
Phys623—Spring 2018 Prof. Ted Jacobson
PSC 3151, (301)405-6020

jacobson@physics.umd.edu

Partial wave expansion

The scattering of a particle in a spherically symmetric potential V (r) conserves angular momentum,
so can be analyzed separately for each angular momentum. At large radius, the wave function with an
incoming plane wave in the z direction and outgoing scattered wave takes the form
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∑
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where h±l = jl ± inl are the spherical Hankel functions, jl is the spherical Bessel function, and nl is
the spherical Neumann function. The first equality follows from the expansion of the plane wave in
terms of Hankel functions and Legendre polynomials, and the asymptotic form of the Hankel function
h+l (z)→ ei(z−lπ/2)/iz. The second equality defines the phase shift δl. Comparing the second and third
lines, we have

ei2δl = 1 + 2ikfl, hence fl =
ei2δl − 1

2ik
=
eiδl sin δl

k
=

1

k

1

cot δl − i
. (4)

The differential cross section is

dσ/dΩ = |f(θ)|2, where f(θ) =
∑
l

(2l + 1)flPl(θ), (5)

while the total cross section is

σ =
∑
l

σl, with σl = (4π/k2)(2l + 1) sin2 δl. (6)

If the potential has a range a, the important contributions to the cross section come only from l . ka.
In particular, if ka . 1 then only s-wave scattering is significant.

s-wave scattering from a spherical square barrier or well

Consider a barrier or well of height or depth V0. Let s2 = 2ma2V0/~2, and let s = sgn(V0)
√
s2. The

wavenumber q inside the barrier/well satisfies (qa)2 = ∓s2 + (ka)2, and the matching condition that
determines the phase shift is

q cot qa = k cot(ka+ δ0) (7)

This defines the phase shift as a function of k and V0 for fixed a andm, which we can view as a function
of the dimensionless combinations ka and s, δ0(ka, s).

A contour plot of δ0(ka, s) is shown in Fig. 1, with the phase shift by convention positive, and
identified mod π. For attractive potentials the wave function is pulled in, so δ0 is positive, and increases
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Figure 1: Left: Phase shift δ0(ka, s). Right: cross-section at ka = 0.3, as a function of s.

as the well deepens. For repulsive potentials, the barrier pushes the wave function out, so δ0 starts out
“negative”, and decreases as the barrier height increases. However, since the plot uses δ0 in the range
[0π), decreasing “negative” values are indicated by positive values decreasing from π. This opposite
nature of the attractive and repulsive cases can be seen in the color sequences on the contour plot.

For the barrier (s > 0) the behavior depends on whether the particle has enough energy to go over
the barrier (ka > s) or not. If not, then the barrier acts more or less like a hard sphere, so the phase
shift is δ0 ≈ −ka, hence the contour lines on the phase shift plot Fig. 1 are horizontal. For over the
barrier scattering, I think an approximation to the phase shift is δ0 ≈ −s2/(2ka), so the contours are
parabolas. Note that for high energy scattering, the attractive case (the potential well) behaves similarly
to the barrier, except with an opposite sequence of phase shifts. Keep in mind that unless ka . 1, the
s-wave is not the only important contribution to the scattering amplitude.

Low energy s-wave scattering

Now let’s focus on the low energy scattering. Then the figure shows that the well and the barrier
are not too different for most values of s(< 0), but there are exceptional values of s. Away from those
exceptional values, the well acts like a barrier, because the slowly varying exterior wavefunction doesn’t
penetrate very much into the region of the potential. You can see this if you solve for the amplitude
inside, as in homework 11. But what about the exceptional values?

In the figure on the right the total cross section is plotted, in units of a2. As s decreases, i.e. moves
to more negative values, the cross section goes to zero, and then zooms up as a function of s, quickly
reaching a very large maximum, before zooming back down again. This maximum occurs at a value of s
that admits a zero energy bound state. The wavefunction inside the well must have vanishing derivative
at r = a if it is to match onto a zero energy bound state wavefunction outside. That is, cos q = 0, so
the matching condition (7) implies cos(ka + δ0) = 0, hence δ0 = −ka + π/2. To the extent that ka
is negligible, we therefore have δ0 ≈ π/2, hence the cross section is σ0 ≈ 4π/k2 = 4πa2/(ka)2. For
small ka, this is much larger than the hard sphere cross-section 4πa2. In fact, it goes to infinity as ka
does, so the cross section blows up in this limit.

