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0. Read TJ’s notes on Entanglement and mixed states.

1. Find unitary transformations, acting on the first qubit, that turn the Bell state |φ+〉 into |φ−〉, |ψ+〉,
and |ψ−〉, respectively. (Similarly, any of the four states can be mapped to any other by such a unitary
transformation.)

2. Let two spins-1/2 interact, with Hamiltonian H = α~S1 · ~S2, and suppose at t = 0 their state is | ↑↓〉.
(a) Find the reduced density matrix for the first spin as a function of time. Make sure it is hermitian,
its trace is unity, and its eigenvalues lie between 0 and 1. (b) Is there a time at which the first spin is
certain to be in the state | ↓〉? If so, what is that time? (c) Is there a time when the spins are maximally
entangled? If so, what is that time?

3. Completeness of subsystem correlations: Exercise 2.4 in John Preskill’s Lecture Notes.

4. The GHZ state: Exercises 1-4 in TJ’s notes: Quantum nonlocality and the GHZ state.

5. An example of quantum erasure correction

Establish the validity of the statement below typeset in blue. (The rest of the text is included for
your interest and edification.) Tip: You can do this by “brute force,” but a nicer way is to use known
properties of the Schmidt decomposition.

Text taken verbatim from “Bulk Locality and Quantum Error Correction in AdS/CFT,” by Ahmed
Almheiri, Xi Dong, and Daniel Harlow.

The simplest example of quantum error correction actually involves three-state “qutrits” instead of
two-state qubits, and it uses three qutrits to send a single-qutrit message. Say Alice wishes to send the
state

|ψ〉 =
2∑

i=0

ai|i〉. (1)

The idea is to instead send the state

|ψ̃〉 =
2∑

i=0

ai |̃i〉, (2)

where

|0̃〉 = 1√
3
(|000〉+ |111〉+ |222〉)

|1̃〉 = 1√
3
(|012〉+ |120〉+ |201〉) (3)

|2̃〉 = 1√
3
(|021〉+ |102〉+ |210〉) .

This protocol has two remarkable properties. First of all for any state |ψ̃〉, the reduced density matrix
on any one of the qutrits is maximally mixed. Thus no single qutrit can be used to acquire any
information about the state.
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Secondly, from any two of the qutrits Bob can reconstruct the state. For example, say he has access
to only the first two qutrits. He can make use of the fact that there exists a unitary transformation U12

acting only on the first two qutrits that implements

(U12 ⊗ I3) |̃i〉 = |i〉 ⊗
1√
3
(|00〉+ |11〉+ |22〉) . (4)

Acting with this on the encoded message, we see that Bob can recover the state |ψ〉:

(U12 ⊗ I3) |ψ̃〉 = |ψ〉 ⊗
1√
3
(|00〉+ |11〉+ |22〉) . (5)

Explicitly U12 is a permutation that acts as

|00〉 → |00〉 |11〉 → |01〉 |22〉 → |02〉
|01〉 → |12〉 |12〉 → |10〉 |20〉 → |11〉
|02〉 → |21〉 |10〉 → |22〉 |21〉 → |20〉

. (6)

Clearly by the symmetry of (3) a similar construction is also possible if Bob has access only to the
second and third, or first and third qutrits. Thus Bob can correct for the loss of any one of the
qutrits; in quantum information terminology one describes this as a quantum error correcting code
that can protect against arbitrary single qutrit erasures. The subspace spanned by (3) is called the code
subspace; the entanglement of the states in the code subspace is essential for the functioning of the
protocol.
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