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I. PREFACE

This is a little discussion of the electronic structure of a “simple” diatomic molecule,

C2. As you will see it’s hardly simple. The richness of chemistry lies in its complexity.

As a physicist, you’ll probably throw up your hands in disgust, finding this complexity too

impure.

Unexpectedly, O2, although possessing more electrons, is actually simpler, from the view-

point of molecular electronic structure.
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Because both O and C have zero spin, the diatomic molecules are bosons. This prohibits

either even (in the case of O2) or odd (in the case of C2) rotational levels.

II. ELECTRONIC HAMILTONIAN

Within the Born-Oppenheimer approximation, the N nuclei are assumed to be fixed

positive charges. The Hamiltonian for the motion of the M electrons in the field of these

fixed positive charges is

Ĥel(q1, ..., qM ; ~R) = −
1

2

n
∑

i=1

∇2
i −

N
∑

n=1

M
∑

i=1

Zj

Rni
+
∑

i

∑

j

1

rij
(1)

Here we are assuming atomic units (e = ~ = me = 1), qi designates the coordinates of the

electrons, Rni is the relative position of electron i and nucleus n, and rij is the distance

between electrons i and j. Note that the Hamiltonian is implicitly a function of the position

of the fixed nuclei, which we designate by the single coordinate ~R. This Hamiltonian can be

simplied as a sum of one- and two-electron operators as follows

Ĥel(q1, ..., qM) =

M
∑

i=1

ĥ(qi) +

M
∑

i=1

M
∑

j=1

1

rij

where the definition of the one-electron operators is the kinetic energy operator for the

electron plus its electrostatic attraction with all nuclei.

The eigenfunctions of the electronic Hamiltonian of Eq. (1)

Ĥel(q1, ...qM ; ~R)Φel
(k)(q1, ..., qM ; ~R) = Eel

(k)(~R)Φel
(k)(q1, ..., qM ; ~R)

are implictly functions of the positions of the nuclei. Note that, just as in the atomic limit,

there are more than one electronic eigenfunctions, which we designate by the index k. These

are the electronic states of the molecule.

It is, of course, impossible to solve exactly this multidimensional Schrodinger equation.

Chemists approximate the wavefunction for these electronic states as an antisymmetrized

product of one-electron functions (which chemists call molecular orbitals). These are ex-

pressed as linear combinations of “atomic orbitals”, which are one-electron functions local-
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ized on the individual nuclei. This comprises the so-called MO-LCAO (molecular orbital –

linear combination of atomic orbitals). This wavefunction is a Slater determinant built of

so-called spin-orbitals φi which are products of spatial functions multiplied by a dependence

on the spin of the electron σ ≡ |s = 1
2
, ms = ±1

2
〉.

Φel(q1, ..., qM ; σ1, ..., σM) = |φ1, ..., φM |

Where the vertical bars indicate the determinant. Here, for simplicitly, we have dropped

the state index k.

If the one-electron orbitals are normalized, then so is Φel, provided we assume that the

determinant is multiplied by M !−1/2.

Chemists then use the variational principle to obtain approximate values of the electronic

energies Eel
(k)(~R).

You can show the expectation value of the electronic Hamiltonian for a determinantal

wavefunction is

〈Φel| Ĥel |Φel〉 =

M
∑

i=1

〈φi| ĥ |φi〉+

M−1
∑

i=1

M
∑

j=i+1

[

φ2
i

∣

∣ φ2
j

]

−

M−1
∑

i=1

M
∑

j=i+1

δσi,σj
[φiφj| φjφj] (2)

here
[

φ2
i

∣

∣ φ2
j

]

=

∫ ∫

|φi(q1)|
2 1

r12
|φj(q2)|

2dq1dq2

and

[φiφj| φjφi] =

∫

dq1

∫

dq2φ
∗
i (q1)φj(q2)

1

r12
φ∗
j(q1)φi(q2)dq1dq2

The first term 〈φi| ĥ |φi〉 is the one-electron energy (kinetic plus attraction to the nuclei)

of each one-electron orbital. The second term is the Coulomb repulsion between all pairs of

electrons. The third term is a purely quantum term, arising from the antisymmetry of the

fermion wavefunction. This is a so-called exchange term, the self repulsion of the overlap

between all pairs of orbitals which have the same spin.
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III. MOLECULAR ORBITALS: C2

The one-electron functions can be taken to be eigenfunctions of any operator which com-

mutes wiith the Hamiltonian, in particular the spatial symmetry point group of the molecule.

