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Perturbation theory for stationary states

Consider a Hamiltonian
H(λ) = H0 + λV, (1)

depending on a parameter λ, and suppose that for λ sufficiently near λ = 0 one can
follow the energy eigenstates as differentiable functions of λ. For a particular one
parameter family of such eigenstates |ψ(λ)〉 we then have

H(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉. (2)

If the state can be followed all the way from λ = 0 to λ = 1 then it makes sense
to say that E(1) is the energy of the eigenstate |ψ(1)〉 of the Hamiltonian H0 + V
which aries from |ψ(0)〉. Perturbation theory gives an approximation to E(1) and
|ψ(1)〉 by Taylor expansion of E(λ) and |ψ(λ)〉 about λ = 0.

Perturbation equations

We begin by writing out the Schrödinger equation (2) and its first two derivatives
with respect to λ:

(H − E)|ψ〉 = 0 (3)

(Ḣ − Ė)|ψ〉+ (H − E)|ψ̇〉 = 0 (4)

−Ë|ψ〉+ 2(Ḣ − Ė)|ψ̇〉+ (H − E)|ψ̈〉 = 0. (5)

(Overdot denotes d/dλ.) These equations hold for all values of λ, but for the purpose
of Taylor expansion we are only interested in evaluating them at λ = 0.

The Taylor expansion for the energy eigenvalue is E(λ) = E(0) + Ė(0)λ +
1
2Ë(0)λ2 + · · · . With the notation E(0) = ε, Ė(0) = E(1), and Ë(0) = 2E(2),
the perturbation expansion for the energy at λ = 1 takes the form

E(1) = ε+ E(1) + E(2) + · · · . (6)

With this notation, and using H(0) = H0 and Ḣ = V , the perturbation equations
evaluated at λ = 0 take the form

(H0 − ε)|ψ〉 = 0 (7)

(V − E(1))|ψ〉+ (H0 − ε)|ψ̇〉 = 0 (8)

−2E(2)|ψ〉+ 2(V − E(1))|ψ̇〉+ (H0 − ε)|ψ̈〉 = 0, (9)

where here and hereafter all kets are implicitly evaluated at λ = 0.
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First order perturbation

Multiplying (8) by the bra 〈ψ| yields the first order energy shift:

E(1) = 〈ψ|V |ψ〉. (10)

Remember that we have assumed |ψ〉 is the limit as λ → 0 of a one-parameter
family of eigenstates |ψ(λ)〉 of H(λ) with eigenvalues E(λ) that converge to ε. The
information in (8) not captured in (10) restricts what this limit could be. To see
how, let P be the projection onto the subspace of states with energy ε (at λ = 0).
Then P |ψ〉 = |ψ〉, and P (H0 − ε) = 0, so acting with P on (8) yields

PV |ψ〉 = E(1)|ψ〉. (11)

This is called the first order secular equation. It tells us that the limit as λ → 0
of the eigenstates |ψ(λ)〉 of H(λ) must be an eigenstate of PV , and the first order
energy shift is the corresponding eigenvalue. Note that we may replace PV by PV P
in (11), since we are also assuming P |ψ〉 = |ψ〉.

If ε is non-degenerate, then P is a one-dimensional projector. In this case |ψ〉
automatically satisfies the secular equation (11), with E(1) given by (10). If ε is
degenerate, we may only use (10) for |ψ〉 that are solutions to the first order secular
equation. If we don’t know in advance what the limiting eigenvectors are, we must
solve the secular equation to find the correct eigenvalue perturbations E(1) and the
limiting eigenvectors if needed.

Matrix form of the first order secular equation

To write out the first order secular equation (11) in matrix form, choose an orthonor-
mal basis {|m〉} for the degenerate subspace with unperturbed energy ε. Then take
the inner product of (11) with 〈m|, and insert P =

∑′
m |m′〉〈m′| before |ψ〉 on the

left hand side. This yields∑
m′

〈m|V |m′〉〈m′|ψ〉 = E(1) 〈m|ψ〉. (12)

Example of the degenerate case

For a simple example consider a two-dimensional system with

H0 = εI, V |0〉 = |1〉, V |1〉 = |0〉.

