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Irreducible tensor operators

and the Wigner-Eckart theorem

1. An irreducible tensor operator of order k = 0, 1/2, 1, 3/2, . . . is a col-
lection of operators Tkq, q = k, k − 1, . . . ,−k, that transforms under
rotations like the spherical harmonics Ykq(θ, φ), considered as multipli-
cation operators, i.e.

[Jz, Tkq] = q Tkq (1)

[J±, Tkq] =
√
k(k + 1)− q(q ± 1)Tk,q±1 (2)

where it is understood that Tkq ≡ 0 unless |q| ≤ k.

Another example of a tensor operator is the operator of tensor multi-
plication by some spin-k multiplet of states |kq〉, i.e.

M(k, q)|ψ〉 := |kq〉|ψ〉. (3)

2. Let J2, Jz, and Ω form a complete commuting set of operators with cor-
responding eigenstates labeled uniquely by |ωjm〉. The matrix elements
of the first commutation relation (1) imply that the matrix elements of
any irreducible tensor operator Tkq have a very special structure in the
quantum numbers mJ :

〈ω′j′m′|Tkq|ωjm〉 = 0 unless m′ = m+ q. (4)

The matrix elements of the remaining commutation relations (2) imply
recursion relations for the matrix elements of Tkq:

a〈ω′j′m′|Tk,q±1|ωjm〉 = b〈ω′j′,m′∓1|Tkq|ωjm〉−c〈ω′j′m′|Tkq|ωj,m±1〉
(5)
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where

a =
√
k(k + 1)− q(q ± 1) (6)

b =
√
j′(j′ + 1)−m′(m′ ∓ 1) (7)

c =
√
j(j + 1)−m(m± 1) (8)

3. Part 2 implies that the matrix elements 〈ω′j′m′|Tkq|ωjm〉 with fixed
ω′j′ωj are linearly determined recursively by (for example) the nonzero
matrix element with maximal m′ and m. (One need not work out the
formula explicitly for each matrix element to see that the elements are
so determined.) Thus, the m′m matrix elements of any two irreducible
tensor operators are proportional to each other in the sense that

〈ω′1j′m′|T
(1)
kq |ω1jm〉 = S 〈ω′2j′m′|T

(2)
kq |ω2jm〉 (9)

where S is a scalar that depends on ω′1, ω1, ω
′
2, ω2, j

′, j and the operator
Tk but not m′,m, q. In writing (9) we have assumed of course that the

relevant matrix elements of T
(2)
kq do not vanish identically.

4. The matrix elements of the tensor multiplication operator (3), are just

the Clebsch-Gordan coefficients 〈j′m′|kjqm〉. Choosing T
(2)
kq = Mkq in

(9) thus shows in particular that

〈ω′j′m′|Tkq|ωjm〉 = 〈ω′j′||Tk||ωj〉 〈j′m′|kjqm〉, (10)

where 〈ω′j′||T ||ωj〉 is called the “reduced matrix element”.1 This is
the Wigner-Eckart theorem. It states that the matrix elements of an
irreducible tensor operator are proportional to the Clebsch-Gordan co-
efficients, with a factor that depends on ω′, ω, j′, j but not m′,m, q.

5. Although our derivation so far only shows that (10) holds when the
Clebsch-Gordon coefficients do not vanish, it actually holds as well
when they do. Thus, besides (4), there is a further restriction:

〈ω′j′m′|Tkq|ωjm〉 = 0 unless j′ ⊂ k ⊗ j. (11)

Equations (4) and (11) are sometimes called selection rules.

1Sometimes a 1/
√

2j′ + 1 is factored out in the definition of the reduced matrix element.
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To see that (10) holds in general one can use the commutation relations
(1,2) to show that the set of vectors {Tkq|jm〉} is closed under the
action of Jz and J±, hence can be decomposed into a set of irreducible
representations of the rotation group. In particular,

JzTkq|jm〉 = (q +m)Tkq|jm〉, (12)

so the decomposition proceeds just as for the product space spanned
by the vectors {|kq〉|jm〉}. This yields a sum of representations (k +
j)⊕ (k+ j − 1)⊕ · · · ⊕ |k− j|. Thus the matrix elements of the tensor
operator on the left hand side of (10) do in fact vanish whenever the
Clebsh-Gordan coefficients on the right hand side vanish.

