Perturbation theory for stationary states

Consider a Hamiltonian

$$
\begin{equation*}
H(\lambda)=H_{0}+\lambda V, \tag{1}
\end{equation*}
$$

depending on a parameter λ, and suppose that for λ sufficiently near $\lambda=0$ one can follow the energy eigenstates as differentiable functions of λ. For a particular one parameter family of such eigenstates $|\psi(\lambda)\rangle$ we then have

$$
\begin{equation*}
H(\lambda)|\psi(\lambda)\rangle=E(\lambda)|\psi(\lambda)\rangle, \tag{2}
\end{equation*}
$$

with corresponding energy eigenvalues $E(\lambda)$. If the state can be followed all the way from $\lambda=0$ to $\lambda=1$ then it makes sense to say that $E(1)$ is the energy of the eigenstate $|\psi(1)\rangle$ of the Hamiltonian $H_{0}+V$. Perturbation theory gives an approximation to $E(1)$ and $|\psi(1)\rangle$ by Taylor expansion of $E(\lambda)$ and $|\psi(\lambda)\rangle$ about $\lambda=0$.

Perturbation equations

We begin by writing out the Schrödinger equation (2) and its first two derivatives with respect to λ :

$$
\begin{gather*}
(H-E)|\psi\rangle=0 \tag{3}\\
(\dot{H}-\dot{E})|\psi\rangle+(H-E)|\dot{\psi}\rangle=0 \tag{4}\\
(\ddot{H}-\ddot{E})|\psi\rangle+2(\dot{H}-\dot{E})|\dot{\psi}\rangle+(H-E)|\ddot{\psi}\rangle=0 . \tag{5}
\end{gather*}
$$

(Overdot denotes $d / d \lambda$.) These equations hold for all values of λ, but for the purpose of Taylor expansion we are only interested in evaluating them at $\lambda=0$. The expansion for the energy eigenvalue is

$$
\begin{align*}
E(\lambda) & =E(0)+\dot{E}(0) \lambda+\frac{1}{2} \ddot{E}(0) \lambda^{2}+\cdots \tag{6}\\
& =: \varepsilon+E^{(1)} \lambda+E^{(2)} \lambda^{2}+\cdots \tag{7}
\end{align*}
$$

introducing the notation ε for the unperturbed energy and $E^{(k)}$ for the k th order contribution to $E(1)$. For the Hamiltonian (1), the perturbation equations evaluated at $\lambda=0$ take the form

$$
\begin{gather*}
\left(H_{0}-\varepsilon\right)|\psi\rangle=0 \tag{8}\\
\left(V-E^{(1)}\right)|\psi\rangle+\left(H_{0}-\varepsilon\right)|\dot{\psi}\rangle=0 \tag{9}\\
-2 E^{(2)}|\psi\rangle+2\left(V-E^{(1)}\right)|\dot{\psi}\rangle+\left(H_{0}-\varepsilon\right)|\ddot{\psi}\rangle=0 \tag{10}
\end{gather*}
$$

where here and hereafter all kets are implicitly evaluated at $\lambda=0$.

First order perturbation

Multiplying (9) by the bra $\langle\psi|$ yields the first order energy shift:

$$
\begin{equation*}
E^{(1)}=\langle\psi| V|\psi\rangle \tag{11}
\end{equation*}
$$

Remember that we have assumed $|\psi\rangle$ is the limit as $\lambda \rightarrow 0$ of a one-parameter family of eigenstates $|\psi(\lambda)\rangle$ of $H(\lambda)$ with eigenvalues $E(\lambda)$ that converge to ε. The information in the vector equation (9) not captured in the scalar equation (11) restricts what this limit could be. To see how, let P be the projection onto the degeneracy subspace of states with energy ε (at $\lambda=0$), which we'll denote by $\mathcal{H}_{\varepsilon}$. Then $P|\psi\rangle=|\psi\rangle$, and $P\left(H_{0}-\varepsilon\right)=0$, so acting with P on (9) yields

$$
\begin{equation*}
P V|\psi\rangle=E^{(1)}|\psi\rangle . \tag{12}
\end{equation*}
$$

