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1. Consider Zeeman splitting small compared to the magnetic dipole hyperfine splitting
for an atom with nuclear spin I and total electronic angular momentum J .

(a) Neglecting the Zeeman contribution for the nuclear spin, show that the Landé
g-factor for the atom in the hyperfine levels is given by

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
,

where gJ is the Landé g-factor for the electronic angular momentum, and F is
the total atomic angular momentum including that of the nuclear spin. [Note
that we can use a basis of simultaneous eigenstates of F 2, J2, L2, S2, and Fz.]
[See Supplement on Tops (Tensor Operators) for a discussion and derivation of
gJ . This problem will be a straightforward extension of that.]

(b) Consider an alkalai atom with nuclear spin I. The ground state is split into
two hyperfine levels, with total angular momentum F = I ± 1

2 . Show that the
previous result implies gF (F = I ± 1

2) = ∓gJ/(2I + 1). It follows that both
hyperfine levels have the same Zeeman level spacing.

2. In an atomic beam magnetic resonance experiment the transitions ∆F = 0, ∆MF =
±1 between adjacent Zeeman levels for the ground state are observed to occur at
the frequencies 1.557 MHz for 40K and at 3.504 MHz for 39K in the same weak
magnetic field. (“Weak” here means that the Zeeman splitting is small compared to
the hyperfine splitting.) The nuclear spin of 39K is I = 3

2 . Use the result of the
previous problem to show that the nuclear spin of 40K is I = 4.

3. In an atomic beam experiment with 69Ga, the ratio of the gJ values for the low lying
metastable excited state 4p 2P3/2 and the ground state 4p 2P1/2 was measured using
Zeeman resonances to be

gJ(2P3/2)

gJ(2P1/2)
= 2(1.00172± 0.00006).

(The excited state was well populated at the oven temperature, so one beam con-
tained populations of both states in the same magnetic field.) Show that this implies
for the electron g-factor the value gs = 2(1.00114± 0.00004). (This question includes
showing that the error/uncertainty propagation works out as stated. Suggestion: Use
the derivative dgs/dx, where x is the measured ratio of g-factors.) [The upper index
2 in the symbol 2P1/2 denotes the value of 2S + 1, the number of spin configurations.

I.e. this is the spectroscopic notation 2S+1LJ .]

continued. . .

1



4. Find an upper bound for the ground state energy of the hydrogen atom using a three-
dimensional harmonic oscillator ground state wave function

ψ(r) = (
√
πβ)−3/2 exp(−r2/2β2)

as a trial function. Compare with the true ground state energy. (Answer: The
numerical value is about 15% above the exact ground state energy.) [See section 11.2
of Schwabl, or Notes 27 of Littlejohn for discussion of the Variational method.]

5. Schwabl, Problem 13.6 (Virial theorem for atoms)
[Alternate Hints: (a) Show, and use, the following fact: If |ψ〉 is any eigenvector of a
Hamiltonian H (not necessarily the ground state), and |ψ(β)〉 is a 1-parameter family
of normalized states, with |ψ(0)〉 = |ψ〉, then (d/dβ)〈ψ(β)|H|ψ(β)〉|β=0 = 0. (b) The
dilated wave function ψβ(~x1, . . . , ~xn) := eβ3n/2ψ(eβ~x1, . . . , e

β~xn)] is normalized, and
the expectation values of the kinetic and potential energies in this dilated state are
related to those in the original state in a simple way.]
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