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1. Problem 11.1, Schwabl. (Use units with h̄ = m = ω = 1, and use Schwabl’s hint.
Note ax3 should be bx3 in the statement of the problem.) To reduce the labor,
solve this problem only for the ground state. Add parts: (b) Find the first order
perturbation to the ground state vector. (c) Find the first order perturbation to
the expectation value of x in the ground state, and explain its sign qualitatively
in terms of the shape of the potential function.

2. Problem 11.3, Schwabl. (N.B. also ω = 1. Also, use ladder operators to save labor.)
This problem can be solved either using degenerate perturbation theory with the
x and y oscillators, or using nondegenerate perturbation theory by decoupling
the system into two anharmonic oscillators, with generalized coordinates u =
(x+ y)/

√
2 and v = (x− y)/

√
2. Solve it both ways, and make sure your answers

for the perturbed energy levels agree. (You need not find the perturbed states.)

3. Consider the Hamiltonian H = H0 + V of a three state system, with

H0 = |3〉〈3|, V = veiφ
(
|1〉+ |2〉

)
〈3|+ h.c. (1)

The eigenvalue 0 of H0 is doubly degenerate, and the perturbation does not break
this degeneracy at first order, so this is an example where one needs to impose the
second order secular equation in order to obtain the correct second order energy
shifts.

As you can check by hand (but, to save labor, need not), the exact eigenvalues
are 0, λ±, with corresponding normalized eigenvectors

(1,−1, 0)/
√

2 and a±(veiφ, veiφ, λ±), (2)

where

λ± = (1±
√

1 + 8v2)/2 and a± = 1/
√

2v2 + λ2±. (3)

Expanding in small v (assumed > 0), and keeping up to quadratic terms in v, one
can (carefully) show that the nonzero eigenvalues and corresponding (normalized
to O(v2)) eigenvectors become

λ+ = 1 + 2v2, (veiφ, veiφ, 1− v2) (4)

λ− = −2v2,
(

(1− v2)eiφ, (1− v2)eiφ,−2v
)
/
√

2 (5)

(a) Use degenerate perturbation theory (with V as the perturbation) to find the
first and second order energy shifts E(1) and E(2) for the three eigenvalues,
and check that they agree with the expansions given above.

(b) Find the eigenvectors of the second order secular equation and compare with
the v → 0 limit of the exact eigenvectors. They should agree.

1



4. Consider a two-state quantum system described by the Hamiltonian

H =

(
E + U ∆eiφ

∆e−iφ E − U

)
, (6)

with E > 0, U , ∆ > 0, and φ all real. This is the most general hermitian 2 × 2
matrix.

(a) Find the exact eigenvalues and eigenvectors of H.

(b) Sketch the eigenvalues as functions of U in the range U � −∆ to U � ∆.
Notice that the energy levels “repel” in the region U ≈ 0 where they would
cross if ∆ were zero.

(c) Expand the exact eigenvalues to lowest nonvanishing order in U/∆ when
|U | � ∆.

(d) Considering the ∆ terms of the Hamiltonian (6) as a perturbation, compute
the first and second order energy level shifts, and the first order correction to
the energy eigenstates, using non-degenerate perturbation theory (assuming
U 6= 0).

(e) The approximate eigenvalues of parts (4c) and (4d) don’t agree when |U | �
∆. Explain why non-degenerate perturbation theory does not give good
results even though the unperturbed eigenvalues are non-degenerate when
U 6= 0. What should be done in this case to obtain a good approximation
using perturbation theory?
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