
Addition of angular momenta:

# Rotations in space are implemented on QM systems by unitary transformations

U(R)=exp(-i theta.J/hbar), where J^i are the hermitian generators of
rotation.

# J^i are also the angular momentum operators, and are conserved

if the Hamiltonian is invariant under rotations.

# Rotation group structure implies [J^i,J^j] = ihbar epsilon^ijk J^k.

# representations: can simultaneously diagonalize J_z and J^2, since
[J_z,J^2]=0.

We analyzed this last semester.

Call the eigenstates |jm>,

where J_z |jm> = m |jm>,  J^2|jm> = j(j+1) |jm>,  with hbar=1
from now on.

The possible values of j are

0, 1/2, 1, 3/2, 2, ... and the possible values of m, for a given j,
are j, j-1, j-2, ..., -j.

The representation with a given j is called the "spin-j" representation,

and it is 2j+1 dimensional.

These representations are irreducible, in the sense that there
is no subspace

that is  invariant (mapped into itself) under all rotations.

We can see this from the fact that

J_+ |jm> = Sqrt[j(j+1) - m(m+1)]  |j,m+1> and  J_- |jm> =
Sqrt[j(j+1) - m(m-1)]  |j,m-1>,

where J_+ = J_x + i J_y,   J_- = J_x - i J_y,

from which it is clear that by acting with rotations we move through
all the states.

#example: 3d vectors V^i  form the spin-1 rep. The tensor product
of two of these

is the rank two tensors like V^i W^j, or more generally, T^ij. 
These are not irreducible.

Rather the antisymmetric part is by itself irreducible, and three dimensional,

hence another spin-1 rep. The symmetric part is reducible into the
part proportional to

the Kronecker delta (trace) and the rest (symmetric trace-free part).

The trace part is the j=0 rep, the symm tracefree part is j=2

(since then 2j+1=5=number of independent components of a symmetric
tracefree tensor).

# example: 1/2 x 1/2 = 1 + 0, example: 1 x 1 = 2 + 1 + 0 (this is equivalent
to the example above).

# Note three different examples of spin-1 rep:

vector, antisymmetric tensor, |2p, m=-1,0,1> states of H-atom.

I.e., the rep is the abstract structure. Many things can realize it.

# general scheme:   j1xj2 spanned by basis  {|j1m1>|j2m2>}.
Decomposes into irreducibles.

Find by starting with top J_z state and working down with lowering
operator J_-.

When fill out a rep, go back and start with the next highest top J_z
state, which is the other

linear combination of the two second to two top J_z states.

This results in

j1 x j2 = (j_1+j_2) + (j_1+j_2 - 1) + ... + |j_1 -j_2|.

# The largest spin rep, j1+j2, starts with top state equal to the 
product of the two top states |j1j1>|j2j2>.

To see that the smallest spin rep is  |j1-j2|, suppose first that
j1>=j2.




The argument I gave in class, cleaned up a bit here,  was that
the largest degeneracy

that occurs for fixed total m is   2j2+1, so there must be
2j2+1 different irreps in the decomposition.

Working our way down from the j1+j2 rep the last one must therefore
be the j1-j2 rep.

A (sort of) different argument goes as follows.  Each state |j1m1>
must occur in every

rep, since acting with J_+ and J_- will eventually introduce it. In
particular, |j1j1> must occur.

The smallest total m the state |j1j1>|j2m2> can have is if m2 is as
small as possible, m2=-j2.

In this case, the total m is j1-j2, hence the smallest rep we have
is spin- (j1-j2).

If j2>j1 then reverse the roles, and the smallest rep is spin-(j2-j1).

In general, we have that the smallest is spin-|j1-j2|. You can check
that the total dimension

(2j1+1)(2j2+1) is equal to the sum over integer steps from j = |j1-j2|
to j1+j2 of (2j+1).

# |jm> = |m1m2><m1m2|jm> ,  sum on m1,m2 with m=m1+m2.

Similarly, |m1m2>= |jm><jm|m1m2>, where the sum is over j with m=m1+m2
fixed.

The expansion coefficients are the Clebsch-Gordan coefficients.
The construction above

shows that they can always be taken to be real, so <m1m2|jm>=<jm|m1m2>*=<jm|m1m2>.

There is still an overall sign ambiguity of the CG coeffs, that is
typically fixed by requiring that

the coefficient of |m1=j1>|m2=j-j1> in the the expansion of the top
state |jj> of the spin-j rep. is positive,

i.e. <j1,j-j1|jj> is positive. (There is a typo in Baym in the fourth
line after (15-40), where it reads

m1=j instead of m1=j1.)

# Baym works out the case of   j x 1/2. There is a typo in
eqn (15-44), which should have m2 = -/+1/2.)

# The CG coeffs can be computed by:

-brute force

-Mathematica: ClebschGordan[{j1,m1},{j2,m2},{j,m}]   (Note: 
I mis-spelled it "Gordon" in class.)

-tables

-recursion relations

-a projection operator method

-amazingly enough, a CLOSED FORM formula has been found by Wigner for
all the CG coeffs,

which was given in a more symmetrical form by Racah. See (106.14) of
Landau & Lifshitz.

It is so complicated as to be unusable.


