HW#1 —Phys624—Fall 2015 due at beginning of class, Thursday 09/10/15 www.physics.umd.edu/grt/taj/624a/

- 1. Show that the Hamiltonian for a free scalar field with mass m is given by (2.65), but with the massive dispersion relation (with the correction 1/2 replaced by V/2, where V is the total volume of space). Start from the Lagrangian for the field, find the Hamiltonian in terms of the field and its derivatives, and then insert the field operator (2.78).
- 2. Consider the single particle state $|\psi\rangle = \int \frac{d^3p}{(2\pi)^3} \psi(\vec{p},t) a_p^{\dagger} |0\rangle$ defined by a momentum space wavepacket $\psi(\vec{p},t)$.
 - (a) Show that $\langle \psi | \psi \rangle = \int \frac{d^3p}{(2\pi)^3} |\psi(\vec{p},t)|^2$, so $\psi(\vec{p},t)$ corresponds to $(2\pi)^{3/2}$ times the normalized momentum space wavefunction in quantum mechanics.
 - (b) Show that the energy of the state $|\psi\rangle$ is $\int \frac{d^3p}{(2\pi)^3} \omega_p |\psi(\vec{p},t)|^2 + \text{zero-point energy.}$
 - (c) Impose the field theory Schrodinger equation $i\hbar\partial_t |\psi\rangle = H|\psi\rangle$ using the Hamiltonian (2.65) and deduce the one-particle Schrodinger equation satisfied by $\psi(\vec{p}, t)$. Show that when $|\vec{p}| \ll m$ this becomes the non-relativistic momentum space Schrodinger equation for a particle in a constant potential.
- 3. Consider the vacuum "equal time 2-point correlation function" for a massive scalar field,

$$\langle 0|\phi(\vec{x},t)\phi(\vec{y},t)|0\rangle. \tag{1}$$

- (a) Show that (1) diverges when $\vec{x} = \vec{y}$.
- (b) Show that (1) isn't even well-defined when $\vec{x} \neq \vec{y}$, because of an oscillating integral at large momenta.
- (c) Set m = 0 and show that one has $\langle 0|\phi(\vec{x})\phi(\vec{y})|0\rangle = (2\pi)^{-2}|\vec{x} \vec{y}|^{-2}$, if the oscillating boundary term is neglected.
- (d) "Smear," i.e. average the field operators in (1) by integrating them against normalized Gaussian weighting functions $(2\pi\sigma^2)^{-3/2}e^{-|\vec{x}-\vec{x_0}|^2/2\sigma^2}$, and similarly for y.
 - i. Show that the smeared correlation function is well-defined for any $\sigma \neq 0$.
 - ii. Set m = 0 and show that as $\sigma/|\vec{x_0} \vec{y_0}| \to 0$ you recover the previous result, $(2\pi)^{-2}|\vec{x_0} \vec{y_0}|^{-2}$ without neglecting anything. This means that vacuum field fluctuations at spacelike separated points are strongly correlated when the points are close together.
 - iii. Set m = 0 and $\vec{x_0} = \vec{y_0}$, and show that the correlation function (which is then just the mean square smeared field operator) becomes $(8\pi^2)^{-1}\sigma^{-2}$. That is, the size of the fluctuations is completely controlled by the size of the smearing region.