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1. Problem 13.3, Schwabl [term symbols for transition metals]

2. [Thomas-Fermi model]

(a) Read section 13.4 on the Thomas-Fermi model of the atom.

(b) Show that χ(x) = 144/x3 is an exact solution to (13.67).

(c) Explain why this is not the solution chosen in (13.68).

(d) For a neutral atom in the Thomas-Fermi model, the atomic radius—defined
as the location where the density drops to zero—is infinite. Using the approx-
imation χ(x) = 144/x3, compute the radius beyond which there is exactly
one electron. How does this radius depend upon Z? This could be taken to
define the size of the Thomas-Fermi atom.

3. The “dissociation energy” required to separate a D2 molecule into two deuterium
atoms (4.54 eV) is more than that for an H2 molecule (4.46 eV).

(a) Explain in physical terms why the dissociation energy is about 2% more
for D2 than for H2, even though the proton and deuteron are practically
indistinguishable to the electrons, and the bond lengths in the two molecules
differ by only ∼ 0.1% (0.741Å for H2 and 0.742Å for D2, according to a NIST
table).

(b) Use the above dissociation energies to estimate the zero-point energy of vi-
bration in the H2 and D2 molecules, assuming that the total energy is equal to
an electronic energy Eel that is the same for both molecules, plus a harmonic
oscillator zero point energy for the nuclear vibration.

(c) Estimate the rms nuclear vibration amplitude in the ground state of H2 using
the result from part (b), and compare this amplitude to the bond length, and
to the formula on the right hand side of Schwabl (15.6).

(d) Any idea why the bond length for D2 is the longer one? (I don’t know the
answer.)

4. The van der Waals interaction of two hydrogen atoms arises at second order in
perturbation theory, and is thus necessarily attractive in the ground state. It
decreases as 1/R6, since it involves the square of the leading order, 1/R3 term
in the 1/R expansion of the interatomic potential , Schwabl (15.47b). But let’s
look more closely at first order in perturbation theory, to determine whether there
could be a lower or equal order term that could contribute. It turns out the story
is rather surprising: the attractive nature of the interaction of two neutral atoms
is accidental, in the following sense.1

1I learned about this from the paper https://arxiv.org/abs/1401.8141
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Consider the first order perturbation 〈00|W |00〉 (Schwabl’s notation) in any spatial
dimension d ≥ 2, keeping the same form for the potential.2

(a) Show that, for any d, parity symmetry of the unperturbed atomic ground
states implies vanishing of the 1/R3 contribution, as well as all the even
order, 1/R2n, contributions to 〈00|W |00〉.

(b) Show that the 1/R5 term has expectation value (3e2/4R5)(d−3)(d−5)〈x21x22〉,
where x1 is one of the Cartesian coordinates for atom 1 and similarly for x2.
This vanishes in d = 3, justifying the tacit assumption that the lowest order
effect arises at second order in perturbation theory,3 but it is nonvanishing in
dimensions other than 3 and 5, and is repulsive in d = 2 or d > 5 dimensions!

[Hints for (b): i. Using spherical symmetry of the atomic states, express all the
non-vanishing terms as multiples of 〈0|x21x22|0〉. ii. The series expansion can be
done by hand without too much difficulty, if you are careful. Alternatively, or
to check yourself, you can use, Mathematica (or some other software). All UMD
students have access to a free Mathematica license, which can be obtained from
terpware.umd.edu.]

2We consider this form even though it would not follow from the natural generalization of Maxwell’s
equations in other dimensions. We exclude d = 1 since the 1/r potential is too singular in one dimension.

3As you might suspect, there is a good reason for the vanishing in d = 3, and in fact this happens to
all orders in 1/R. It can be traced to the fact that the potential outside a spherical charge distribution
vanishes if the total charge vanishes. The explanation isn’t quite so simple, however, since the charge
distribution extends arbitrarily far from the atom. The atom has a size ∼ a, and our real expansion
parameter is the dimensionless ratio a/R. Choosing units with a = 1, we just expand in 1/R. The
perturbation expansion is blind to the possibility that ~x1 could fail to be outside the electron distribution
of atom 2, since in effect we are expanding about R =∞.
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