
HW#3—Phys623—Spring 2017 Prof. Ted Jacobson
PSC 3151, (301)405-6020

jacobson@physics.umd.edu

1. Consider Zeeman splitting small compared to the magnetic dipole hyperfine split-
ting for an atom with nuclear spin I and total electronic angular momentum J .

(a) Neglecting the Zeeman contribution for the nuclear spin, show that the Landé
g-factor for the atom in the hyperfine levels is given by

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
,

where gJ is the Landé g-factor for the electronic angular momentum, and
F is the total atomic angular momentum including that of the nuclear spin.
[Note that we can use a basis of simultaneous eigenstates of F 2, J2, L2, S2,
and Fz.] [See Supplement on Tops (Tensor Operators) for a discussion and
derivation of gJ . This problem will be a straightforward extension of that.]

(b) Consider an alkalai atom with nuclear spin I. The ground state is split into
two hyperfine levels, with total angular momentum F = I ± 1

2 . Show that
the previous result implies gF (F = I ± 1

2) = ±gJ/(2I + 1). It follows that
both hyperfine levels have the same Zeeman level spacing.

2. In an atomic beam magnetic resonance experiment the transitions ∆F = 0,
∆MF = ±1 between adjacent Zeeman levels are observed to occur at the fre-
quencies 1.557 MHz for 40K and at 3.504 MHz for 39K in the same weak magnetic
field. (“Weak” here means that the Zeeman splitting is small compared to the hy-
perfine splitting.) The nuclear spin of 39K is I = 3

2 . Use the result of the previous
problem to show that the nuclear spin of 40K is I = 4.

3. In an atomic beam experiment with 69Ga, the ratio of the gJ values for the low ly-
ing metastable excited state 4p 2P3/2 and the ground state 4p 2P1/2 was measured
using Zeeman resonances to be

gJ(2P3/2)

gJ(2P1/2)
= 2(1.00172± 0.00006).

(The excited state was well populated at the oven temperature, so one beam
contained populations of both states in the same magnetic field.) Show that
this implies for the electron g-factor the value gs = 2(1.00114 ± 0.00004). (This
question includes showing that the error/uncertainty propagation works out as
stated.) (The upper index 2 in the symbol 2P1/2 denotes the value of 2S + 1, the

number of spin configurations. I.e. this is the spectroscopic notation 2S+1LJ .)
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4. The deuteron is the unique bound state of a neutron and a proton.

(a) Using only the facts that (i) the neutron and proton are both spin-1/2 par-
ticles, and (ii) the deuteron has total angular momentum J = 1 (“spin 1”),
what would be the possible values of 2S+1LJ for the deuteron?

(b) Which combinations of the 2S+1LJ found in part 4a could occur in the
deuteron, given that parity is a symmetry of the nuclear hamiltonian? Justify
your answer.

5. Since the strong interaction is short ranged, there must be a large S-wave com-
ponent in the deuteron wave function, and in fact this wave function is a su-
perposition a 3S1 + b 3D1. Determine the fraction |b|2 of the D-wave component
by calculating the magnetic moment and comparing with the observational value
µ = 0.85735µN (where µN is the nuclear magneton). The magnetic moment
operator for the deuteron is

µ =
µN
h̄

(Lp + gpSp + gnSn) (1)

where gp = 5.587 and gn = −3.826. Note that Lp = mn
mp+mn

L ≈ 1
2L. For

this problem you may neglect the neutron-proton mass difference. The magnetic
moment value is the expectation value of µz in the state with maximal angular
momentum in the z-direction. Evaluate the contribution from the expectation
value in theD1-state in two different ways: (a) Use the Clebsch-Gordan coefficients
to write this state in terms of products of L and S eigenstates. (b) Use the
projection theorem for vector operators. (Hint: For the second way, I think you’ll
want to show as a lemma that Sp and Sn have equal expectation values in an
eigenstate of S2, which can be shown using the projection theorem for vector
operators with respect to the total spin. The projection theorem is explained in
my notes on the Wigner-Eckart theorem.) Answer: |b|2 ≈ 0.04.
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