Prof. Ted Jacobson PSC 3151, (301)405-6020 jacobson@physics.umd.edu

- 1. Consider Zeeman splitting small compared to the magnetic dipole hyperfine splitting for an atom with nuclear spin I and total electronic angular momentum J.
 - (a) Neglecting the Zeeman contribution for the nuclear spin, show that the Landé g-factor for the atom in the hyperfine levels is given by

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)}$$

where g_J is the Landé g-factor for the electronic angular momentum, and F is the total atomic angular momentum including that of the nuclear spin. [Note that we can use a basis of simultaneous eigenstates of F^2 , J^2 , L^2 , S^2 , and F_z .] [See Supplement on Tops (Tensor Operators) for a discussion and derivation of g_J . This problem will be a straightforward extension of that.]

- (b) Consider an alkalai atom with nuclear spin I. The ground state is split into two hyperfine levels, with total angular momentum $F = I \pm \frac{1}{2}$. Show that the previous result implies $g_F(F = I \pm \frac{1}{2}) = \pm g_J/(2I + 1)$. It follows that both hyperfine levels have the same Zeeman level spacing.
- 2. In an atomic beam magnetic resonance experiment the transitions $\Delta F = 0$, $\Delta M_F = \pm 1$ between adjacent Zeeman levels are observed to occur at the frequencies 1.557 MHz for ⁴⁰K and at 3.504 MHz for ³⁹K in the same weak magnetic field. ("Weak" here means that the Zeeman splitting is small compared to the hyperfine splitting.) The nuclear spin of ³⁹K is $I = \frac{3}{2}$. Use the result of the previous problem to show that the nuclear spin of ⁴⁰K is I = 4.
- **3.** In an atomic beam experiment with ⁶⁹Ga, the ratio of the g_J values for the low lying metastable excited state 4p ${}^2P_{3/2}$ and the ground state 4p ${}^2P_{1/2}$ was measured using Zeeman resonances to be

$$\frac{g_J({}^2P_{3/2})}{g_J({}^2P_{1/2})} = 2(1.00172 \pm 0.00006).$$

(The excited state was well populated at the oven temperature, so one beam contained populations of both states in the same magnetic field.) Show that this implies for the electron g-factor the value $g_s = 2(1.00114 \pm 0.00004)$. (This question includes showing that the error/uncertainty propagation works out as stated.) (The upper index 2 in the symbol ${}^2P_{1/2}$ denotes the value of 2S + 1, the number of spin configurations. I.e. this is the spectroscopic notation ${}^{2S+1}L_J$.)

- 4. The deuteron is the unique bound state of a neutron and a proton.
 - (a) Using only the facts that (i) the neutron and proton are both spin-1/2 particles, and (ii) the deuteron has total angular momentum J = 1 ("spin 1"), what would be the possible values of ${}^{2S+1}L_J$ for the deuteron?
 - (b) Which combinations of the ${}^{2S+1}L_J$ found in part 4a could occur in the deuteron, given that parity is a symmetry of the nuclear hamiltonian? Justify your answer.
- 5. Since the strong interaction is short ranged, there must be a large S-wave component in the deuteron wave function, and in fact this wave function is a superposition $a^{3}S_{1} + b^{3}D_{1}$. Determine the fraction $|b|^{2}$ of the D-wave component by calculating the magnetic moment and comparing with the observational value $\mu = 0.85735\mu_{N}$ (where μ_{N} is the nuclear magneton). The magnetic moment operator for the deuteron is

$$\boldsymbol{\mu} = \frac{\mu_N}{\hbar} (\mathbf{L}_p + g_p \mathbf{S}_p + g_n \mathbf{S}_n) \tag{1}$$

where $g_p = 5.587$ and $g_n = -3.826$. Note that $\mathbf{L}_p = \frac{m_n}{m_p + m_n} \mathbf{L} \approx \frac{1}{2} \mathbf{L}$. For this problem you may neglect the neutron-proton mass difference. The magnetic moment value is the expectation value of μ_z in the state with maximal angular momentum in the z-direction. Evaluate the contribution from the expectation value in the D_1 -state in two different ways: (a) Use the Clebsch-Gordan coefficients to write this state in terms of products of L and S eigenstates. (b) Use the *projection theorem* for vector operators. (*Hint*: For the second way, I think you'll want to show as a lemma that \mathbf{S}_p and \mathbf{S}_n have equal expectation values in an eigenstate of \mathbf{S}^2 , which can be shown using the projection theorem for vector operators with respect to the total spin. The projection theorem is explained in my notes on the Wigner-Eckart theorem.) Answer: $|b|^2 \approx 0.04$.