
Addition of angular momenta:

# Rotations in space are implemented on QM systems by unitary transformations 
U(R)=exp(-i theta.J/hbar), where J^i are the hermitian generators of rotation.

# J^i are also the angular momentum operators, and are conserved 
if the Hamiltonian is invariant under rotations.

# Rotation group structure implies [J^i,J^j] = ihbar epsilon^ijk J^k.

# representations: can simultaneously diagonalize J_z and J^2, since [J_z,J^2]=0. 
We analyzed this last semester. 
Call the eigenstates |jm>, 
where J_z |jm> = m |jm>,  J^2|jm> = j(j+1) |jm>,  with hbar=1 from now on. 
The possible values of j are 
0, 1/2, 1, 3/2, 2, ... and the possible values of m, for a given j, are j, j-1, j-2, ..., -j. 
The representation with a given j is called the "spin-j" representation, 
and it is 2j+1 dimensional. 
These representations are irreducible, in the sense that there is no subspace 
that is  invariant (mapped into itself) under all rotations. 
We can see this from the fact that 
J_+ |jm> = Sqrt[j(j+1) - m(m+1)]  |j,m+1> and  J_- |jm> = Sqrt[j(j+1) - m(m-1)]  |j,m-1>, 
where J_+ = J_x + i J_y,   J_- = J_x - i J_y, 
from which it is clear that by acting with rotations we move through all the states.

#example: 3d vectors V^i  form the spin-1 rep. The tensor product of two of these 
is the rank two tensors like V^i W^j, or more generally, T^ij.  These are not irreducible. 
Rather the antisymmetric part is by itself irreducible, and three dimensional, 
hence another spin-1 rep. The symmetric part is reducible into the part proportional to 
the Kronecker delta (trace) and the rest (symmetric trace-free part). 
The trace part is the j=0 rep, the symm tracefree part is j=2 
(since then 2j+1=5=number of independent components of a symmetric tracefree tensor).

# example: 1/2 x 1/2 = 1 + 0, example: 1 x 1 = 2 + 1 + 0 (this is equivalent to the example above).

# Note three different examples of spin-1 rep: 
vector, antisymmetric tensor, |2p, m=-1,0,1> states of H-atom. 
I.e., the rep is the abstract structure. Many things can realize it.

# general scheme:   j1xj2 spanned by basis  {|j1m1>|j2m2>}. Decomposes into irreducibles. 
Find by starting with top J_z state and working down with lowering operator J_-. 
When fill out a rep, go back and start with the next highest top J_z state, which is the other 
linear combination of the two second to two top J_z states. 
This results in 
j1 x j2 = (j_1+j_2) + (j_1+j_2 - 1) + ... + |j_1 -j_2|.

# The largest spin rep, j1+j2, starts with top state equal to the  product of the two top states |j1j1>|j2j2>. 
To see that the smallest spin rep is  |j1-j2|, suppose first that j1>=j2. 



The argument I gave in class, cleaned up a bit here,  was that the largest degeneracy 
that occurs for fixed total m is   2j2+1, so there must be 2j2+1 different irreps in the decomposition. 
Working our way down from the j1+j2 rep the last one must therefore be the j1-j2 rep. 
A (sort of) different argument goes as follows.  Each state |j1m1> must occur in every 
rep, since acting with J_+ and J_- will eventually introduce it. In particular, |j1j1> must occur. 
The smallest total m the state |j1j1>|j2m2> can have is if m2 is as small as possible, m2=-j2. 
In this case, the total m is j1-j2, hence the smallest rep we have is spin- (j1-j2). 
If j2>j1 then reverse the roles, and the smallest rep is spin-(j2-j1). 
In general, we have that the smallest is spin-|j1-j2|. You can check that the total dimension 
(2j1+1)(2j2+1) is equal to the sum over integer steps from j = |j1-j2| to j1+j2 of (2j+1).

# |jm> = |m1m2><m1m2|jm> ,  sum on m1,m2 with m=m1+m2. 
Similarly, |m1m2>= |jm><jm|m1m2>, where the sum is over j with m=m1+m2 fixed. 
The expansion coefficients are the Clebsch-Gordan coefficients. The construction above 
shows that they can always be taken to be real, so <m1m2|jm>=<jm|m1m2>*=<jm|m1m2>. 
There is still an overall sign ambiguity of the CG coeffs, that is typically fixed by requiring that 
the coefficient of |m1=j1>|m2=j-j1> in the the expansion of the top state |jj> of the spin-j rep. is positive, 
i.e. <j1,j-j1|jj> is positive. (There is a typo in Baym in the fourth line after (15-40), where it reads 
m1=j instead of m1=j1.)

# Baym works out the case of   j x 1/2. There is a typo in eqn (15-44), which should have m2 = -/+1/2.)

# The CG coeffs can be computed by: 
-brute force 
-Mathematica: ClebschGordan[{j1,m1},{j2,m2},{j,m}]   (Note:  I mis-spelled it "Gordon" in class.) 
-tables 
-recursion relations 
-a projection operator method 
-amazingly enough, a CLOSED FORM formula has been found by Wigner for all the CG coeffs, 
which was given in a more symmetrical form by Racah. See (106.14) of Landau & Lifshitz. 
It is so complicated as to be unusable.


