Addition of angular momenta:

\# Rotations in space are implemented on QM systems by unitary transformations $\mathrm{U}(\mathrm{R})=\exp (-\mathrm{i}$ theta. $\mathrm{J} / \mathrm{hbar})$, where $\mathrm{J} \wedge \mathrm{i}$ are the hermitian generators of rotation.
\# $\mathrm{J} \wedge \mathrm{i}$ are also the angular momentum operators, and are conserved if the Hamiltonian is invariant under rotations.
\# Rotation group structure implies $[\mathrm{J} \wedge \mathrm{i}, \mathrm{J} \wedge \mathrm{j}]=$ ihbar epsilon $\wedge \mathrm{ijk} \mathrm{J} \wedge \mathrm{k}$.
\# representations: can simultaneously diagonalize J_z and J^2, since [J_z,J^2]=0.
We analyzed this last semester.
Call the eigenstates |jm>,
where $J _z|j m>=m| j m>, \quad J \wedge 2|j m>=j(j+1)| j m>$, with hbar=1 from now on.
The possible values of j are
$0,1 / 2,1,3 / 2,2, \ldots$ and the possible values of m, for a given j, are $j, j-1, j-2, \ldots,-j$.
The representation with a given j is called the "spin- j " representation, and it is $2 \mathrm{j}+1$ dimensional.
These representations are irreducible, in the sense that there is no subspace that is invariant (mapped into itself) under all rotations.
We can see this from the fact that
$\mathrm{J} _+|\mathrm{j} \mathrm{m}>=\operatorname{Sqrt}[\mathrm{j}(\mathrm{j}+1)-\mathrm{m}(\mathrm{m}+1)]| \mathrm{j}, \mathrm{m}+1>$ and $\mathrm{J}_{-}-\mid \mathrm{jm}>=\operatorname{Sqrt[j(j+1)-m(m-1)]|j,m-1>,~}$ where J_+ = J_x + i J_y, J_- = J_x - i J_y,
from which it is clear that by acting with rotations we move through all the states.
\#example: 3d vectors $\mathrm{V}^{\wedge} \mathrm{i}$ form the spin-1 rep. The tensor product of two of these is the rank two tensors like $\mathrm{V}^{\wedge} \mathrm{i} \mathrm{W} \wedge \mathrm{j}$, or more generally, $\mathrm{T}^{\wedge} \mathrm{ij}$. These are not irreducible. Rather the antisymmetric part is by itself irreducible, and three dimensional, hence another spin-1 rep. The symmetric part is reducible into the part proportional to the Kronecker delta (trace) and the rest (symmetric trace-free part).
The trace part is the $\mathrm{j}=0$ rep, the symm tracefree part is $\mathrm{j}=2$
(since then $2 \mathrm{j}+1=5=$ number of independent components of a symmetric tracefree tensor).
\# example: $1 / 2 \times 1 / 2=1+0$, example: $1 \times 1=2+1+0$ (this is equivalent to the example above).
\# Note three different examples of spin-1 rep:
vector, antisymmetric tensor, $\mid 2 \mathrm{p}, \mathrm{m}=-1,0,1>$ states of H -atom.
I.e., the rep is the abstract structure. Many things can realize it.
\# general scheme: j1xj2 spanned by basis $\{|j 1 \mathrm{~m} 1>| \mathrm{j} 2 \mathrm{~m} 2>\}$. Decomposes into irreducibles. Find by starting with top J_z state and working down with lowering operator J_-.
When fill out a rep, go back and start with the next highest top J_z state, which is the other linear combination of the two second to two top J_z states.
This results in
j1 x j2 $=\left(\mathrm{j} _1+\mathrm{j} _2\right)+\left(\mathrm{j} _1+\mathrm{j} _2-1\right)+\ldots+\left|j _1-\mathrm{j} _2\right|$.
