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1. Consider the Hamiltonian H(t) = H0 + α(t)V , where (generically) [H0, V ] 6= 0, and
α(t) is a real function that vanishes if |t| > τ .

(a) In the limit τ → 0, with γ ≡
∫
dt α(t) fixed, the effect of V on the evolution is

“impulsive”. Find the exact state |ψ(0+)〉 just after the impulse in terms of the
state |ψ(0−)〉 just before the impulse. (Hint: Make sure the evolution is unitary.
Because the action of H0 on |ψ(0−)〉 is finite, H0 does not affect the evolution
over an infinitesial time interval, in contrast to α(t)V , since α(t) becomes a delta
function in the impulsive limit.)

(b) Write the first order approximation for the state |ψ(t)〉 in terms of |ψ(−τ)〉 using
time-dependent perturbation theory.

(c) Take the impulsive limit of the first order perturbative result. Under what con-
ditions does it give a good approximation to the exact impulsive result?

2. Consider the Hamiltonian given by H(t) = H0+eηtV0 for t < 0, and by H(t) = H0+V0
for t ≥ 0. Assume H0 has discrete spectrum, and suppose the initial state at t→ −∞
is an eigenstate |n〉 of H0, with H0|n〉 = En|n〉.

(a) Show that, in the limit η → 0, the first order time-dependent shift of the
state, evaluated at t = 0, agrees with the first order shift of the state in time-
independent perturbation theory (with V0 as the perturbation). Restrict here
to the eigenkets |m〉 of H0 that are orthogonal to |n〉. (In fact, the exact time
dependent solution coincides with an exact eigenstate of H0 + V0 in this limit.
This is an instance of the adiabatic theorem.)

(b) How small must η be to ensure that the first order time-dependent shift of the
state at t = 0 agrees to within 1% with the first order shift of the state in time-
independent perturbation theory? It depends on the component |m〉 of the state,
so give an answer for each m.

(c) The shift of the component parallel to the original eigenket |n〉 diverges as 1/η in
the η → 0 limit. Show that this can be understood as a result of the perturbation
of the time-dependent phase of that ket. To this end, consider evolution from
some finite t = t1 < 0 to t = 0, in the limit η → 0. (Hint: Time-independent
perturbation theory will give you (to first order) the energy shift, with which you
can find the time-dependent change of the phase.)

3. The time evolution of an harmonic oscillator acted on by any time dependent external
force F (t) can be found exactly in quantum mechanics, just as it can in classical
mechanics. In this problem you’ll learn how that works, and apply it to find the state
at time t, if the system starts in the ground state at t = 0.

The force F (t) is derived from the potential −F (t)x = −f(t)(a + a†), where a and
a† are the ladder operators for the harmonic oscillator, and f(t) = F (t)x0/

√
2. Here
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x0 =
√
h̄/mω, where m and ω are the mass and frequency of the oscillator. The

Hamiltonian is thus
H = h̄ω(a†a+ 1

2)− f(t)(a+ a†). (1)

At this stage let’s set h̄ = 1 by a units choice.

(a) Verify that, for a quantum system with Hamiltonian H(t), the solution to the
Schrodinger equation is given by |ψ(t)〉 = U(t, t′)|ψ(t′)〉, where the time evolution
operator U(t, t′) is defined to satisfy i∂tU(t, t′) = H(t)U(t, t′), with the boundary
condition U(t, t) = I.

(b) In the Heisenberg picture, the lowering operator evolves as aH(t) = U †aU , where
U ≡ U(t, 0), and a = aH(0) is the Schrodinger picture lowering operator. Show
that aH satisfies the differential equation ȧH = −iωaH + if , and show that the
solution is given by

aH(t) = e−iωta+ α(t), α(t) = ie−iωt
∫ t

0
dt′eiωt

′
f(t′). (2)

This is basically the complete solution to the dynamics, since any observable in
the Heisenberg picture can be constructed from aH(t).

(c) Using the previous result, show that if the oscillator starts out in the ground
state |0〉 at t = 0, the state thereafter satisfies a|ψ(t)〉 = α(t)|ψ(t)〉. That is, the
ground state evolves to the “coherent state” |α(t)〉.

(d) In case you haven’t yet come across coherent states, or have forgotten how they
work, show that the normalized coherent state defined by the condition a|α〉 =
α|α〉 is given by

|α〉 := e−|α|
2/2

∑
n

1√
n!
αn|n〉, (3)

where |n〉 is the number eigenstate.

(e) Find the probability Pn(t) for the oscillator to be in its nth level at time t.

(f) Find Pn(t) using first order time dependent perturbation theory.

(g) Under what conditions does first order perturbation theory give an accurate
result for Pn(t)?

continued. . .
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4. Scattering with free vs. non-free final states A particle of mass m moves in a one-
dimensional attractive potential U(x) = −γδ(x), where δ(x) is the Dirac delta-
function, and γ > 0. Use periodic boundary conditions with x = ±L identified,
with L→∞. Since you’re taking L to infinity, you need only retain the leading order
contributions in 1/L.1

(a) Find the wave function and the energy E0 of the bound state. What is the parity
of the wave function with respect to the operation x→ −x?

(b) Find the wave functions and the energies of the unbound states. Choose the wave
functions to be symmetric or antisymmetric with respect to the parity operation
x→ −x. [Hint: The symmetric states look like free states with a kink at x = 0,
so can be written in the form ψn(x) = 1√

L
cos(kn|x|+ φn).]

At time t < 0, the particle is in the ground state of the potential. At time t > 0, a
small oscillating potential

V (t) = Ax2 sin(ωt) (4)

of frequency ω > |E0|/h̄ is turned on.

(c) Which matrix elements of the perturbation (4) between the ground state and
the symmetric or antisymmetric unbound states vanish because of the parity
selection rule? Calculate the nonvanishing matrix elements.

(d) Using Fermi’s golden rule, calculate the probability of transition of the particle
from the ground state to an unbound state per unit time.

(e) Discuss and interpret the behavior of the ejection rate as ω approaches ∞, and
as h̄ω approaches |E0|. There is a frequency ω > |E0|/h̄ for which the transition
rate vanishes. What is this frequency, and why does the (first order) rate vanish
for this particular frequency?

(f) How would the results change if, for the final states, you used free particle states
rather than the exact unbound states? Show that there is a large difference in
behavior at threshold ω = |E0|/h̄, but a small difference when ω � |E0|/h̄.

1Note that we can choose units with h̄ = m = γ = 1. That simplifies the equations, but sacrifices
the ability to catch errors using dimensional analysis. You may choose whether or not to live dangerously.
If you do, you should double check yourself along the way, and restore the dimensionful constants at the
end. I like the following method for restoring the constants. First, note that γ has dimensions of energy ×
length, so lu = h̄2/mγ has dimensions of length, ωu = γ/h̄lu = mγ2/h̄3 has dimensions of frequency, and
Au = γ/l3u = m3γ4/h̄6 has the dimensions of A, i.e. energy/length2. Your result for the rate will be some
function of the remaining constants, Γ(ω,A). To restore the other constants—i.e. to write the result in a
form that holds in any system of units—you simply replace Γ(ω,A) by ωuΓ(ω/ωu, A/Au). This is correct
because it has the correct dimension (inverse time), and agrees with your result when using the adopted
units.
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