HW\#6 -Phys624-Fall 2015
due at beginning of class, Thursday 010/29/15
www.physics.umd.edu/grt/taj/624a/

Prof. Ted Jacobson
Room PSC 3151, (301)405-6020
jacobson@umd.edu

P10.1 (relativistic effects in hydrogen atom) This problem in the book is confusing and confused. Hence replace it with the following:
(a) Delete all parts except (h), and note that " m " should be $\hbar / m_{e} c$ in that part.
(b) With Dirac matrices in the representation $\beta=I \otimes \sigma^{z}$ and $\alpha^{i}=\sigma^{i} \otimes \sigma^{x}$, write the free-particle Dirac equation in terms of the upper two components of the Dirac spinor ψ_{+}and the lower two components ψ_{-}. Show that $\psi_{-}=0$ for the solutions with $E=m$ (and zero momentum), and $\psi_{+}=0$ for the solutions with $E=-m$.
(c) Show that for nonrelativistic positive energy free particle solutions, ψ_{-}is smaller than ψ_{+}by a factor of order v / c. Thus ψ_{+}are called the "large components" in the nonrelativistic setting.
(d) Again for positive energy free particle solutions, solve for ψ_{-}in terms of ψ_{+}, and use that to obtain an equation for ψ_{+}alone. Show that in the limit $(E-m) / m \rightarrow$ 0 (sometimes thought of as the " $c \rightarrow \infty$ " limit) one obtains the nonrelativistic Schrodinger equation.
(e) Now consider a nonrelativistic, positive energy Dirac particle with charge $-e$ in a magnetic field. Find the Schrodinger equation for ψ_{+}, and identify the magnetic moment $\boldsymbol{\mu}$ from the $-\boldsymbol{\mu} \cdot \mathbf{B}$ term in the Hamiltonian. Show that $\boldsymbol{\mu}=-g_{s} \mu_{B} \mathbf{S} / \hbar$, where $g_{s}=2$ and $\mu_{B}=e \hbar / 2 m$ is the Bohr magneton (the magnetic dipole moment of an orbiting electron with an orbital angular momentum \hbar).

