Prof. Ted Jacobson Room 3150, (301)405-6020 jacobson@physics.umd.edu

Irreducible tensor operators and the Wigner-Eckart theorem

1. An irreducible tensor operator of order $k=0,1 / 2,1,3 / 2, \ldots$ is a collection of operators $T_{k q}, q=k, k-1, \ldots,-k$, that transforms under rotations like the spherical harmonics $Y_{k q}(\theta, \phi)$, considered as multiplication operators, i.e.

$$
\begin{align*}
{\left[J_{z}, T_{k q}\right] } & =q T_{k q} \tag{1}\\
{\left[J_{ \pm}, T_{k q}\right] } & =\sqrt{k(k+1)-q(q \pm 1)} T_{k, q \pm 1} \tag{2}
\end{align*}
$$

where it is understood that $T_{k q} \equiv 0$ unless $|q| \leq k$.
Another example of a tensor operator is the operator of tensor multiplication by some spin- k multiplet of states $|k q\rangle$, i.e.

$$
\begin{equation*}
M(k, q)|\psi\rangle:=|k q\rangle|\psi\rangle . \tag{3}
\end{equation*}
$$

2. Let J^{2}, J_{z}, and Ω form a complete commuting set of operators with corresponding eigenstates labeled uniquely by $|\omega j m\rangle$. The matrix elements of the first commutation relation (1) imply that the matrix elements of any irreducible tensor operator $T_{k q}$ have a very special structure in the quantum numbers m_{J} :

$$
\begin{equation*}
\left\langle\omega^{\prime} j^{\prime} m^{\prime}\right| T_{k q}|\omega j m\rangle=0 \quad \text { unless } \quad m^{\prime}=m+q \tag{4}
\end{equation*}
$$

The matrix elements of the remaining commutation relations (2) imply recursion relations for the matrix elements of $T_{k q}$:

$$
\begin{equation*}
a\left\langle\omega^{\prime} j^{\prime} m^{\prime}\right| T_{k, q \pm 1}|\omega j m\rangle=b\left\langle\omega^{\prime} j^{\prime}, m^{\prime} \mp 1\right| T_{k q}|\omega j m\rangle-c\left\langle\omega^{\prime} j^{\prime} m^{\prime}\right| T_{k q}|\omega j, m \pm 1\rangle \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
a & =\sqrt{k(k+1)-q(q \pm 1)} \tag{6}\\
b & =\sqrt{j^{\prime}\left(j^{\prime}+1\right)-m^{\prime}\left(m^{\prime} \mp 1\right)} \tag{7}\\
c & =\sqrt{j(j+1)-m(m \pm 1)} \tag{8}
\end{align*}
$$

3. Part 2 implies that the matrix elements $\left\langle\omega^{\prime} j^{\prime} m^{\prime}\right| T_{k q}|\omega j m\rangle$ with fixed $\omega^{\prime} j^{\prime} \omega j$ are linearly determined recursively by (for example) the nonzero matrix element with maximal m^{\prime} and m. (One need not work out the formula explicitly for each matrix element to see that the elements are so determined.) Thus, the $m^{\prime} m$ matrix elements of any two irreducible tensor operators are proportional to each other in the sense that

$$
\begin{equation*}
\left\langle\omega_{1}^{\prime} j^{\prime} m^{\prime}\right| T_{k q}^{(1)}\left|\omega_{1} j m\right\rangle=S\left\langle\omega_{2}^{\prime} j^{\prime} m^{\prime}\right| T_{k q}^{(2)}\left|\omega_{2} j m\right\rangle \tag{9}
\end{equation*}
$$

where S is a scalar that depends on $\omega_{1}^{\prime}, \omega_{1}, \omega_{2}^{\prime}, \omega_{2}, j^{\prime}, j$ and the operator T_{k} but not m^{\prime}, m, q. In writing (9) we have assumed of course that the relevant matrix elements of $T_{k q}^{(2)}$ do not vanish identically.
4. The matrix elements of the tensor multiplication operator (3), are just the Clebsch-Gordan coefficients $\left\langle j^{\prime} m^{\prime} \mid k j q m\right\rangle$. Choosing $T_{k q}^{(2)}=M_{k q}$ in (9) thus shows in particular that

