
Supplement—Phys623—Spring 2018 Prof. Ted Jacobson
February 17, 2018 Room 3151, (301)405-6020

jacobson@physics.umd.edu

Irreducible tensor operators
and the Wigner-Eckart theorem

Vector operators

The rotation O → O′ of an observable is defined so that 〈ψ|O′|ψ〉 = 〈ψ′|O|ψ′〉,
where |ψ′〉 = exp(−i~θ · ~J)|ψ〉 is the rotated state. Thus

O′ = eiθ
bJbOe−iθbJb

= O + iθb[Jb,O] +O(θ2), (1)

where Ja are the generators of rotation (and are the angular momentum), and
repeated indices are summed over. A vector operator V a transforms under rotations
as does a vector in Euclidean space,

V a → V a + εabcθbV c +O(θ2), (2)

which is implemented by (1) provided

[Ja, V b] = iεabcV c. (3)

In the case where V b = Jb, these are the commutation relations of the generators of
the rotation group. This is consistent, of course, since Jb is indeed a vector. Other
examples of vector operators are position, momentum, orbital angular momentum,
electric dipole moment, spin, magnetic moment, etc. Note that a “vector operator”
can be defined relative to rotations on a subspace of Hilbert space, so Ja in (3) need
not be the total angular momentum.

The commutation relations (3) are equivalent to

[Jz, Vq] = q Vq (4)

[J±, Vq] =
√

2Vq±1, (5)

where
V0 = V z and V±1 = ∓(V x ± iV y)/

√
2 (6)

are the so-called “spherical components” of V a, and Vq = 0 for |q| > 1.
An example is the position vector ra. The Cartesian components of this vector

are (x, y, z). The spherical components, in Cartesian and polar coordinates, are

r0 = z = r cos θ, and r±1 = ∓(x± iy)/
√

2 = ∓r sin θe±iφ/
√

2, (7)

which are directly related to the l = 1 spherical harmonics via

rq =
√

4π
3 rY1q(θ, φ). (8)
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Tensor operators

An (irreducible) tensor operator of order k = 0, 12 , 1,
3
2 , . . . is a collection of operators

Tkq, q = k, k − 1, . . . ,−k, that transforms under rotations as

[Jz, Tkq] = q Tkq

[J±, Tkq] =
√
k(k + 1)− q(q ± 1)Tk,q±1

(9)

(10)

with Tkq ≡ 0 when |q| > k. For k = 1 these coincide with the vector operator rela-
tions (4,5). For integer k, they apply to the spherical harmonics Ykq(θ, φ), considered
as multiplication operators, A useful example is the operator of tensor multiplication
by some spin-k multiplet of states |kq〉, i.e.

Mkq|ψ〉 := |kq〉|ψ〉. (11)

This is a bit odd, in that it maps the ket |ψ〉 into a larger Hilbert space, but that’s
ok. Mkq satisfies the commutation relations (9,10) simply because Jz|kq〉 = q|kq〉
and J±|kq〉 =

√
k(k + 1)− q(q ± 1)|k, q ± 1〉. Mutiplication by a tensor operator

adds angular momentum to the state on which it acts.
The commutation relations (9,10) imply that the set of vectors {Tkq|jm〉}, for

fixed k and j, is closed under the action of Jz and J±, hence can be decomposed into
a set of irreducible representations of the rotation group. In particular, (9) implies

JzTkq|jm〉 = (q +m)Tkq|jm〉, (12)

so the decomposition proceeds just as for the product space spanned by the vectors
{|kq〉|jm〉}. That is, starting with the top state, Tkk|jj〉, successive application of
J− produces all the states in a complete spin-(k + j) representation. Next, the
orthogonal state with total Jz equal to k+ j−1 is the top state of a spin-(k+ j−1)
representation, and so on. This yields a sum of representations, (k + j)⊕ (k + j −
1)⊕ · · · ⊕ |k− j|. It follows from this structure that we have the following selection
rules:

〈ω′j′m′|Tkq|ωjm〉 = 0 unless j′ ⊂ k ⊗ j and m′ = q +m (13)

These rules are the single most important takeaway of this whole business.

Wigner-Eckart Theorem

Let J2, Jz, and Ω form a complete commuting set of operators with corresponding
eigenstates labeled uniquely by |ωjm〉, where Ω stands for a collection of operators
and ω for the corresponding eigenvalues. According to the selection rule (13), each
(m′,m) pair determines a unique value of q for which Tkq can have a nonzero matrix
element. The commutation relations (10) imply linear relations among the (possibly)
nonzero matrix elements. Omitting the ω′j′ and ωj labels, which play no role here,
these relations are

a 〈m′|Tk,q±1|m〉 = b 〈m′ ∓ 1|Tkq|m〉 − c 〈m′|Tkq|m± 1〉, (14)
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with

a =
√
k(k + 1)− q(q ± 1) (15)

b =
√
j′(j′ + 1)−m′(m′ ∓ 1) (16)

c =
√
j(j + 1)−m(m± 1). (17)

