Addition of angular momenta:

# Rotations in space are implemented on QM systems by unitary transformations
U(R)=exp(-i theta.J/hbar), where J"i are the hermitian generators of rotation.

# Ji are also the angular momentum operators, and are conserved
if the Hamiltonian is invariant under rotations.

# Rotation group structure implies [J*,J7j] = ihbar epsilon”ijk JNK.

# representations: can simultaneously diagonalize J_z and J*2, since [J_z,J"2]=0.
We analyzed this last semester.

Call the eigenstates [jm>,

where J_z [jm>=m [jm>, J*2|jm> = j(j+1) |jm>, with hbar=1 from now on.

The possible values of j are

0,1/2, 1, 3/2, 2, ... and the possible values of m, for a given j, are j, j-1, j-2, ..., -].
The representation with a given j is called the *'spin-j** representation,

and it is 2j+1 dimensional.

These representations are irreducible, in the sense that there is no subspace

that is invariant (mapped into itself) under all rotations.

We can see this from the fact that

J_+|jm> = Sqrt[j(j+1) - m(m+1)] |j,m+1>and J_- [jm> = Sqrt[j(j+1) - m(m-1)] |j,m-1>,
whereJ +=J x+iJy, J-=Jx-ily,

from which it is clear that by acting with rotations we move through all the states.

#example: 3d vectors VAi form the spin-1 rep. The tensor product of two of these

is the rank two tensors like Vi WA, or more generally, T”ij. These are not irreducible.
Rather the antisymmetric part is by itself irreducible, and three dimensional,

hence another spin-1 rep. The symmetric part is reducible into the part proportional to
the Kronecker delta (trace) and the rest (symmetric trace-free part).

The trace part is the j=0 rep, the symm tracefree part is j=2

(since then 2j+1=5=number of independent components of a symmetric tracefree tensor).

# example: 1/2x 1/2=1+ 0, example: 1 x 1 =2 + 1 + 0 (this is equivalent to the example above).

# Note three different examples of spin-1 rep:
vector, antisymmetric tensor, |2p, m=-1,0,1> states of H-atom.
l.e., the rep is the abstract structure. Many things can realize it.

# general scheme: j1xj2 spanned by basis {|jim1>|j2m2>}. Decomposes into irreducibles.
Find by starting with top J_z state and working down with lowering operator J_-.

When fill out a rep, go back and start with the next highest top J_z state, which is the other
linear combination of the two second to two top J_z states.

This results in

IIxj2=(G 1+ 2)+( 1+ 2-1)+..+]j_1- 2|

# The largest spin rep, j1+j2, starts with top state equal to the product of the two top states |j1j1>|j2j2>.
To see that the smallest spin rep is |j1-j2|, suppose first that j1>=j2.



The argument | gave in class, cleaned up a bit here, was that the largest degeneracy

that occurs for fixed total mis 2j2+1, so there must be 2j2+1 different irreps in the decomposition.
Working our way down from the j1+j2 rep the last one must therefore be the j1-j2 rep.

A (sort of) different argument goes as follows. Each state [jIm1> must occur in every

rep, since acting with J_+ and J_- will eventually introduce it. In particular, |j1j1> must occur.

The smallest total m the state |j1j1>|j2m2> can have is if m2 is as small as possible, m2=-j2.

In this case, the total m is j1-j2, hence the smallest rep we have is spin- (j1-j2).

If j2>j1 then reverse the roles, and the smallest rep is spin-(j2-j1).

In general, we have that the smallest is spin-|j1-j2|. You can check that the total dimension
(2J1+1)(2j2+1) is equal to the sum over integer steps from j = |j1-j2| to j1+j2 of (2j+1).

# |jm> = |m1lm2><mlm2|jm>, sum on m1l,m2 with m=ml+mz2.

Similarly, [m1m2>= |jm><jm|m1m2>, where the sum is over j with m=m1+m2 fixed.

The expansion coefficients are the Clebsch-Gordan coefficients. The construction above

shows that they can always be taken to be real, so <mlm2[jm>=<jm|mim2>*=<jm|m1im2>.

There is still an overall sign ambiguity of the CG coeffs, that is typically fixed by requiring that

the coefficient of [m1=j1>|m2=j-j1> in the the expansion of the top state |jj> of the spin-j rep. is positive,
I.e. <j1,j-j1|jj> is positive. (There is a typo in Baym in the fourth line after (15-40), where it reads

m1=j instead of m1=j1.)

# Baym works out the case of j x 1/2. There is a typo in eqn (15-44), which should have m2 = -/+1/2.)

# The CG coeffs can be computed by:

-brute force

-Mathematica: ClebschGordan[{j1,m1},{j2,m2}{j,m}] (Note: I mis-spelled it "Gordon" in class.)
-tables

-recursion relations

-a projection operator method

-amazingly enough, a CLOSED FORM formula has been found by Wigner for all the CG coeffs,
which was given in a more symmetrical form by Racah. See (106.14) of Landau & Lifshitz.

It is so complicated as to be unusable.