\# The largest spin rep, $\mathrm{j} 1+\mathrm{j} 2$, starts with top state equal to the product of the two top states $|\mathrm{j} 1 \mathrm{j} 1>| \mathrm{j} 2 \mathrm{j} 2>$. To see that the smallest spin rep is $|\mathrm{j} 1-\mathrm{j} 2|$, suppose first that $\mathrm{j} 1>=\mathrm{j} 2$.

The argument I gave in class, cleaned up a bit here, was that the largest degeneracy that occurs for fixed total m is $2 \mathrm{j} 2+1$, so there must be $2 \mathrm{j} 2+1$ different irreps in the decomposition. Working our way down from the $\mathrm{j} 1+\mathrm{j} 2$ rep the last one must therefore be the $\mathrm{j} 1-\mathrm{j} 2$ rep. A (sort of) different argument goes as follows. Each state |j1m1> must occur in every rep, since acting with $J_{-}+$and $J_{-}-$will eventually introduce it. In particular, $\mid j 1 \mathrm{j} 1>$ must occur. The smallest total m the state $|\mathrm{j} 1 \mathrm{j} 1>| \mathrm{j} 2 \mathrm{~m} 2>$ can have is if m 2 is as small as possible, $\mathrm{m} 2=-\mathrm{j} 2$. In this case, the total m is $\mathrm{j} 1-\mathrm{j} 2$, hence the smallest rep we have is spin- $(\mathrm{j} 1-\mathrm{j} 2)$. If $\mathrm{j} 2>\mathrm{j} 1$ then reverse the roles, and the smallest rep is spin- $(\mathrm{j} 2-\mathrm{j} 1)$.
In general, we have that the smallest is spin-|j1-j2|. You can check that the total dimension $(2 \mathrm{j} 1+1)(2 \mathrm{j} 2+1)$ is equal to the sum over integer steps from $\mathrm{j}=|\mathrm{j} 1-\mathrm{j} 2|$ to $\mathrm{j} 1+\mathrm{j} 2$ of $(2 \mathrm{j}+1)$.
\# |jm> = |m1m2><m1m2|jm>, sum on $m 1, m 2$ with $m=m 1+m 2$.
Similarly, |m1m2>=|jm><jm|m1m2>, where the sum is over j with $m=m 1+m 2$ fixed.
The expansion coefficients are the Clebsch-Gordan coefficients. The construction above shows that they can always be taken to be real, so $<\mathrm{m} 1 \mathrm{~m} 2|\mathrm{jm}>=<\mathrm{jm}| \mathrm{m} 1 \mathrm{~m} 2>*=<\mathrm{jm} \mid \mathrm{m} 1 \mathrm{~m} 2>$. There is still an overall sign ambiguity of the CG coeffs, that is typically fixed by requiring that the coefficient of $|\mathrm{m} 1=\mathrm{j} 1>| \mathrm{m} 2=\mathrm{j}-\mathrm{j} 1>$ in the the expansion of the top state $\mid \mathrm{jj}>$ of the spin- j rep. is positive, i.e. $<\mathrm{j} 1, \mathrm{j}-\mathrm{j} 1 \mid \mathrm{jj}>$ is positive. (There is a typo in Baym in the fourth line after (15-40), where it reads $\mathrm{m} 1=\mathrm{j}$ instead of $\mathrm{m} 1=\mathrm{j} 1$.)
\# Baym works out the case of $\mathrm{jx} 1 / 2$. There is a typo in eqn ($15-44$), which should have $\mathrm{m} 2=-/+1 / 2$.)
\# The CG coeffs can be computed by:
-brute force
-Mathematica: ClebschGordan[\{j1,m1\},\{j2,m2\},\{j,m\}] (Note: I mis-spelled it "Gordon" in class.)
-tables
-recursion relations
-a projection operator method
-amazingly enough, a CLOSED FORM formula has been found by Wigner for all the CG coeffs, which was given in a more symmetrical form by Racah. See (106.14) of Landau \& Lifshitz. It is so complicated as to be unusable.

