11.10

Then one can write the kinetic Lagrangian for the neutrinos as

$$\mathcal{L}_{\rm kin} = i\nu_L^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \nu_L + i\nu_R^{\dagger} \sigma^{\mu} \partial_{\mu} \nu_R - m(\nu_L^{\dagger} \nu_R + \nu_R^{\dagger} \nu_L) + i \frac{M}{2} \left(\nu_R^T \sigma_2 \nu_R - \nu_R^{\dagger} \sigma_2 \nu_R^{\star} \right), \qquad (11.93)$$

Here, ν_L is a left-handed $(\frac{1}{2}, 0)$ two-component Weyl spinor and ν_R is a righthanded $(0, \frac{1}{2})$ Weyl spinor. Note that there are two mass terms: a Dirac mass m, as for the electron, and a Majorana mass, M.

Show that this Lagrangian is Lorentz invariant and that $\chi_L \equiv i\sigma_2 \nu_R^*$ transforms as a left-handed spinor under the Lorentz group, so that it can mix with ν_L .

- (b) What are the mass eigenstates? That is, find linear combinations ψ₁ and ψ₂ of χ_L and ν_L that satisfy the Klein-Gordon equation (□ + m_i²)ψ_i = 0. What are m_i?
- (c) Suppose $M \gg m$. For example, $M = 10^{10}$ GeV and m = 100 GeV. What are the masses of the physical particles? The fact that as M goes up, the physical masses go down, inspired the name **see-saw mechanism** for this neutrino mass arrangement. What other choice of M and m would give the same spectrum of observed particles (i.e. particles less than ~ 1 TeV)?
- (d) The left-handed neutrino couples to the Z boson and also to the electron through the W boson. The W boson also couples the neutron and proton. The relevant part for the weak-force Lagrangian is

Using these interactions, draw a Feynman diagram for neutrinoless double β -decay, in which two neutrons decay to two protons and two electrons.

- (e) Which of the terms in \mathcal{L}_{kin} and \mathcal{L}_{weak} respect a global symmetry (lepton number) under which $\nu_L \rightarrow e^{i\theta}\nu_L$, $\nu_R \rightarrow e^{i\theta}\nu_R$ and $e_L \rightarrow e^{i\theta}e_L$? Define arrows on the *e* and ν lines to respect lepton number flow. Show that you cannot connect the arrows on your diagram without violating lepton number. Does this imply that neutrinoless double β -decay can tell if the neutrino has a Majorana mass?
- 10 In Section 10.4, we showed that the electron has a magnetic dipole moment, of order $\mu_B = \frac{e}{2m_e}$, by squaring the Dirac equation. An additional magnetic moment could come from an interaction of the form $\mathcal{B} = iF_{\mu\nu}\bar{\psi}[\gamma^{\mu},\gamma^{\nu}]\psi$ in the Lagrangian. An electric dipole moment (EDM) corresponds to a term of the form

For (b): It seems convenient to combine the two left handed fermions into a doublet, and write the first order field equation in terms of the doublet, with a mass matrix term. Then find the eigenvalues and eigenvectors of the matrix, and simplify them using M >> m. Then show that the mass eigenstates satisfy the Klein-Gordon equation. (For this step use the hint written out on the hw web page.)

(c): Change this part to: If m=100GeV, what value of M would yield a light neutrino mass 0.1 eV, and what would be the heavy neutrino mass?