This is called the first order secular equation. It tells us that $|\psi\rangle$ must be an eigenstate of $P V$, and that the first order energy shift is the corresponding eigenvalue. Since $P|\psi\rangle=|\psi\rangle$, we may replace $P V$ in (12) by $P V P$, the perturbation projected into $\mathcal{H}_{\varepsilon}$. Thus (12) states that $|\psi\rangle$ must be an eigenvector of the projected perturbation. If ε is non-degenerate, then $P=|\psi\rangle\langle\psi|$ is a one-dimensional projector. In this case $|\psi\rangle$ automatically satisfies the secular equation (12), with $E^{(1)}$ given by (11).

To write out the first order secular equation (12) in matrix form, choose an orthonormal basis $\{|m\rangle\}$ for $\mathcal{H}_{\varepsilon}$. Then take the inner product of (12) with $\langle m|$, and insert $P=\sum_{m}^{\prime}\left|m^{\prime}\right\rangle\left\langle m^{\prime}\right|$ before $|\psi\rangle$ on the left hand side. This yields

$$
\begin{equation*}
\sum_{m^{\prime}}\langle m| V\left|m^{\prime}\right\rangle\left\langle m^{\prime} \mid \psi\right\rangle=E^{(1)}\langle m \mid \psi\rangle \tag{13}
\end{equation*}
$$

Figure 1: The degeneracy subspace $\mathcal{H}_{\varepsilon}$ for the H_{0} eigenvalue ε, and its orthogonal complement $\mathcal{H}_{\varepsilon}^{\perp}$.

Example of the degenerate case

For a simple example consider a two-dimensional system with

$$
H_{0}=\varepsilon I, \quad V|0\rangle=|1\rangle, \quad V|1\rangle=|0\rangle .
$$

The eigenvalue ε of H_{0} is totally degenerate in the two-dimensional Hilbert space spanned by $|0\rangle$ and $|1\rangle$. If we start with the eigenvector $|0\rangle$, the first order energy shift according to (11) is $E^{(1)}=\langle 0| V|0\rangle=0$. But this is wrong! The exact eigenstates of $H(\lambda)=\varepsilon I+\lambda V$ are $(|0\rangle \pm|1\rangle) / \sqrt{2}$, with corresponding eigenvalues $E(\lambda)=\varepsilon \pm \lambda$. The reason the perturbation formula (11) gave the wrong answer is that we started with an unperturbed state $|0\rangle$ which is not the $\lambda \rightarrow 0$ limit of an exact eigenvector. The secular equation (12) would have told us this if we hadn't noticed it by inspection: Here P is just the identity, so the secular equation reads $V|\psi\rangle=E^{(1)}|\psi\rangle$. Thus we must begin with an eigenvector of V.

First order perturbation of the eigenstate

To find the first order correction to the state we need to solve (9) for $|\dot{\psi}\rangle$. Actually, we can only solve for the part of $|\dot{\psi}\rangle$ that is orthogonal to the projector P, since $\left(H_{0}-\varepsilon\right) P=0$. To do so, let $\{|i\rangle\}$ be an orthonormal basis of eigenstates for $\mathcal{H}_{\varepsilon}^{\perp}$, the subspace orthogonal to $\mathcal{H}_{\varepsilon}$, satisfying $H_{0}|i\rangle=\varepsilon_{i}|i\rangle$. The inner product of (9) with $\langle i|$ is

$$
\begin{equation*}
\langle i|\left(V-E^{(1)}\right)|\psi\rangle+\langle i|\left(H_{0}-\varepsilon\right)|\dot{\psi}\rangle=0 . \tag{14}
\end{equation*}
$$

The $E^{(1)}$ term drops out since $\langle i \mid \psi\rangle=0$. Acting to the left with H_{0} in the second term thus yields

$$
\begin{equation*}
\langle i \mid \dot{\psi}\rangle=\frac{\langle i| V|\psi\rangle}{\varepsilon-\varepsilon_{i}} \tag{15}
\end{equation*}
$$

We can't in general determine the component of $|\dot{\psi}\rangle$ in the degenerate subspace, because it is in general not uniquely determined!

