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Angular momentum

Rotations and angular momentum

Rotations R in space are implemented on QM systems by unitary transformations,

U(R) = e−iθ
iJi/h̄, (1)

where Ji are the hermitian generators of rotation. The Ji are also the angular mo-
mentum operators, and are conserved if the Hamiltonian is invariant under rotations.
The rotation group structure implies the commutation relations,

[Ji, Jj ] = ih̄εijkJk. (2)

Unitary irreducible representations of the rotation group

Since [Jz, J
2] = 0,1 we can simultaneously diagonalize Jz and J2. Call the (normal-

ized) eigenstates |jm〉, where

Jz|jm〉 = m|jm〉, J2|jm〉 = j(j + 1)|jm〉, (3)

with h̄ = 1 from now on. To infer the consequences of the commutation relations,
it’s convenient to introduce the complex linear combinations

J± := Jx ± iJy, (4)

in terms of which the commutation relations (2) take the form

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (5)

Using these commutation relations it can be shown that the action of J± changes
m by ±1, with the following coefficients,2

J±|jm〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉, (6)

and that positivity of the norms of J±|jm〉 implies that the possible values of j and
m are

j = 0, 1
2 , 1, 3

2 , 2, . . . , m = j, j − 1, j − 2, . . . ,−j. (7)

The representation with a given j is called the “spin-j” representation, and it is
2j + 1 dimensional. These representations are irreducible, in the sense that there is
no subspace that is invariant (mapped into itself) under all rotations. This follows
from (6), which implies that by acting with rotations we move through all the states.
Note that the representation is an abstract structure, which can be realized by many
different physical or mathematical systems.

1This means that the scalar J2 is invariant under infinitesimal rotations about the z axis.
2The key identities are J−J+ = J2−Jz(Jz +1) and J+J− = J2−Jz(Jz−1), so that ‖J+|jm〉‖ =

j(j + 1)−m(m + 1) and ‖J−|jm〉‖ = j(j + 1)−m(m− 1).
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Examples

3d vectors V i form the spin-1 representation. The tensor product of two vectors is
a rank two tensor V iW j . More generally, a rank two tensor is a 3 × 3 array T ij ,
transforming in the same way as a tensor product of vectors V iW j . The set of rank
two tensors transforms into itself under rotations, but not irreducibly. Rather, the
antisymmetric part is by itself irreducible, and three dimensional, hence it is another
spin-1 representation. The symmetric part is reducible into the tracefree part, and
the part proportional to the Kronecker delta δij (the coeffcient being 1/3 the trace
of the matrix). The trace part transforms under the spin-0 representation, i.e. it is
invariant under rotations. The symmetric tracefree part transforms under the spin-2
representation: a symmetric tracefree tensor has 5 independent components, while
for j = 2 we have 2j + 1 = 5. Thus, we have just seen that the tensor product of
two spin-1 representations is the sum of spin-2, spin-1, and spin-0 representations.
This relation can be expressed with a sort of arithmetic of tensor products:

1⊗ 1 = 2⊕ 1⊕ 0 ←→ 3× 3 = 5 + 3 + 1. (8)

The ⊗ symbol represents tensor product, and the ⊕ symbol represents direct sum
of vector spaces. The arithmetic on the right shows the counting of vector space
dimensions of the different representations. The simplest example is the product of
two spin-1/2 representations:

1
2 ⊗

1
2 = 1⊕ 0 ←→ 2× 2 = 3 + 1. (9)

That is, 1
2 ⊗

1
2 decomposes into the direct sum of a triplet and a singlet.

Addition of angular momenta

The tensor product j1 ⊗ j2 of any two representations is spanned by the product
basis, {|j1m1〉|j2m2〉}. This decomposes into irreducible representations (irreps).
To enumerate these, start with the “top” Jz state, |j1j1〉|j2j2〉, i.e. the state with
the largest possible value of Jz, which is j1 + j2, and work down to lower values of
Jz by applying the lowering operator J−. At each step the result will be a linear
combination of all the product states with m1 + m2 equal to a given value of the
total Jz. When this process lands on the lowest possible Jz value, here −(j1 + j2),
it has filled out a spin-(j1 + j2) representation. For example, using (6), we find the
state below the top state is

J−|j1j1〉|j2j2〉 =
√

2j1|j1, j1 − 1〉|j2j2〉+
√

2j2|j1j1〉|j2, j2 − 1〉. (10)

