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Spin resonance

“Spin resonance” refers to the enhancement of a spin flipping probability
in a magnetic field, with fixed and oscillating components in different direc-
tions, when the spin is driven at a particular frequency. It was originally
developed by Rabi and collaborators as a method of measuring nuclear mag-
netic moments, but applications of nuclear magnetic resonance (NMR) go
far beyond that. It’s used to identify compounds and materials, in nonde-
structive testing, and in magnetometry. A well-known medical application is
magnetic resonance imaging (MRI). Moreover, the mathematics is identical
to that which governs to numerous other quantum systems, where the spin
degree of freedom is replaced by some other discrete set of energy levels,
e.g. the Raman coupling of hyperfine levels of atoms. The applications are
numerous, so it’s worth taking a close look at this.

Basic idea

Most of the discussion we can do with a spin-j system with arbitrary j. A
spin in a magnetic field B1x̂ has Hamiltonian γB1Jx, where γ is minus the
gyromagnetic ratio. (I choose to include an extra minus sign in γ to avoid
a slew of annoying minus signs down the road.) Since Jx is the generator of
rotations about the x axis, the spin will precess about the x-axis with angular
frequency ω1 = γB1. This evolution conserves energy, as the Hamiltonian
is time independent. If we impose also a strong magnetic field B0ẑ in the
z-direction, then the spin states with different projection on the z-axis no
longer have the same energy, so it shouldn’t be possible to rotate them into
each other with a time-independent Hamiltonian.

Indeed, we know what happens: the spin precesses about the net mag-
netic field B0ẑ + B1x̂. If B0 � B1, the spin barely changes direction. If
it starts out aligned with the ẑ direction, it initially tries to precess about
x̂, but as soon as it acquires a component perpendicular to ẑ, that starts
to precess about ẑ. So we could make the spin flip over, in the presence
of a strong B0ẑ, if we were to make the direction of the applied field B1

co-rotate with the precession about ẑ, applying the time-dependent field
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B1(cosωt x̂+ sinωt ŷ). If the frequency ω is matched to the precession fre-
quency ω0 = γB0, it’s plausible that the spin will flop over from up to down
and back again in the z-direction, while it is rotating about ẑ. Evolving
between these states of different energy is now possible because the Hamil-
tonian has become time-dependent. If ω isn’t matched perfectly to ω0, we
expect the flopping amplitude will be related to ω−ω0 and will diminish as
this difference grows.

Schrödinger equation in the rotating frame

Now let’s formulate this precisely. The time-dependent Hamiltonian for the
spin in the field ~B = B0ẑ +B1(cosωt x̂+ sinωt ŷ) is given by

H(t) = ω0Jz + ω1(cosωt Jx + sinωt Jy), (1)

with h̄ = 1, ω0 = γB0, and ω1 = γB1. (“Spin state” here refers to the
state of the spin-j system, so it has 2j+1 components.) Since [H(t′), H(t′′)]
is not zero, the state |v(t)〉 = exp(−i

∫ t
0 dt

′H(t′)dt′)|v(0)〉 is not a solution
so the Schrödinger equation. Typically, we must resort to perturbation
theory when a time-dependent Hamiltonian doesn’t commute with itself at
different times, but in the present case we can find the exact solution by
“transforming to the rotating frame”, since in the corotating frame the spin
simply precesses about the rotating x-axis.

To see how this works, and to find the Hamiltonian in the rotating frame,
we write the lab frame state as

|lab〉 = e−iωtJz |rot〉, (2)

and plug into the Schrodinger eqn. (1), finding1

i∂t|rot〉 = [−ωJz + eiωtJzH(t)e−iωtJz ]|rot〉. (3)

Although the Hamiltonian on the right hand side of (3) is not yet manifestly
time independent, our expectation that the time dependence vanishes in the
rotating frame is in fact borne out, since the second term on the right hand
side is actually independent of t. To see this, just take its derivative and use
the commutation relations of the components of ~J . Thus, putting t = 0, we
see that (3) is equivalent to

i∂t|rot〉 = [(ω0 − ω)Jz + ω1Jx]|rot〉. (4)

1The term ωJz can be thought of as the coupling to a fictitious magnetic field Bf with
a fictitious gyromagnetic ratio γf , such that γfBf = −ω, analogous to what occurs in
classical mechanics when working in a rotating frame of reference.
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Thus |rot〉 indeed satisfies the Schrodinger eqn with a time-independent
Hamiltonian, and the solution is

|rot(t)〉 = e−iΩt n̂·
~J |rot(0)〉, (5)

where

Ωn̂ = (ω0 − ω) ẑ + ω1 x̂, Ω =
√

(ω0 − ω)2 + ω2
1. (6)

The evolution is a time-dependent rotation about the axis n̂, with angular
frequency Ω.

