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1. Selection rules for atomic transitions: Consider the matrix elements of the form

〈γ′J ′MJ ′L′S′|T̂ |γJMJLS〉

where the states describe an atom with angular momentum quantum numbers JLSMJ ,
and remaining labels γ needed to specify a state, and the operator T̂ is either the elec-
tric dipole, orbital magnetic dipole, spin magnetic dipole, or electric quadrupole tran-
sition operator. For the purposes of this problem, you only need to know that these
operators are c-numbers times

∑
xi,

∑
Li,

∑
Si and

∑
xixj − 1

3x
2δij , respectively,

where i and j are vector indices, the sums are over the electrons in the atom, and
the letters have the usual meanings. The first three of these operators are irreducible
tensor operators of rank 1, and the last is of rank 2. They are all tensor operators
wrt ~J , ~L, and ~S (but the spin operator is scalar wrt ~L and the orbital operators are
scalars wrt ~S). Determine in each of these cases the joint selection rules for parity, J ,
MJ , and L. Make a table displaying the selection rules, and explain very briefly your
reasoning.

2. Quantum fluctuations of the electromagnetic field

Schwabl’s (16.47a) together with (16.49) gives the electric field operator.

(a) Calculate the vacuum expectation value (“vev”) of the electric field operator,
〈0|Ei(~x, t)|0〉.

(b) Show that (in the infinite volume limit) the vev of the product of two electric
field operators at different positions at equal times takes the form

〈0|Ei(~r, t)Ej(0, t)|0〉 = (a δij + b r̂ir̂j)h̄c/r4, (1)

for some numerical constants a and b. This shows that the field fluctuations at
two spacelike separated points are correlated, and that the variance diverges as
the two points approach each other.

(c) Show that Gauss’ law implies that b = −2a. This implies that the components
along r̂i have equal and opposite correlation to those perpendicular to r̂i.

(d) Show that a = −4/π. (In the infinite volume limit the sum over wavevectors
becomes an integral. Regulate the integral by inserting e−εk into the integrand,
evaluate the integral, and then take the limit ε→ 0.) Thus the components along
r̂i have positive correlation while those perpendicular have negative correlation.

3. To better understand the quantization of the electromagnetic field (or even a scalar
field), it’s helpful to reformulate the classical description in a way that matches a
harmonic oscillator. Since the plane wave Fourier amplitudes of the field are complex,
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the comparison with the oscillator is facilitated by first expressing the oscillator using
a complex phase space coordinate. The Hamiltonian for a harmonic oscillator is

H = (p2 + x2)/2 = α∗α, where α = (x+ ip)/
√

2, (2)

in units with m = ω = 1. The Poisson bracket is {α, α∗} = −i. In preparation for
quantization, let’s make α dimensionless by including a factor 1/

√
h̄ω in the definition.

In arbitrary units, with x0 :=
√
h̄/mω, we thus have

H = h̄ω α∗α, α = (x/x0 + i x0p/h̄)/
√

2, {α, α∗} = −i/h̄. (3)

Upon canonical quantization, α becomes the lowering operator a, and the Poisson
bracket becomes the commutation relation [a, a†] = 1.

Similarly, for the electromagnetic field we can trade Schwabl’s field amplitude Ak
(16.47b) and it’s conjugate momentum (which is proportional to Ȧ−k) for a complex
phase space coordinate,

Ck := (Ak + i Ȧk/ω)/2, (4)

where ω := ck. (For notational simplicity I’m writing the vector index k simply as
k, and not indicating the vector nature of Ak and Ck.) Using the reality condition
A∗k = A−k, it follows from (4) that

Ak = Ck + C∗−k. (5)

(a) The |Ȧk|2 term in Schwabl’s Hamiltonian (16.48) also equal to the time derivative
term in the Lagrangian, and it arises as ȦkȦ−k. Use this to show that the
canonical momentum conjugate to Ak is given by

Πk =
V

4πc2
Ȧ−k. (6)

(b) Use the Poisson bracket relations {Ak,Πl} = δkl to deduce the brackets

{Ck, C∗l } = −i2πc
V k

δkl. (7)

In terms of the rescaled coordinates αk := Ck/
√

2πh̄c/V k, (7) is equivalent to

{αk, α∗l } = − i
h̄
δkl. (8)

Compare with the harmonic oscillator in order to justify the expression (16.49)
for the vector potential field operator.

(c) Show that in terms of αk the Hamiltonian (16.48) takes the form

Hrad =
∑
k

h̄ω α∗kαk, (9)

and that upon quantization this leads to the Hamiltonian operator (16.51a).
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