jacobson@physics.umd.edu

1. Analyze the effect of an external electric field on the $2 s_{1 / 2}$ and $2 p_{1 / 2}$ levels of hydrogen, taking into account that these levels are split by the Lamb shift by an amount 1.06 GHz . The other levels, and the hyperfine structure, can be ignored for the purpose of this problem, so this is only a two-level system. Show that the energy shifts are quadratic in the field strength for small amplitude electric fields, but that they become linear at larger strengths. Thus there is a threshold field strength, call it \mathcal{E}_{0}, where the behavior changes from quadratic to linear. Estimate \mathcal{E}_{0} in Volts $/ \mathrm{cm}$. Find and sketch the energy levels as a function of the electric field strength \mathcal{E}. Explain how this problem provides an example of Kramers degeneracy (and use this fact to cut your work in half). In computing the required matrix elements, you may construct the $2 s_{1 / 2}$ and $2 p_{1 / 2}$ states using the nonrelativistic, hydrogen wave functions, for which $\left\langle 2 p, m_{\ell}=0\right| z|2 s\rangle=3 a_{0}$.
2. Write the $2 p_{1 / 2}(F=0)$ state of hydrogen in terms of the product kets $\left|2 p, m_{l}\right\rangle\left|m_{s}\right\rangle\left|m_{I}\right\rangle$. (Here $F=J+I$ is the total angular momentum of the atom, where I is the nuclear spin and J is the total angular momentum of the electron.) Do this by two methods, and compare: i) first find the $J=1 / 2$ states of the electron, and then combine with the nuclear spin states to find the $F=0$ state; ii) list all the product kets in the L, S, I basis that have $m_{F}=0$, and then determine the coefficients of the unique (normalized) superposition of these that is invariant under all rotations. (Hint: Use F_{+}.)
3. The ground state of the hydrogen atom is split into two hyperfine states separated by 1.42 GHz . What is the hyperfine splitting in the deuterium atom? The respective magnetic moments are $\mu=2.8 \mu_{N}$ and $\mu_{d}=0.86 \mu_{N}$, where μ_{N} is the nuclear magneton.
4. The Dirac equation implies that the g-factor for the electron is $g_{e}=2$. This result can also be obtained from the nonrelativistic limit of the Dirac Hamiltonian. For a charge e coupled to an electromagnetic vector potential $\vec{A}(x)$ this nonrelativistic Hamiltonian for the two-component wave function is $H=\left[\vec{\sigma} \cdot\left(\vec{p}-\frac{e}{c} \vec{A}\right)\right]^{2} / 2 m$. Show that this implies $g_{e}=2$. (Hint: It is convenient to use index notation, and $\sigma^{i} \sigma^{j}=\delta^{i j}+i \epsilon^{i j k} \sigma^{k}$.)
5. The Weyl equation for massless, spin- $1 / 2$ particles is

$$
i \partial_{t} \chi= \pm \vec{\sigma} \cdot \vec{p} \chi
$$

where $\vec{\sigma}$ is the vector of Pauli matrices, χ is a two-component spinor, and \vec{p} is the usual quantum mechanical momentum operator. It is the time evolution equation for a quantum system with Hamiltonian $H= \pm \vec{\sigma} \cdot \vec{p}$. The two possible signs correspond to the "chirality" of the massless spin- $1 / 2$ particle, called right-handed $(+)$ and left-handed (-).
(a) Use dimensional analysis to restore the factors of \hbar and c in the Weyl equation (but after this part set $\hbar=c=1$).
(b) Establish the following:
i. The Hamiltonian is translation invariant, and momentum is conserved.
ii. The Hamiltonian is invariant under time reversal, but not under parity (space inversion).
iii. The "helicity" $\frac{1}{2} \vec{\sigma} \cdot \hat{p}$ (spin along the direction of momentum) is conserved in time.
iv. An eigenstate of momentum and helicity is an energy eigenstate with energy E satisfying $E= \pm|\vec{p}|$. Energy eigenstates of right (left)-handed Weyl particles with positive (negative) helicity have positive energy.
v. The Heisenberg spin operator $\vec{S}=\frac{\hbar}{2} \vec{\sigma}$ is not conserved. Rather it satisfies $d \vec{S} / d t=\mp 2 \vec{p} \times \vec{S}$.
vi. The Heisenberg velocity operator $d \vec{x} / d t$ is $\pm \vec{\sigma}$, which is not conserved.
(c) The Dirac equation consists of a pair of Weyl equations, for right and left chirality spinors R and L, coupled by terms that transform R into L and vice versa:

$$
i \partial_{t} R=\vec{\sigma} \cdot \vec{p} R+m L, \quad i \partial_{t} L=-\vec{\sigma} \cdot \vec{p} L+m R .
$$

i. Show that $H^{2}=p^{2}+m^{2}$, where H is the full Hamiltonian acting on the 4 -component wave function $\binom{R}{L}$. This means that an energy and momentum eigenstate satisfies $E^{2}=p^{2}+m^{2}$, so that m is evidently the mass of the particle.
ii. Find the positive energy eigenstates with zero momentum. How do they transform under parity?

