```
    (a) carefully wiur helicity or
```

 spin up. Has its hart (a)?
 consistent wim measure the spive source, such as cobalt-60, which undergoes \(\beta\).
 (e) How can you have a radioactive . How could you (in principle) find out hey all have the same helicity
 (f) Suppose \({ }^{60} \mathrm{Co} \rightarrow{ }_{28}^{60} \mathrm{Ni}+e\) are polarized; that is, if they all have the same helicity?
 electrons coming out are pe polarized? If so, which polarization do yo
 - darangian term you can write down in terms of \(\mathrm{Dirac}_{\mathrm{irac}}\)
 more of? most general Lagrangian \(A_{\mu}\) is automatically invariant under CPT
 11.7 Show that the moses, and the photon field \(A_{\mu}\) is auto
 spinors, \(\gamma\)-m, consider first the terms in
 To warm up,
(Fierz identities). It is often useful to rewrite spin $_{0}$
11.8 Fierz rearrangement form to simplify formulas. Show that
(a) $\left.\left(\bar{\psi}_{1} \gamma^{\mu} P_{L} \psi_{2}\right)\left(\bar{\psi}_{3} \gamma^{\mu} P_{L} \psi_{4}\right)=-\bar{\psi}^{\mu} \gamma^{\alpha} \gamma^{\alpha}\right)=-16\left(\bar{\psi}_{1} \gamma^{\mu} P_{L} \psi_{4}\right)\left(\bar{\psi}_{3} \gamma^{\mu} P_{L} \psi_{2}\right)$
(b) $\left(\bar{\psi}_{1} \gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} P_{L} \psi_{2}\right)\left(\psi_{3} \gamma^{\mu} \gamma^{\alpha} \gamma^{M} \in\left\{\mathbb{1}, \gamma^{\mu}, \sigma^{\mu \nu}, \gamma_{5} \gamma^{\mu}, \gamma_{5}\right\}\right.$
(c) $\operatorname{Tr}\left[\Gamma^{M} \Gamma^{N}\right]=4 \delta^{M N}$, with $\Gamma^{M} \in\left\{\mathbb{1}, \bar{\gamma}^{\prime}\left[\bar{\psi}_{1} \Gamma^{M} \Gamma^{Q} \Gamma^{N}\right]\left(\bar{\psi}_{1} \Gamma^{P} \psi_{4}\right)\left(\bar{\psi}_{3} \Gamma^{Q} \psi_{2}\right)\right.$
(d) $\psi_{1} \Gamma \psi_{2} \psi_{\psi_{3}}$ projects out the left-handed spinor from a Dirac fermion. The dentities with P_{L} play an important role in the theory of weak interactions, which only involves left-handed spinors (see Chapter 29).
11.9 The electron neutrino is a nearly massless neutral particle. Its interactions violate parity: only the left-handed neutrino couples to the W and Z bosons. No one has ever seen a right-handed neutrino, and we do not (yet) know if they exist. Neutrino masses were conclusively discovered through oscillation experiments in the 1990's.
(a) One way to give neutrinos mass is to imagine that there exist right-handed neutrinos which have no interactions. Such particles are called sterile neutrinos. Then one can write the kinetic Lagrangian for the neutrinos as

$$
\begin{align*}
\mathcal{L}_{\mathrm{kin}}= & i \nu_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \nu_{L}+i \nu_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \nu_{R}-m\left(\nu_{L}^{\dagger} \nu_{R}+\nu_{R}^{\dagger} \nu_{L}\right) \\
& +i \frac{M}{2}\left(\nu_{R}^{T} \sigma_{2} \nu_{R}-\nu_{R}^{\dagger} \sigma_{2} \nu_{R}^{\star}\right) \tag{11.93}
\end{align*}
$$

Here, ν_{L} is a left-handed $\left(\frac{1}{2}, 0\right)$ two-component Weyl spinor and ν_{R} is a righthanded $\left(0, \frac{1}{2}\right)$ Weyl spinor. Note that there are two mass terms: a Dirac mass m, as for the electron, and a Majorana mass, M.
Show that this Lagrangian is Lorentz invariant and that $\chi_{L} \equiv i \sigma_{2} \nu_{R}^{\star}$ transforms as a left-handed spinor under the Lorentz group, so that it can mix with ν_{L}.
(b) What are the mass eigenstates? That is, find linear combinations ψ_{1} and ψ_{2} of χ_{L} and ν_{L} that satisfy the Klein-Gordon equation $\left(\square+m_{i}^{2}\right) \psi_{i}=0$. What are m_{i} ?
(c) Suppose $M \gg m$. For example, $M=10^{10} \mathrm{GeV}$ and $m=100 \mathrm{GeV}$. What are the masses of the physical particles? The fact that as M goes up, the physical masses go down, inspired the name see-saw mechanism for this neutrino mass arrangement. What other choice of M and m would give the same spectrum of observed particles (i.e. particles less than $\sim 1 \mathrm{TeV}$)?
(d) The left-handed neutrino couples to the Z boson and also to the electron through the W boson. The W boson also couples the neutron and proton. The relevant part for the weak-force Lagrangian is

$$
\begin{equation*}
\mathcal{L}_{\text {weak }}=g_{W}\left(\nu_{L}^{\dagger} W e_{L}+e_{L}^{\dagger} W \nu_{L}\right)+g_{Z}\left(\nu_{L}^{\dagger} \not \nu_{L}\right)+g_{W}(n W \bar{p}+\bar{n} W p) \tag{11.94}
\end{equation*}
$$

Using these interactions, draw a Feynman diagram for neutrinoless double β decay, in which two neutrons decay to two protons and two electrons.
(e) Which of the terms in $\mathcal{L}_{\text {kin }}$ and $\mathcal{L}_{\text {weak }}$ respect a global symmetry (lepton number) under which $\nu_{L} \rightarrow e^{i \theta} \nu_{L}, \nu_{R} \rightarrow e^{i \theta} \nu_{R}$ and $e_{L} \rightarrow e^{i \theta} e_{L}$? Define arrows on the e and ν lines to respect lepton number flow. Show that you cannot connect the arrows on your diagram without violating lepton number. Does this imply that neutrinoless double β-decay can tell if the neutrino has a Majorana mass?
10 In Section 10.4, we showed that the electron has a magnetic dipole moment, of order $\mu_{B}=\frac{e}{2 m_{e}}$, by squaring the Dirac equation. An additional magnetic moment could come from an interaction of the form $\mathcal{B}=i F_{\mu \nu} \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi$ in the Lagrangian. An electric dipole moment (EDM) corresponds to a term of the form