The exact eigenstates of H(λ) = λV are (|0〉 ± |1〉)/
√

2, with corresponding eigen-
values E(λ) = ε ± λ. How is this result obtained in perturbation theory? The
eigenvalue ε of H0 is totally degenerate, hence the projector P is just the identity,
and so the secular equation reads V |ψ〉 = E(1)|ψ〉. The eigenvectors of V agree
with those of H(λ), and the eigenvalues are ±1 so E(1) = ±1. Note however that
E(1) 6= 〈0|V |0〉 = 〈1|V |1〉 = 0. This is because the states |0〉 and |1〉 are not solutions
of the secular equation, hence are not λ→ 0 limits of the eigenstates of H(λ).
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First order perturbation of the eigenstate

To find the first order correction to the state we need to solve (8) for |ψ̇〉. Actually,
we can only solve for the part of |ψ̇〉 that is orthogonal to the projector P . To see
this, write |ψ̇〉 = P |ψ̇〉 + (1 − P )|ψ̇〉 and insert in (8). Since (H0 − ε)P = 0, only
the (1 − P )|ψ̇〉 part contributes. To solve for this we’d like to multiply (8) by the
inverse of the operator (H0− ε). The inverse is defined only on the 1−P subspace,
but this is enough. Acting with 1 − P on (8) and then multiplying by (H0 − ε)−1
yields

(1− P )|ψ̇〉 = (ε−H0)
−1(1− P )V |ψ〉. (13)

To obtain a component form of this relation, we may choose an orthonormal basis
{|i〉} for the subspace spanned by the projector 1 − P , and take the inner product
of (13) with 〈i|. This yields

〈i|ψ̇〉 =
〈i|V |ψ〉
ε− εi

. (14)

Second order perturbation

Let P ′ be the projection onto the states with unperturbed energy ε which are also
eigenvectors of the secular equation (11) with eigenvalue E(1). Acting with P ′ on
(9) yields

P ′(V − E(1))|ψ̇〉 = E(2)|ψ〉. (15)

By definition P (V −E(1))P ′ = 0, and the hermitian conjugate of this equation yields

P ′(V − E(1))P = 0, (16)

so we can replace (15) by

P ′(V − E(1))(1− P )|ψ̇〉 = E(2)|ψ〉. (17)

Inserting (13) then yields

P ′(V − E(1))(ε−H0)
−1(1− P )V |ψ〉 = E(2)|ψ〉. (18)

Since P ′ is an eigenprojector of H0, it commutes with (ε−H0)
−1, and by definition

P ′(1−P ) = 0, so the E(1) term drops out, and we arrive at the second order secular
equation,

P ′V (ε−H0)
−1(1− P )V |ψ〉 = E(2)|ψ〉. (19)

The inner product of (19) with 〈ψ| yields

E(2) = 〈ψ|V (ε−H0)
−1(1− P )V |ψ〉. (20)

If E(1) is a non-degenerate eigenvalue of PV , then P ′ projects onto a one-dimensional
subspace, and the second order secular equation (19) tells us no more than (20). If
E(1) is degenerate however, i.e. if the degeneracy is not completely lifted by the
first order perturbation, then we must solve (19) to find the correct energy shifts
and limiting eigenvectors.
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Matrix form of the second order perturbation equations

Replacing 1 − P by
∑

i |i〉〈i| (with the same notation as before) in (20) yields an
explicit formula for the second order energy shift:

E(2) =
∑
i

〈ψ|V |i〉〈i|V |ψ〉
ε− εi

. (21)

The sum is over all states with unperturbed energy not equal to ε.
If E(1) is degenerate we may only use (21) with solutions to the second order

secular equation (19), whose eigenvalues give us E(2) directly. To write (19) in
matrix form, choose an orthonormal, unperturbed energy eigenbasis {|m〉, |n〉, |i〉},
where now the {|m〉} span the degenerate subspace with unperturbed energy ε and
first order perturbation E(1), the {|n〉} span the rest of the degenerate subspace
with unperturbed energy ε, and as before the {|i〉} span the space of states with
unperturbed energy εi 6= ε. Taking the inner product of (19) with 〈m|, replacing
1− P by

∑
i |i〉〈i|, and inserting

∑
m′ |m′〉〈m′| before |ψ〉, we obtain

∑
m′

[∑
i

〈m|V |i〉〈i|V |m′〉
ε− εi

]
〈m′|ψ〉 = E(2) 〈m|ψ〉. (22)

This is the matrix form of the second order secular equation.
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