For a linear molecule with inversion symmetry, these are labelled σ, π corresponding to the

projection of the electronic angular momentum around the bond axis (l̂z) as well as g and

u, which are the even and odd eigenfunctions of the inversion operator. The π orbitals are

labelled πλ where λ = ml = ±1.

Typically each orbital is expanded in terms of a linear sum of exponential (or Gaussian)

functions centered at each atom, multiplied by exp(±λφ), where φ is the azimuthal angle

around the bond axis. As mentioned above, chemists obtain the expansion coefficients by

application of the variational principle. The coefficients are the iterated (self-consistent)

solutions of the so-called Hartree-Fock equations, which minimize the energy of each orbital

(kinetic plus attraction to the nuclei) and the average energy of interaction with all theM−1

other electrons. Nowadays these calculations are very fast, taking advantage of an enormous

number of man hours of development work on so-called “quantum chemistry” codes. A very

good calculation on C2 takes less than 10 s on a Macbook pro.

The lowest energy orbitals correspond to linear combinations of the 1s orbitals on each

C atom. The lowest is nodeless, and hence is symmetric with respect to inversion. This is

called the 1σg orbital. The next is the 1σu orbital.

 2 2
1
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    C

 2 2

    C

    C

FIG. 1. The 1σg (left panel) and 1σu (right panel) molecular orbitals of C2

The next two molecular orbitals (2σg and 2σu) corresponds to the symmetric and, re-

spectively, antisymmetric linear combinations of the 2s orbitals on each C atom. Note that

the 2σu orbital also contains a substantial contribution from the 2pz (l = 0) orbitals (the 2p

atomic orbitals lying along the C–C bond).
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FIG. 2. The 2σg (left panel) and 2σu (right panel) molecular orbitals of C2

The third (in terms of increasing energy) orbital of σg symmetry is shown below. This

is also a linear combination of the 2s and 2pz orbitals. There is a substantial buildup of

electron density between the nuclei. It is this orbital that is partially reponsible for the

bonding between the two C atoms. Because this orbital is cylindically symmetric, the bond

so formed is called a “sigma” bond.
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FIG. 3. The 3σg molecular orbital of C2

Linear combinations of the 2p orbitals of the C with ml = ±1 give rise to the so-called π

molecular orbitals (nonzero ml). The lowest is designated the 1π orbital, illustrated below.

Note that this orbital is antisymmetric with respect to inversion, hence designated “u”. Here

too there is a buildup of electron density between the nuclei. Thus this orbital is called a

”bonding” orbital.
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FIG. 4. The 1πux molecular orbital of C2. There is an equivalent degenerate molecular orbital in

the yz plane.

IV. ELECTRONIC STATES: σ2
π
2 ELECTRON OCCUPANCY

The C2 molecule has 12 electrons. They are assigned (in pairs, with opposite values of

ms) to the energetically lowest orbitals. 10 electrons are accounted for, then, by the three

σg orbitals and the two σu orbitals depicted in Figs. 1–3. The 3σg orbital lies only slightly

lower in energy than the 1πu orbital. This ordering changes (a) as a function of bond length

and, (b) as a function of the total charge (neutral molecule vs. positive or negative ion).

This leads to considerable complexity in the assignment of the electronic spectrum of the

first- and second-row diatomic molecules.

A. 3Σ−
g state

The possible electronic states of the C2 molecule correspond to the different assignments

of the 12 electrons. The assignment of the previous paragraph is 1σ2
g1σ

2
u2σ

2
g2σ

2
u3σ

3
g1π

2
u.

Because of the degeneracy of the 1πu orbital, different electronic states are possible. If we
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use the definite m (π±1) orbitals, then one possibility is 1π11π−1 both with ms = +1/2.

