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1. Scattering with non-free final states A particle of mass m moves in a one-dimensional attractive
potential U(x) = −γδ(x), where δ(x) is the Dirac delta-function, and γ > 0. Use periodic
boundary conditions with x = ±L identified, with L→∞. Since you’re taking L to infinity, you
need only retain the leading order contributions in 1/L.1

(a) Find the wave function and the energy E0 of the bound state. What is the parity of the wave
function with respect to the operation x→ −x?

(b) Find the wave functions and the energies of the unbound states. Choose the wave functions
to be symmetric or antisymmetric with respect to the parity operation x → −x. [Hint: The
symmetric states look like free states with a kink at x = 0, so can be written in the form
ψn(x) =

1√
L
cos(kn|x|+ φn).]

At time t < 0, the particle is in the ground state of the potential. At time t > 0, a small oscillating
potential

V (t) = Ax2 sin(ωt) (1)

of frequency ω > |E0|/~ is turned on.

(c) Which matrix elements of the perturbation (1) between the ground state and the symmetric
or antisymmetric unbound states vanish because of the parity selection rule? Calculate the
nonvanishing matrix elements.

(d) Using Fermi’s golden rule, calculate the probability of transition of the particle from the
ground state to an unbound state per unit time.

(e) Discuss and interpret the behavior of the ejection rate as ω approaches ∞, and as ~ω ap-
proaches |E0|. Are there any other special values of ω? If so, why?

(f) How would the result change if for the final states you used free particle states rather than
the exact unbound states? How does the difference behave in the limit ω → ∞? Interpret
your result. [Note: When TJ solved this previously, he found a result that seems so strange
it must be wrong: although the kink phase angle φ vanishes as k →∞, the ratio of the free
particle matrix element to the exact state matrix element goes to 3/4, so the kink in the exact
state strongly affects the ejection rate no matter how high the energy is.]

1Note that we can choose units with ~ = m = λ = 0. That simplifies the equations, but sacrifices the ability to catch errors
using dimensional analysis. You may choose whether or not to live dangerously. If you do, you should double check yourself
along the way, and restore the dimensionful constants at the end. I like the following method for restoring the constants. First,
note that γ has dimensions of energy × length, so lu = ~2/mγ has dimensions of length, ωu = γ/~lu = mγ2/~3 has
dimensions of frequency, and Au = γ/l3u = m3γ4/~6 has the dimensions of A, i.e. energy/length2. Your result for the rate
will be some function of the remaining constants, Γ(ω,A). To restore the other constants—i.e. to write the result in a form that
holds in any system of units—you simply replace Γ(ω,A) by ωuΓ(ω/ωu, A/Au). This is correct because it has the correct
dimension (inverse time), and agrees with your result when using the adopted units.
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2. Canonical commutation relations for the electromagnetic field: Check that if the vector poten-
tial operator is defined as in Schwabl (16.49), then the vector potential and the electric field are
canonically conjugate at equal times, in the sense that

[Ai(~x, t), Ej(~y, t)] = −i(4πc)~δTijδ3(~x− ~y). (2)

Here δTij = δij − ∂i∂j/∇2, where the derivatives act on the argument of the delta function on the
right hand side of (2), yielding the “transverse delta function”. (δTij is the projector that takes any
vector field Vi to its transverse part, V T

i = δTijVj (sum over j), so vanishes when contracted with
the gradient of a scalar, δTij∂jλ = 0.)

3. Quantum fluctuations of the electromagnetic field

(a) Calculate the vacuum expectation value (“vev”) of the electric field operator, 〈0|Ei(~x, t)|0〉.
(b) Calculate the vev of the product of two electric field operators at the same time but different

positions, 〈0|Ei(~x, t)Ej(~x
′, t)|0〉. Convert the sum over wavevectors to an integral over ~k

(in the infinite V limit), and change variables to extract the dependence on the separation
distance |~x − ~x′|.2 Are the fluctuations at two spacelike related points correlated? What
happens as the two points approach each other?

(c) Show that the Hamiltonian (16.48) is equivalent to (16.51a).

(d) Taking the vev of the Hamiltonian, find an expression for the energy density of the electro-
magnetic field in vacuum as an integral over k. If you cut off the upper limit of that integral
at some kc, what is the resulting energy density?

4. Selection rules for atomic transitions: Consider the matrix elements of the form

〈γ′J ′M ′
JL

′S′|T̂ |γJMJLS〉

where the states describe an atom with angular momentum quantum numbers JLSMJ , and re-
maining labels γ needed to specify a state, and the operator T̂ is either the electric dipole, orbital
magnetic dipole, spin magnetic dipole, or electric quadrupole transition operator. For the pur-
poses of this problem, you only need to know that these operators are c-numbers times

∑
xi,∑

Li,
∑
Si and

∑
xixj − 1

3x
2δij , respectively, where i and j are vector indices, the sums are

over the electrons in the atom, and the letters have the usual meanings. The first three of these
operators are irreducible tensor operators of rank 1, and the last is of rank 2. They are all tensor
operators wrt ~J , ~L, and ~S (but the spin operator is scalar wrt ~L and the orbital operators are scalars
wrt ~S). Determine in each of these cases the joint selection rules for parity, J , MJ , and L. Make
a table displaying the selection rules, and explain very briefly your reasoning.

2The polarization sum for a given ki gives δij − kikj/k2. The remaining integral is proportional to δij − n̂in̂j , where n̂
is the unit vector in the direction of ~x− ~x′. You need not determine its numerical value after the variable change that extracts
|~x− ~x′|; but if you want to, you should insert a regulator e−εk, evaluate the integral, and then take the limit ε→ 0.
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