha}_{\ \mu}\Lambda^{\beta}_{\ \nu}\eta_{\alpha\beta} = \eta_{\mu\nu}.\tag{1}$$

These are Lorentz transformations.

b) Show that if $\Lambda^{\alpha}{}_{\mu} = \delta^{a}{}_{\mu} + \lambda^{\alpha}{}_{\mu}$ is to be a Lorentz transformation with $\lambda^{\alpha}{}_{\mu}$ infinitesimal, then

$$\lambda^{\alpha}{}_{\mu}\eta_{\alpha\nu} + \lambda^{\alpha}{}_{\nu}\eta_{\mu\alpha} = 0. \tag{2}$$

If we adopt the convention that indices are raised or lowered by contraction with the Minkowski metric, this is equivalent to antisymmetry of $\lambda_{\mu\nu}$,

$$\lambda_{\mu\nu} + \lambda_{\nu\mu} = 0. \tag{3}$$

 λ^{μ}_{ν} is called an *infinitesimal generator* of a Lorentz transformation, or *Lorentz generator* for short. For any pair of vectors A^{μ} and B^{μ} , the tensor $A^{\mu}B_{\nu} - B^{\mu}A_{\nu}$ is a Lorentz generator, and the collection of six such generators constructed using a basis of 4-vectors span the linear space of Lorentz generators.

- c) Find the Lorentz generators of the little group of a null 4-momentum vector $P^{\mu} = (1,0,0,1)$, using the basis consisting of P^{μ} , $T^{\mu} = (1,0,0,0)$, $X^{\mu} = (0,1,0,0)$ and $Y^{\mu} = (0,0,1,0)$. Show that one of these generates a rotation about the z axis and the other two commute with each other. The latter two generate null rotations: they consist of a boost in one direction, combined with a rotation through the same angle in a plane containing that direction. The null rotations form a noncompact (unbounded) group, so if they are nontrivially represented as unitary transformations in the Hilbert space, then the space of polarizations must be infinite dimensional. This is impossible for a vector field which has a polarization 4-vector. (Moreover, no such particles are observed in nature, but see http://arxiv.org/abs/1404.0675 for recent progress defining a field theory of such objects.) So, for a vector field, the null rotations must somehow be trivially represented in Hilbert space.
- d) Show that a polarization vector ϵ^{μ} is invariant under the null rotations only if $\epsilon \propto P$, which is invariant under the *entire* little group. (This would describe a particle with no internal spin, i.e. a scalar, and would imply that the vector field A_{μ} is the gradient of a scalar field, $A_{\mu} = \partial_{\mu} \lambda$, reducing the vector to (at most) a scalar degree of freedom.)
- e) Show that if $P \cdot \epsilon = 0$, then $\delta \epsilon \sim P$ under null rotations. This change can be identified with a gauge transformation, $\delta A_{\mu} = \partial_{\mu} \lambda$, and thereby declared unphysical.