Ignoring the first 10 electrons, which are spin-paired and in orbitals with ml = 0, then the

electronic wavefunction for this state can be written as

|ML = 0MS = 1〉 = 2−1/2 |π1π−1| (3)

The left-hand ket indicates the projection of the total electronic angular momentum (which

is a good quantum number) as well as the projection of the total spin (also a good quantum

number). The right-hand side is the Slater determinantal representation in terms of single-

particle orbitals

|ML = 0,MS = 1〉 = 2−1/2 [1π1(1)1π−1(2)− 1π1(2)1π−1(1)]×2−1/2 |ms(1) = 1/2, ms(2) = −1/2]

(4)

The spin wavefunction (the second term on the right) can be combined in a simple way by

defining “spin-orbitals”

π±1 ≡ 1π±1(1)|ms = 1/2〉

and

π̄±1 ≡ 1π±1(1)|ms = −1/2〉

The superscript bar denotes ms = −1/2.

This compact notation is used in defining the electronic wavefunction for the two π

electrons contained in Eq. (3). This is a state then with ML = 0 and MS = 1. Since

MS = 1, S (which is a good quantum number) has to be 1. The spin degeneracy of this

state is then 3, a triplet. The two other components are obtained by operating with the

lowering operator Ŝ− = ŝ1− + ŝ2− on the state of Eq. (3). The projection of the orbital

electronic angular momentum (ML = 0) doesn’t change with application of Ŝ−. Thus the

three MS components of this triplet state all have ML = 0. Just as orbitals with ml = 0 are

designated σ orbitals, so electronic states with ML = 0 are designated Σ states. Thus, one

of the possible 1π2
u states of C2 corresponds to a so-called 3Σ state (the multiplicity precedes

as a superscript).

Now, the overall M-electron wavefunction must also be symmetric or antisymmetric with

respect to inversion (of the coordinates of all the electrons). The electronic configuration is
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a product of two πu orbitals, each of which is antisymmetric. Thus the total wavefunction

is symmetric. Hence, the electronic state is designated “g”, or 3Σg.

There is one more symmetry which must be considered: Reflection in a plane containing

the molecular axis. Without loss of generality, we can take this to be the xz plane (remember,

the bond axis defines the z axis). Since σ̂xzY1,±1(θ, φ) = −Y1,∓1(θ, φ) (where Ylm is a spherical

harmonic), operating on the determinantal wavefunction of Eq. (4) with σ̂xz = σ̂xz(1)σ̂xz(2),

reverses the order of the columns in the determinant and hence changes the sign of the

determinant. Thus, the 3Σg state will be antisymmetric with respect to reflection in the

xz-plane (and, you can show, with respect to reflection in any plane containing the z axis).

This is added to the state notation as a superscript minus, namely 3Σ−
g . This designator is

called by molecular spectroscopists the term symbol.

Since the complex definite-m spherical harmonics can be converted, by a 2×2 rotation, to

real Cartesian functions, you can write equivalent real representations of the 3Σ−
g electronic

states in terms of the πx (depicted in Fig. 3) and the πy orbitals. We have

|3xy,MS = 1〉 = |πxπy| (5)

The two other components of the triplet can be obtained, as before, by use of the Ŝ− lowering

operator.

The Cartesian representation of Eq. (5) reveals clearly the antisymmetry with respect to

reflection, since

σ̂xzπx = −πx

and

σ̂xzπy = +πy

B. 1Σ+
g state

The component of the triplet state with MS = 0 is, in determinantal notation,

|ML = 0,MS = 0〉 = Ŝ−|π1π−1| = 2−1/2 [|π̄1π−1|+ |π1π̄−1|]
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There is a state which is orthogonal to this one (corresponding to the singleton S = 0,

MS = 0 Clebsch-Gordan coupled state), namely (to within an overall phase factor, of course)

2−1/2 [|π̄1π−1| − |π1π̄−1|]

This determinant still corresponds to a Σ state, since ML = 0, but is a singlet state

(S = 0). It is still symmetric with respect to inversion, thus “g”. Also, because the

relative sign of the two determinants is changed, you can show that the wavefunction is now

symmetric with respect to reflection, in the xz or yz planes. Thus, the overall term symbol

for the singlet state is 1Σ+
g . You can show that the Cartesian representation is

|1Σ+
g 〉 = 2−1/2 [|πxπ̄x|+ |πyπ̄y|]

C. 1∆g state

There is yet another way of assigning the two π electrons, namely

|ML = 2,MS = 0〉 = |π1π̄1|

This is a singlet-state, but with ML = 2. There is an equivalent state with ML = −2,

namely

|ML = −2,MS = 0〉 = |π−1π̄−1|

Note that there are components of this state only for ML = ±2. This is consistent with the

fact that L is not a good quantum number for a system of cylindrical symmetry.