Second order perturbation

To find the second order perturbation $E^{(2)}$ to the energy eigenvalue, suppose $|\psi\rangle$ is both an unperturbed eigenstate (8) and a solution of the first order secular equation (12). Then the inner product of $\langle\psi|$ with (10) yields

$$
\begin{equation*}
E^{(2)}=\langle\psi|\left(V-E^{(1)}\right)|\dot{\psi}\rangle \tag{16}
\end{equation*}
$$

Now suppose we insert the identity $I=P+\sum_{i}|i\rangle\langle i|$ just before $|\dot{\psi}\rangle$. The P-term will drop out, because ψ satisfies the first order secular equation, $\langle\psi|\left(V-E^{(1)}\right) P=0$. Therefore only the part of $|\dot{\psi}\rangle$ orthogonal to the degenerate subspace contributes, yielding

$$
\begin{equation*}
E^{(2)}=\sum_{i}\langle\psi|\left(V-E^{(1)}\right)|i\rangle\langle i \mid \dot{\psi}\rangle . \tag{17}
\end{equation*}
$$

The $E^{(1)}$ term drops out, because $\langle\psi \mid i\rangle=0$. Using the expression (15) for $\langle i \mid \dot{\psi}\rangle$ we thus obtain an explicit formula for the second order energy shift:

$$
\begin{equation*}
E^{(2)}=\sum_{i} \frac{\langle\psi| V|i\rangle\langle i| V|\psi\rangle}{\varepsilon-\varepsilon_{i}} . \tag{18}
\end{equation*}
$$

The sum is over all states with unperturbed energy not equal to ε.
Similar to what happened with the first order perturbation, if $E^{(1)}$ is degenerate for the states in $\mathcal{H}_{\varepsilon}$, then (18) holds only if the state satisfies an additional, vector equation. To find this vector equation, instead of taking the inner product of $\langle\psi|$ with (10) we take the inner product with any basis vector $|\tilde{m}\rangle$ in $\mathcal{H}_{\varepsilon}$ that is also a solution to the first order secular equation, $P V|\tilde{m}\rangle=E^{(1)}|\tilde{m}\rangle$. This yields

$$
\begin{equation*}
\langle\tilde{m}|\left(V-E^{(1)}\right)|\dot{\psi}\rangle=E^{(2)}\langle\tilde{m} \mid \psi\rangle . \tag{19}
\end{equation*}
$$

As explained above, we may insert $\sum_{i}|i\rangle\langle i|$ before $|\dot{\psi}\rangle$, which yields

$$
\begin{equation*}
\sum_{i}\langle\tilde{m}|\left(V-E^{(1)}\right)|i\rangle\langle i \mid \dot{\psi}\rangle=E^{(2)}\langle\tilde{m} \mid \psi\rangle . \tag{20}
\end{equation*}
$$

Then, again using (15), and replacing $|\psi\rangle$ by $\sum_{\tilde{m}^{\prime}}\left|\tilde{m}^{\prime}\right\rangle\left\langle\tilde{m}^{\prime} \mid \psi\right\rangle$ in (15) (which is valid since we are assuming that $P V|\psi\rangle=E^{(1)}|\psi\rangle$), we obtain

$$
\begin{equation*}
\sum_{\tilde{m}^{\prime}}\left[\sum_{i} \frac{\langle\tilde{m}| V|i\rangle\langle i| V\left|\tilde{m}^{\prime}\right\rangle}{\varepsilon-\varepsilon_{i}}\right]\left\langle\tilde{m}^{\prime} \mid \psi\right\rangle=E^{(2)}\langle\tilde{m} \mid \psi\rangle \tag{21}
\end{equation*}
$$

This is the matrix form of the second order secular equation. It requires that $|\psi\rangle$ must be an eigenvector of the matrix on the left hand side of (21), in addition to being an eigenvector of $P V$. If $E^{(1)}$ is nondegenerate, then (21) is equivalent to the scalar equation (18).