The matrix elements 〈ω′j′m′|Tkq|ωjm〉 with fixed ω′j′ωj are therefore determined
recursively by (for example) the nonzero matrix element with maximal m′ and m.
(One need not work out the formula explicitly for each matrix element to see that
the elements are so determined.) Thus, the m′m matrix elements of any two tensor
operators of the same order k are proportional to each other, in the sense that

〈ω′1j′m′|T
(1)
kq |ω1jm〉 = S 〈ω′2j′m′|T

(2)
kq |ω2jm〉, (18)

where S is a scalar that depends on ω′1, ω1, ω
′
2, ω2, j

′, j and the operators T (1) and
T (2), but not on m′,m, q. In writing (18) we have assumed of course that the relevant

matrix elements of T
(2)
kq don’t vanish identically.

The matrix elements of the tensor multiplication operator (11), are just the

Clebsch-Gordan coefficients 〈j′m′|kjqm〉. Choosing T
(2)
kq = Mkq in (18) thus shows

in particular that, for any tensor operator Tkq,

〈ω′j′m′|Tkq|ωjm〉 = 〈ω′j′||Tk||ωj〉 〈j′m′|kjqm〉 (19)

where the coefficient 〈ω′j′||T ||ωj〉 is called the “reduced matrix element”.1 This is
the Wigner-Eckart theorem. It states that the matrix elements of an irreducible
tensor operator are proportional to the Clebsch-Gordan (CG) coefficients, with a
coefficient that depends on ω′, ω, j′, j, but not on m′,m, q. The argument given so
far only shows that (19) holds when the CG coefficients do not vanish, but this is
sufficient, given the selection rule (13), which states that the matrix element vanishes
whenever the CG coefficient does.

Vector Projection Theorem

As a special case of (18), the matrix elements of any vector operator V a between
states of the same2 j are proportional to those of Ja:

〈ω′jm′|V a|ωjm′′〉 = Sω′ωj 〈ωjm′|Ja|ωjm′′〉. (20)

To evaluate Sω′ωj , multiply (20) by 〈ωjm′′|Ja|ωjm′〉 and sum over m′′. This yields

〈ω′jm′|V a|ωjm′′〉 =
〈ω′jm|~V · ~J |ωjm〉

j(j + 1)
〈ωjm′|Ja|ωjm′′〉, (21)

which is called the projection theorem. Thus, within a given j representation, only
the component of ~V parallel to ~J contributes to the matrix elements of V a.

1Sometimes 1/
√

2j′ + 1 is factored out in the definition of the reduced matrix element.
2The restriction to matrix elements between states of the same j is in general necessary for (20)

to be true, since the matrix elements of Ja between different j’s vanish, but those of V a do not in
general.

3



Landé g-factor

A useful application of the projection theorem is to express the magnetic moment
of a system in terms of the total angular momentum. Consider for example an atom
with many electrons. The magnetic moment is

~µ = −(µB/h̄)
∑
i

(~Li + gs~Si) = −(µB/h̄)[ ~J + (gs − 1)~S], (22)

where the sum is over the different electrons, gs is the electron g-factor, and ~J = ~L+~S
is the total orbital plus spin angular momentum of the electrons. The magnetic mo-
ment is a vector operator with respect to the total electronic angular momentum ~J ,
so the Wigner-Eckart theorem tells us that, within a fixed irreducible representation
of this angular momentum, we have

〈ω′JM ′|~µ|ωJM〉 = −gJ
µB
h̄
〈ω′JM ′| ~J |ωJM〉 (23)

for some coefficient gJ . The projection theorem applied to ~µ, with the help of
~S · ~J = [J2 + S2 − (J − S)2]/2, yields

gJ = 1 + (gs − 1)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (24)

This is called the Landé g-factor.

Trace Theorem

The trace of the matrix of Tk0 (k 6= 0) in a subspace of given ω and j is zero:∑
m

〈ωjm|Tk0|ωjm〉 = 0. (25)

This follows from (i) the commutation relation [J+, Tk,−1] ∝ Tk0 (10), which can be
truncated to the given j subspace since J+ acts within the subspace, and (ii) the
fact that the trace of a commutator of finite dimensional matrices vanishes.

Hole-Particle equivalence

In some ways, a shell filled with identical fermions except for n “holes” behaves the
same as a shell with only n such particles. More precisely, let Tk0(i) be a single
particle tensor operator with k > 0, indexed by the particle label i. It can be shown
that

〈j2j+1−nJM |
2j+1∑
i=n+1

Tk0(i)|j2j+1−nJM〉 = (−1)k+1〈jnJM |
n∑
i=1

Tk0(i)|jnJM〉, (26)

where |jnJM〉 is a totally antisymmetric state of n identical fermions, each with
angular momentum j, adding up to a total angular momentum J and total z-
component of angular momentum M . (For a proof, see for example Nuclear Shell
Theory, A. de Shalit and I. Talmi (Academic Press, 1963).)
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