Just as Σ designates a state with ML = 0, so ∆ designates a state with ML = ±2. The

term symbol then for the C2 state arising from a 1π2 electronic configuration with ML = ±2

is then 1∆g (no “+” and “–” reflection symmetry label!).

You can show that

σ̂xy |ML = 2,MS = 0〉 = |ML = −2,MS = 0〉

As you might anticipate the ML = ±2 states, which are eigenfunctions of rotation around

the z axis, are not eigenfunctions of reflection (since rotation and reflection don’t in general
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commute). However, you can take positive and negative linear combinations of theML = ±2

functions to form eigenfunctions of reflection. In general for ML ≥ 1, the positive and

negative linear combinations are symmetric and antisymmetry eigenfunctions of reflection.

Since both are possible, the term symbols for the states with ML > 0 are not labelled with

the “+” and “–” reflection symmetry.

The Cartesian representation of the 1∆ states is, for the state of positive reflection sym-

metry,
∣

∣

1∆x2−y2
〉

= 2−1/2 [|πxπ̄x| − |πyπ̄y|]

and, for the state of negative reflection symmetry,

∣

∣

1∆xy

〉

= 2−1/2 [|πxπ̄y| − |π̄xπy|]

The minus sign of the second determinant implies that this state is orthogonal to theMS = 0

component of the 3Σ state, namely

∣

∣

3Σ(MS = 0)
〉

= 2−1/2 [|πxπ̄y|+ |π̄xπy|]

V. ELECTRONIC STATES: σ1
π
3 ELECTRON OCCUPANCY

Since both the 3σg and the 1πu orbitals are bonding (with a buildup of electron density

between the nuclei), another possible electron occupancy for C2 is 3σ1
g1π

3
u. This is a degen-

erate state, with the π orbital triply filled: either two electrons in π1 and one in π−1 or vice

versa. The total projection of the orbital angular momentum ML can be either +1 or −1.

Thus, the electronic state is a Πu state, u because there are an odd number of electrons in

an orbital of antisymmetric inversion symmetry.

The third π electron can be either singlet- or triplet-coupled with the singleton electron

in the 3σg orbital. The net result is that a σ1π3 electron occupancy for C2 will give rise to

both 3Πu and 1Πu electronic states.
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A. Energy ordering

The exchange terms in Eq. (2) lead to a lowering in energy for states with higher multi-

plicity. Thus, we would expect the 3Σ− state of C2 to have the lowest energy. Considerations

based on the size of the Coulomb repulsion — we expect the repulsion between two elec-

trons in the same Cartesian π orbital to be greater than between one electron in the πx and

another in a πy orbital — lead to the prediction that the 3Σ− state is the lowest, the 1∆

state next, and then the 1Σ+ state.

Similarly, for the Πu states arising from the σ1π3 electron occupancy, the 3Π state will

lie below the 1Π state.

B. Molecular potential curves

The eigenfunctions of the electronic Hamiltonian of Eq. (1)

Ĥel(q1, ...qM ; ~R)Φel
(k)(q1, ..., qM ; ~R) = Eel

(k)(~R)Φel
(k)(q1, ..., qM ;R)

are implictly functions of the positions of the nuclei. Note that, just as in the atomic limit,

there are more than one electronic eigenfunctions, which we designate by the index k. These

are the electronic states of the molecule.

In the Born-Oppenheimer approximation, the potential for motion of the nuclei is the

sum of the electronic energy plus the Coulomb repulsion between the nuclei. For a diatomic

molecule, this central potential is a function only of the scalar distance between the nuclei,

namely

V (k)(R) = E (k)(R) +
Z1Z2

R

This defines the molecular potential energy curve(s), shown below.