Resonance and Rabi oscillations

If we tune the frequency of the applied field ω to the precession frequency
ω0 = γB0 we kill off the Jz term in (4), leaving only the Jx term. In this
case, the spin precesses about the x-axis, with the frequency gamma B1,
flopping from up to down in the z-direction and back again. (In the lab
frame, it is also precessing about the z-axis while it flops.) If B0 � B1 then
we have to tune ω very close indeed, so the resonance is sharper. So the
resonance is a sensitive probe of γB0.

The exact form of the rotation matrices for any spin was worked out
by Majorana, but is a bit complicated. Let’s just write the result here for
spin-1/2. Then Jz/h̄ = σz/2 and Jx/h̄ = σx/2, so

|rot(t)〉 = [cos(Ωt/2)− i sin(Ωt/2) n̂ · ~σ]|rot(0)〉. (7)

If the spin starts out |+ z〉 at t = 0, then the probability of finding it down
at time t is

Prob(down, t) = |〈−z|lab(t)〉|2 (8)

= |〈−z|e−iωtJz |rot(t)〉|2 (9)

= |〈−z|rot(t)〉|2 (10)

=
ω2

1 sin2(Ωt/2)

(ω0 − ω)2 + ω2
1

. (11)

This is the Rabi oscillation formula. The probability of “down” oscillates
in time with frequency Ω. On resonance, at ω = ω0, it oscillates between
zero and unity. Otherwise it only partially oscillates. For example, if ω = 0,
it oscillates because the spin precesses about a titled axis n̂. Classically,
of course, the spin vector only dips down a bit in this case, but quantum
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mechanically this means there is a nonzero probability to actually find the
spin in the down state. The maximum probability of the down state is

Pmax(down, ω) =
ω2

1

(ω0 − ω)2 + ω2
1

. (12)

The smaller the ratio ω1/ω0 = B1/B0, the more sharply peaked is this
function of ω.

Rabi’s “Molecular beam magnetic resonance” method

In a 1938 PRL (I.I. Rabi et al, Phys. Rev. Lett. 53, 318 (1938); see also
the full paper Phys. Rev. 55, 526 (1939)) Rabi and collaborators describe a
method to measure nuclear gyromagnetic ratios, called the molecular beam
magnetic resonance (MBMR) method. For nuclear spins, which are of the
order of a “nuclear magneton”, ω0 = γB ∼ 1.5 MHz (B/1000 gauss). The
spin flopping resonance thus happens in an RF field for laboratory strength
magnetic fields. They fixed an oscillating RF field of frequency ω and var-
ied B0 until they observed the resonant spin flip. (The beam consisted of
diatomic molecules (LiCl, LiF, NaF, and Li2) in a configuration with zero
electronic magnetic moment. The beam was deflected by magnetic field gra-
dients and deflected back to a focus, provided no spin flip occurred in the
middle. The drop in intensity of the beam was the signal that spin flip had
occurred. They claimed an absolute precision of 0.5 % (limited by magnetic
field calibration), and a relative precision for different moments of 0.1%. See
the article for details.) This told them they had reached ω = ω0 = γB0,
so they had found γ = ω/B0. They independently knew the nuclear spin I
(which is always h̄ times an integer or half-integer), so from γ they obtained
the nuclear magnetic moment, µ = γI.

