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1. Consider the single particle state |ψ〉 =
∫ d3p

(2π)3
ψ(~p, t) a†p|0〉 defined by a momentum

space wavepacket ψ(~p, t).

(a) Show that 〈ψ|~P |ψ〉 =
∫ d3p

(2π)3
~p |ψ(~p, t)|2, where ~P =

∫ d3p
(2π)3

~p a†pap is the field

momentum operator. This shows that ψ(~p, t) corresponds to (2π)3/2 times the
normalized momentum space wavefunction in quantum mechanics.

(b) Impose the field theory Schrodinger equation ih̄∂t|ψ〉 = H|ψ〉 using the Hamil-
tonian (W1.76) (the W refers to Weigand’s lecture notes), and deduce the one-
particle Schrodinger equation satisfied by ψ(~p, t). Show that when |~p| � m
this becomes the non-relativistic, momentum space Schrodinger equation for a
particle in a constant potential.

2. Consider the vacuum “equal time 2-point correlation function” for a massive scalar
field,

〈0|φ(~x)φ(~y)|0〉. (1)

On grounds of translational symmetry, this must depend on ~x and ~y only via the
distance between them, |~x− ~y|.

(a) Express (1) as a one-dimensional integral over a function of momentum, m,
and |~x − ~y|. Show that it diverges when ~x = ~y. This means that there are
infinitely large fluctuations in the field, which are strongly correlated at nearby
points. Show that it isn’t well-defined when ~x 6= ~y, because the integral doesn’t
converge. In the rest of this problem, we’ll see that this lack of convergence isn’t
really important physically, and that there really is a well defined correlation
function.

(b) Insert a convergence factor e−εp in the integral, where ε is a positive real number.
Show that now the integral is well defined, and that in the limit ε→ 0 the result
for the massless case is is

〈0|φ(~x)φ(~y)|0〉 = (2π)−2|~x− ~y|−2. (2)

Explain how, apart from the numerical factor, this form follows from translational
symmetry and dimensional analysis.

(c) Find the ε → 0 limit for the case m 6= 0. The result should involve a modified
Bessel function. Show that for small |~x−~y| your result is the same as the massless
case, and for large |~x− ~y| it decays exponentially, with a decay rate determined
by the mass. This means that at distances much smaller than the Compton
wavelength, the mass makes no difference, while at distances much larger than
the Compton wavelength, the correlation is exponentially small.

(d) This part is optional; but in any case read it, to learn about the
results. “Smear,” i.e. average the field operators in (1) by integrating them
against normalized Gaussian weighting functions (2πσ2)−3/2e−|~x− ~x0|

2/2σ2
, and

similarly for y.



i. Show that the smeared correlation function is well-defined for any σ 6= 0.

ii. Set m = 0 and show that as σ/| ~x0− ~y0| → 0 you recover the previous result,
(2π)−2| ~x0 − ~y0|−2 without neglecting anything.

iii. Set m = 0 and ~x0 = ~y0, and show that the correlation function (which
is then just the mean square smeared field operator) becomes (8π2)−1σ−2.
That is, the size of the fluctuations is completely controlled by the size of
the smearing region.