In this figure we note that the energy ordering discussed in the previous section is roughly

correct, except that the lowest electronic state of C2 is seen to be the 1Σ+ state, in stark

contrast to the prediction.

This is a unique, and interesting feature of C2. It arises because there are three pos-

sible electron occupancies which all have overall 1Σ+
g symmetry, namely |....2σ2

u3σ
2
g1π

2
u|,
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FIG. 5. Potential energy curves of the low-lying electronic states of C2. Energies in Hartree atomic

units (1 h = 27 eV).

|....2σ2
u3σ

0
g1π

4
u|, and |....2σ0

u3σ
2
g1π

4
u|. It is this multireference character of the 1Σg state which

explains the anomaly.

The blue color you see in a the flame of a gas stove is the electronic absorption of C2 from

the 3Πu state to the 3Σ−
g state. These are called the “Swann bands” and are a characteristic

of the spectra of carbon stars, comets, and burning hydrocarbon fuels.

The C2 molecule also possesses another curious anomaly. The lowest state (1Σ+
g ) is

singly degenerate. The first excited state (3Πu) is 6-fold degenerate (MS = +1, 0,−1 and

ML = +1 or −1). Because of this 6-fold degeneracy, even at modest temperatures, the

relative Boltzmann weight of this state can exceed that of the ground electronic state.

VI. MOLECULAR OXYGEN

If you think C2 is too complicated, you will be consoled by O2, a diatomic molecule with

four more (16) electrons. The molecular orbitals are entirely similar. The 1πu orbital, shown

below for O2, is now quadruply filled, with the remaining two electrons going into the first

“antibonding” orbital 1πg, also shown below. You can see the antibonding node between

the nuclei very clearly.

https://en.wikipedia.org/wiki/Swan_band
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FIG. 6. The 1πux molecular orbital of O2. There is an equivalent degenerate molecular orbital in

the yz plane.
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FIG. 7. The 1πgx molecular orbital of O2. There is an equivalent degenerate molecular orbital in

the yz plane.

Because the 3σg and 1πu bonding orbitals are completely filled, there is only one way of

adding the two additional electrons, in the case of O2; no multireference possibility. The
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lowest energy state is the triplet, with one electron in 1πgx and the other in 1πgy. The

overall electronic state has then g inversion symmetry, and is antisymmetry with respect to

reflection in a plane containing the O–O axis. Thus, the term symbol of the ground electronic

state is 3Σ−
g . Molecular oxygen in its ground electronic state has a magnetic moment. This

paramagnetism can be seen clearly in an experiment where you flow liquid O2 between the

poles of a strong magnet.

VII. “MISSING” ROTATIONAL LEVELS

The 16O atom has spin zero, and is hence a boson. Thus, the overall wavefunction for the

O2 molecule must be symmetric with respect to interchange of the two nuclei. This wave-

function is a product of the electronic wavefunction, multiplied by vibrational and rotational

wavefunctions for the relative motion of the two O nuclei. Because of the antisymmetry of

the 1πg orbital, the ground electronic state is antisymmetric with respect to interchange of

the two nuclei. Correctly, the operator for nuclear exchange is

π̂ = σ̂v × î

where î is the inversion operator and σ̂v is the operator for reflection in a plane containing the

nuclei. Thus, a Σ−
g state (symmetric with respect to inversion, antisymmetric with respect

to reflection) is antisymmetric with respect to interchange of the two nuclei.

The ground vibrational wavefunction is obviously symmetric with respect to interchange

of the two nuclei. Thus, to ensure bosonic character for the overall molecule, the rotational

wavefunction must also be antisymmetric with respect to exchange of the two nuclei. This

antisymmetry occurs only for odd values of the rotational quantum number (the overall

rotation of the molecule). Thus, only odd rotational levels of the O2 molecule will occur.

The 12C atom also has spin zero. But, for C2 we have seen that the ground electronic

wavefunction (with term symbol 1Σ+
g , is symmetric with respect to both reflection in a plane

containing the molecular axis and inversion. Thus, to ensure bosonic character for the 12C2

molecule, only even rotational levels will occur.

https://en.wikipedia.org/wiki/Paramagnetism#/media/File:Paramagnetism_of_liquid_oxygen.jpeg
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