$$
\begin{equation*}
\left\langle\omega^{\prime} j^{\prime} m^{\prime}\right| T_{k q}|\omega j m\rangle=\left\langle\omega^{\prime} j^{\prime}\right|\left|T_{k}\right||\omega j\rangle\left\langle j^{\prime} m^{\prime} \mid k j q m\right\rangle, \tag{10}
\end{equation*}
$$

where $\left\langle\omega^{\prime} j^{\prime}\right||T||\omega j\rangle$ is called the "reduced matrix element". ${ }^{1}$ This is the Wigner-Eckart theorem. It states that the matrix elements of an irreducible tensor operator are proportional to the Clebsch-Gordan coefficients, with a factor that depends on $\omega^{\prime}, \omega, j^{\prime}, j$ but not m^{\prime}, m, q.
5. Although our derivation so far only shows that (10) holds when the Clebsch-Gordon coefficients do not vanish, it actually holds as well when they do. Thus, besides (4), there is a further restriction:

$$
\begin{equation*}
\left\langle\omega^{\prime} j^{\prime} m^{\prime}\right| T_{k q}|\omega j m\rangle=0 \quad \text { unless } \quad j^{\prime} \subset k \otimes j . \tag{11}
\end{equation*}
$$

Equations (4) and (11) are sometimes called selection rules.

[^0]To see that (10) holds in general one can use the commutation relations $(1,2)$ to show that the set of vectors $\left\{T_{k q}|j m\rangle\right\}$ is closed under the action of J_{z} and $J_{ \pm}$, hence can be decomposed into a set of irreducible representations of the rotation group. In particular,

$$
\begin{equation*}
J_{z} T_{k q}|j m\rangle=(q+m) T_{k q}|j m\rangle, \tag{12}
\end{equation*}
$$

so the decomposition proceeds just as for the product space spanned by the vectors $\{|k q\rangle|j m\rangle\}$. This yields a sum of representations $(k+$ $j) \oplus(k+j-1) \oplus \cdots \oplus|k-j|$. Thus the matrix elements of the tensor operator on the left hand side of (10) do in fact vanish whenever the Clebsh-Gordan coefficients on the right hand side vanish.
6. A vector operator is a tensor operator with $k=1$. An example is the position vector r^{a}. The Cartesian components of this vector are (x, y, z). The "spherical components," i.e. those which transform as (2) under rotations, are $r_{q}=\sqrt{\frac{4 \pi}{3}} r Y_{1 q}(\theta, \phi)$, i.e. $r_{0}=r \cos \theta=z$ and $r_{ \pm 1}=\mp r \sin \theta e^{ \pm i \phi} / \sqrt{2}=\mp(x \pm i y) / \sqrt{2}$. More generally, for any vector operator, the relation between spherical and Cartesian components is given by

$$
\begin{equation*}
V_{0}=V^{z}, \quad V_{ \pm}=\mp\left(V^{x} \pm i V^{y}\right) / \sqrt{2} \tag{13}
\end{equation*}
$$

7. The Wigner-Eckart theorem implies, as a special case, that the matrix elements of any vector operator V^{a} between states of the $s a m e^{2} j$ are proportional to those of the angular momentum operator J^{a} :

$$
\begin{equation*}
\left\langle\omega^{\prime} j m^{\prime}\right| V^{a}|\omega j m\rangle=C\left(\omega^{\prime} j, \omega j\right)\left\langle j m^{\prime}\right| J^{a}|j m\rangle . \tag{14}
\end{equation*}
$$

Moreover, the coefficient $C\left(\omega^{\prime} j, \omega j\right)$ is given by

$$
\begin{equation*}
C\left(\omega^{\prime} j, \omega j\right)=\left\langle\omega^{\prime} j m\right| \vec{V} \cdot \vec{J}|\omega j m\rangle / j(j+1) \tag{15}
\end{equation*}
$$

for any m. To see this, multiply (14) by $\langle\omega j m| J^{a}\left|\omega j m^{\prime \prime}\right\rangle$ and sum over m.) This is called the projection theorem. It corresponds to the statement that the components of \vec{V} orthogonal to \vec{J} average to zero.