The zeros of the cross section occur at values of s for which δ0 = 0 (mod π). The possibility of
this happening at small ka leads to a small cross section even for a deep potential. This is called the
Ramsauer-Townsend effect. It isn’t yet clear to me why this happens just before, i.e. for s values very
close to where σ0 zooms up as a function of s, but the answer must be contained in (7).
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Potential with a weakly bound state

A remarkable formula for the low energy s-wave cross section applies when there is a weakly bound
state with energy Eb:

σ0 ≈
2π~2

m

1

E + |Eb|
. (8)

This depends only on the energy of the bound state, and the energy of the scattering particle. Moreover,
it is true for low energy scattering from any short range potential with a shallow bound state, i.e. it
doesn’t have to be a spherical square well. This result was (according to Landau & Lifshitz) first found
by Wigner in 1933, and rederived by Bethe and Peierls in 1935 using the following argument.

The exterior wavefunction is sin(kr + δ0)/r. This must be matched to an interior function that is
regular at the origin r = 0. Suppose that function is χ(r)/r. Then at r = r1 ∼ a outside the range
a of the potential we can impose the matching condition k cot(kr1 + δ0) = χ′(r1)/χ(r1). Now if the
scattering particle has low energy, such that ka � 1, then we can replace r1 in the left hand side by 0.
Thus k cot δ0 = χ′(r1)/χ(r1). As for χ(r), the fact that the bound state is shallow means that |Eb| is
much less than the depth of the potential, which in turn means that the wavefunction χ(r) is essentially
determined just by the potential, and not much affected by the scattering wavenumber k. Therefore we
can approximate χ(r) by the bound state wavefunction itself, which outside of the potential has the form
exp(−κr), where κ2 = 2mEb/~2. Thus χ′(r1)/χ(r1) ≈ −κ. It follows that cot δ0 ≈ −κ/k, so the
scattering amplitude is

f0 =
1

k

1

cot δ0 − i
=

1

k

1

−κ
k − i

=
−1

κ+ ik
, (9)

and the cross-section is
σ0 =

4π

k2 + κ2
, (10)

which is equivalent to (8).

Scattering length

The scattering length a0 is defined by

a0 = − lim
k→0

tan δ0
k

,
1

a0
= − lim

k→0
k cot δ0. (11)

Alternatively (and, I think, equivalently), Murayama defines the scattering length by a0 = −dδ0/dk|k=0.
Aside from near the peculiar values of s, δ0 → 0 as k → 0, so a0 = − limk→0 δ0/k. In this case, the
zero energy limit of the cross section is simply σ0 = 4πa20. However it may be that the low energy
limit of the phase shift is, for example, π/2, as at a resonance associated with a zero energy bound state,
whence the cross section diverges.

The scattering length is always positive for repulsive potentials. For shallow attractive potentials it
starts out negative, and goes to negative infinity when a bound state first appears at zero energy. For
yet deeper potentials, the scattering length comes down from positive infinity. For example, in the case
of a shallow bound state discussed above, a0 ≈ 1/κ > 0. As the potential well deepens yet further,
the scattering length passes through zero and goes again to negative infinity when a second bound state
arises, etc.

An example of a shallow bound state is the deuteron, composed of a neutron and a proton, which
is very shallow (∼ 2.2 MeV) compared to the potential depth ∼ 50 MeV. Thus the formula (8) tells us
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that the scattering length is

a0 ≈
1

κ
=

√
~2

2m|Eb|
=

~c√
2mc2|Eb|

=
200MeV-fm√

(938MeV)(2.2MeV)
= 4.4fm (12)

(using the reduced mass for the np system). The actual measured scattering length is 5.4 fm. This is
about 2.5 times the radius of the deuteron. This bound state is a spin triplet. More dramatically, there
is an “almost bound” spin singlet state, called a “virtual bound state,” which misses being bound by
only 60 keV. For scattering in the singlet channel, the scattering length is thus negative, and greater by
a factor of

√
2200/60 ≈ 6, so a0 ≈ −26 fm. The measured scattering length in this channel is actually

−23.7 fm.
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