Next, construct the spin-(j1 +j2−1) representation, by successively applying J−, to
the next highest top Jz state, which is the linear combination of the two next-to-top
Jz states that is orthogonal to the linear combination (10) used already in building
the spin-(j1 + j2) representation. Repeating this process until all the states are used
up, one obtains the decomposition

j1 ⊗ j2 = (j1 + j2)⊕ (j1 + j2 − 1)⊕ · · · ⊕ |j1 − j2|. (11)
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Figure 1: Each dot represents a state in the product basis, |j1m1〉|j2m2〉. States on each
diagonal line have the same total m = m1 +m2. Acting repeatedly with J−, starting with
a top state with m = j, generates a basis for a spin-j representation. The purple curves
looping around the states of a given m are meant to suggest the different linear combinations
that occur in different j representations.

To see that the smallest representation in the sum is spin-|j1−j2|, note that each of
the states |j1m1〉 must occur in every representation, since acting with J+ and J−
will eventually introduce it. In particular, |j1j1〉 must occur. If j1 ≥ j2, the smallest
total m that can occur in a product containing this state is in the product state
|j1j1〉|j2,−j2〉, in which case the total m is j1−j2, hence the smallest representation
has spin-(j1 − j2). If instead j2 ≥ j1, then the smallest representation has spin-
(j2 − j1). In general, then, the smallest is spin-|j1 − j2|. One can check that the
total dimension (2j1 + 1)(2j2 + 1) of j1 ⊗ j2 is equal to the sum of 2j + 1 over the j
values stepping by integers from j1 + j2 down to |j1 − j2|.

For example, consider the p-wave electron states in an alkalai atom, with orbital
angular momentum ` = 1. These transform under the spin-1 representation, while
the spin of the electron transforms under the spin-1/2 representation. The Hilbert
space for these orbital and spin degrees of freedom is the tensor product of the two,
1⊗ 1

2 , which decomposes into the sum of two irreps,

1⊗ 1
2 = 3

2 ⊕
1
2 ←→ 3× 2 = 4 + 2 (12)

For another example, consider four spin-1
2 systems:

1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2 = (1⊕ 0)⊗ (1⊕ 0) (13)

= (1⊗ 1)⊕ 1⊕ 1⊕ 0 (14)

= 2⊕ 1⊕ 0⊕ 1⊕ 1⊕ 0. (15)

So there is one spin-2 irrep, three triplets, and two singlets. The singlets are invariant
under all rotations.
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Clebsch-Gordan coefficients

The identity operator on the product j1 ⊗ j2 can be expanded in {|j1m1〉|j2m2〉}
states, or in |jm〉 states:

Ij1⊗j2 =
∑

m1,m2

|m1m2〉〈m1m2| =
∑
j m

|jm〉〈jm|. (16)

Here I use the notational abbreviation |m1m2〉 := |j1m1〉|j2m2〉, suppressing the j1
and j2 labels since they are the same for all the states. Applying the identity in the
form of the first of these sums yields

|jm〉 =
∑

m1+m2=m

|m1m2〉〈m1m2|jm〉. (17)

Similarly, applying the identity in the form of the second sum in (16) yields

|m1m2〉 =
∑
j

|jm〉〈jm|m1m2〉, (18)

with m = m1 +m2 (since otherwise the inner product vanishes). The inner products
that serve as the expansion coefficients are called Clebsch-Gordan (CG) coefficients.
The decomposition into the irreps discussed above introduces only algebraic func-
tions involving the square root coefficients appearing in (6). Therefore the CG
coefficients can always be taken to be real, and we have (restoring the explicit j1j2
dependence)

〈j1m1j2m2|jm〉 = 〈jm|j1m1j2m2〉∗ = 〈jm|j1m1j2m2〉. (19)

There remains a sign ambiguity, which is typically fixed by requiring that the coef-
ficient of |m1 = j1〉|m2 = j − j1〉 in the the expansion of the top state |jj〉 of the
spin-j representation is positive, i.e. 〈j1, j − j1|jj〉 > 0.

The CG coefficients can be found in many ways: brute force, Mathematica:
ClebschGordan[{j1,m1}, {j2,m2}, {j,m}], tables, recursion relations, a projection
operator method, and, amazingly enough, using a closed form formula found by
Wigner. The formula was given in a more symmetrical form by Racah, but it’s too
complicated to be usable. See (106.14) of Landau & Lifshitz, QM.
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