Rotating wave approximation

Rather than drive with a rotating B1 field, one can use a linearly polarized
field:

B1 cosωt x̂ = 1
2B1(cosωt x̂− sinωt ŷ) + 1

2B1(cosωt x̂+ sinωt ŷ). (13)

If the first term is co-rotating with the precession about ẑ, the second one is
counter-rotating. Near resonance, the second term is way off-resonance and
just produces high frequency wiggles. The complete neglect of this term is
called the rotating wave approximation.
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General two-state interpretation

Note we have solved a general time-dependent two-state problem, even if it
isn’t spin: Consider the general Hamiltonian

H = E1|1〉〈1|+ E2|2〉〈2|+ beiωt|2〉〈1|+ b∗e−iωt|1〉〈2|. (14)

The parameter b controls the coupling between the two states, which have
energies E1 and E2 in the absence of the coupling. This system can be
identified with the spin in the magnetic field, by identifying |1〉 and |2〉 with
the up and down spin states in the z direction, | ± z〉, and rewriting it as

H = 1
2(E1 + E2)I + 1

2(E1 − E2)σz + Re(beiωt)σx − Im(beiωt)σy. (15)

The first term, proportional to the identity, just produces an overall phase
in the time evolution of the quantum state. The x & y terms are like what
we had before, but since b = |b|eiδ, the rotating field is shifted in time. The
solution is therefore nearly identical, and in particular if the state is initially
|1〉, then the probability of finding it |2〉 at time t is given by

Prob(2, t) = |〈2|v(t)〉|2 =
|b|2 sin2(Ωt/2)

(ω0 − ω)2 + |b|2
, (16)

with ω0 = (E1 − E2)/2 and Ω =
√

(ω0 − ω)2 + |b|2.
This oscillation provides a basic technique for quantum state manipula-

tion. Suppose the coupling parameter b in the Hamiltonian is under exper-
imental control, and can be turned on and off at will. Then by adjusting
the time that it is on, one can choose the amount of rotation of |1〉 into |2〉 .
For example, a “π pulse”, on resonance with Ωt = π, sends |1〉 to |2〉, while
a “π/2 pulse” sends |1〉 to an equal superposition of |1〉 and |2〉.

NMR

If solutions or bulk samples of matter are placed in a magnetic field, and ex-
posed to an RF field, one will observe a resonant absrorption of energy from
the field when ω = ω0. This is called nuclear magnetic resonance (NMR).
In a solution, the magnetic field seen by the nuclei is not just the imposed
field B0. The induced electronic currents in the chemical enviroment of the
nucleus partly shield the nucleus from B0, so each nucleus sees a field B∗0
that depends on its chemical environment. This is called the chemical shift.
Only the nuclei with γB∗0 = ω will be resonant at a given ω. This can be
used to distinguish different chemical compounds, or superfluid textures in
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helium-3, or types of tissue in the human body, etc. In the last application,
magnetic resonance imaging (MRI), the power absorption is measured at
many frequencies, and with the applied RF field at many angles relative
to the body. All this data is “inverted” to reconstruct a three dimensional
map of the distribution of chemical environments in the body, i.e., the tissue
types.

The energy difference between the nuclear spin states in, say, a 1 Tesla
(= 104 gauss) field is miniscule:

∆E = ∆(−M.B) = ∆(−γBJ) ∼ h̄γB ∼ (2/3 eV−10−15s)(15MHz) = 10−8eV.
(17)

Compared to body temperature, ∼1/40 eV, this is tiny: the ratio is of order
10−6. So only one in 106 of the nuclei are aligned with the field. This is
enough, however, since there are so many nuclei at body density.

A method of MRI has been developed for imaging lungs and other body
cavities, or tissues that are not well resolved by ordinary MRI, using hyper-
polarized gas. The idea is to orient the nuclear spins by some method, then
to use the hyperpolarized gas to accomplish imaging or sensing. The most
commonly used gas is xenon-129, and it is most commonly polarized via
“spin-exchange optical pumping.” The nuclear spin polarization is accom-
plished via exchange interactions in collisions with rubidium atoms that have
had their valence electron spin-polarized by circularly polarized laser light.
Once polarized the noble gas nuclei interact very weakly with their envi-
ronment. (Xenon-129 has spin-1/2, which precludes any electric quadrupole
moment, which helps to minimize interactions and thus preserve the spin
polarization.) The polarized gas can be stored in a bottle, and polarized
xenon can even be frozen, for later use. No large magnetic field is required
to align the spins once they are in the body to be imaged, since they are not
in thermal equilibrium with their environment (though I think a strong field
still gives better resolution for the power absorption resonance). A recent
review article is available at http://onlinelibrary.wiley.com/doi/10.

1002/chem.201603884/full, and it’s posted to our supplements page.
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