6. A vector operator is a tensor operator with k = 1. An example is
the position vector ra. The Cartesian components of this vector are
(x, y, z). The “spherical components,” i.e. those which transform as

(2) under rotations, are rq =
√

4π
3
rY1q(θ, φ), i.e. r0 = r cos θ = z and

r±1 = ∓r sin θe±iφ/
√

2 = ∓(x± iy)/
√

2. More generally, for any vector
operator, the relation between spherical and Cartesian components is
given by

V0 = V z, V± = ∓(V x ± iV y)/
√

2. (13)

7. The Wigner-Eckart theorem implies, as a special case, that the matrix
elements of any vector operator V a between states of the same2 j are
proportional to those of the angular momentum operator Ja:

〈ω′jm′|V a|ωjm〉 = C(ω′j, ωj) 〈jm′|Ja|jm〉. (14)

Moreover, the coefficient C(ω′j, ωj) is given by

C(ω′j, ωj) = 〈ω′jm|~V · ~J |ωjm〉/j(j + 1), (15)

for any m. To see this, multiply (14) by 〈ωjm|Ja|ωjm′′〉 and sum
over m.) This is called the projection theorem. It corresponds to the

statement that the components of ~V orthogonal to ~J average to zero.

2Note that the restriction to matrix elements between states of the same j is in general
necessary for (14) to be true, since the matrix elements of Ja between different j’s vanish,
but those of V a do not in general.
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8. A useful application of the projection theorem is to express the mag-
netic moment of a system in terms of the total angular momentum.
Consider for example an atom with many electrons. The magnetic mo-
ment is ~µ = −(µB/h̄)

∑
i(
~Li + gs~Si) =: −(µB/h̄)[ ~J + (gs − 1)~S], where

the sum is over the different electrons, gs is the electron g-factor, and
~J = ~L + ~S is the total orbital plus spin angular momentum of the
electrons. The magnetic moment is a vector operator with respect to
the total electronic angular momentum ~J , so the Wigner-Eckart theo-
rem tells us that, acting with a fixed irreducible representation of this
angular momentum, we have

〈ω′JM ′|~µ|ωJM〉 = −gJ
µB
h̄
〈ω′JM ′| ~J |ωJM〉 (16)

for some coefficient gJ , called the Landé g-factor, which depends only
on the angular momentum quantum numbers. Indeed, using ~S · ~J =
[J2 + S2 − (J − S)2]/2, the projection theorem applied to ~µ yields

gJ = 1 + (gs − 1)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (17)

9. Useful fact: the trace
∑

m〈ωjm|Tk0|ωjm〉 of the matrix elements of
Tk0 (k 6= 0) in a subspace of given ω and j is zero. Proof: The trace
of a commutator of finite dimensional matrices vanishes, and Tk0 ∝
[J+, Tk,−1], which can be truncated to the given subspace since J+ acts
within the subspace.

10. Hole-Particle equivalence: In some ways, a shell filled with identical
fermions except for n “holes” behaves the same as a shell with only n
such particles. More precisely, let Tk0(i) be a single particle irreducible
tensor operator with k > 0, indexed by the particle label i. It can be
shown that

〈j2j+1−nJM |
2j+1∑
i=n+1

Tk0(i)|j2j+1−nJM〉 = (−1)k+1〈jnJM |
n∑
i=1

Tk0(i)|jnJM〉,

(18)
where |jnJM〉 is a totally antisymmetric state of n identical fermions,
each with angular momentum j, adding up to a total angular momen-
tum J and total z-component of angular momentum M . (For a proof,
see for example Nuclear Shell Theory, A. de Shalit and I. Talmi (Aca-
demic Press, 1963).)
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