[^1]8. A useful application of the projection theorem is to express the magnetic moment of a system in terms of the total angular momentum. Consider for example an atom with many electrons. The magnetic moment is $\vec{\mu}=-\left(\mu_{B} / \hbar\right) \sum_{i}\left(\vec{L}_{i}+g_{s} \vec{S}_{i}\right)=:-\left(\mu_{B} / \hbar\right)\left[\vec{J}+\left(g_{s}-1\right) \vec{S}\right]$, where the sum is over the different electrons, g_{s} is the electron g-factor, and $\vec{J}=\vec{L}+\vec{S}$ is the total orbital plus spin angular momentum of the electrons. The magnetic moment is a vector operator with respect to the total electronic angular momentum \vec{J}, so the Wigner-Eckart theorem tells us that, acting with a fixed irreducible representation of this angular momentum, we have
\[

$$
\begin{equation*}
\left\langle\omega^{\prime} J M^{\prime}\right| \vec{\mu}|\omega J M\rangle=-g_{J} \frac{\mu_{B}}{\hbar}\left\langle\omega^{\prime} J M^{\prime}\right| \vec{J}|\omega J M\rangle \tag{16}
\end{equation*}
$$

\]

for some coefficient g_{J}, called the Landé g-factor, which depends only on the angular momentum quantum numbers. Indeed, using $\vec{S} \cdot \vec{J}=$ $\left[J^{2}+S^{2}-(J-S)^{2}\right] / 2$, the projection theorem applied to $\vec{\mu}$ yields

$$
\begin{equation*}
g_{J}=1+\left(g_{s}-1\right) \frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)} . \tag{17}
\end{equation*}
$$

9. Useful fact: the trace $\sum_{m}\langle\omega j m| T_{k 0}|\omega j m\rangle$ of the matrix elements of $T_{k 0}(k \neq 0)$ in a subspace of given ω and j is zero. Proof: The trace of a commutator of finite dimensional matrices vanishes, and $T_{k 0} \propto$ [$J_{+}, T_{k,-1}$], which can be truncated to the given subspace since J_{+}acts within the subspace.
10. Hole-Particle equivalence: In some ways, a shell filled with identical fermions except for n "holes" behaves the same as a shell with only n such particles. More precisely, let $T_{k 0}(i)$ be a single particle irreducible tensor operator with $k>0$, indexed by the particle label i. It can be shown that

$$
\begin{equation*}
\left\langle j^{2 j+1-n} J M\right| \sum_{i=n+1}^{2 j+1} T_{k 0}(i)\left|j^{2 j+1-n} J M\right\rangle=(-1)^{k+1}\left\langle j^{n} J M\right| \sum_{i=1}^{n} T_{k 0}(i)\left|j^{n} J M\right\rangle \tag{18}
\end{equation*}
$$

where $\left|j^{n} J M\right\rangle$ is a totally antisymmetric state of n identical fermions, each with angular momentum j, adding up to a total angular momentum J and total z-component of angular momentum M. (For a proof, see for example Nuclear Shell Theory, A. de Shalit and I. Talmi (Academic Press, 1963).)

[^0]: ${ }^{1}$ Sometimes a $1 / \sqrt{2 j^{\prime}+1}$ is factored out in the definition of the reduced matrix element.

[^1]: ${ }^{2}$ Note that the restriction to matrix elements between states of the same j is in general necessary for (14) to be true, since the matrix elements of J^{a} between different j 's vanish, but those of V^{a} do not in general.

