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1. Analyze the effect of an external electric field on the 2s1/2 and 2p1/2 levels of
hydrogen, taking into account that these levels are split by the Lamb shift by an
amount 1.06 GHz. The other levels, and the hyperfine structure, can be ignored
for the purpose of this problem, so this is only a two-level system. Show that the
energy shifts are quadratic in the field strength for small amplitude electric fields,
but that they become linear at larger strengths. Thus there is a threshold field
strength, call it E0, where the behavior changes from quadratic to linear. Estimate
E0 in Volts/cm. Find and sketch the energy levels as a function of the electric field
strength E . Explain how this problem provides an example of Kramers degeneracy
(and use this fact to cut your work in half). In computing the required matrix
elements, you may construct the 2s1/2 and 2p1/2 states using the nonrelativistic,
hydrogen wave functions, for which 〈2p,m` = 0|z|2s〉 = 3a0.

2. Write the 2p1/2(F = 0) state of hydrogen in terms of the product kets |2p,ml〉|ms〉|mI〉.
(Here F = J + I is the total angular momentum of the atom, where I is the nu-
clear spin and J is the total angular momentum of the electron.) Do this by
two methods, and compare: i) first find the J = 1/2 states of the electron, and
then combine with the nuclear spin states to find the F = 0 state; ii) list all the
product kets in the L, S, I basis that have mF = 0, and then determine the coef-
ficients of the unique (normalized) superposition of these that is invariant under
all rotations. (Hint: Use F+.)

3. The ground state of the hydrogen atom is split into two hyperfine states separated
by 1.42 GHz. What is the hyperfine splitting in the deuterium atom? The respec-
tive magnetic moments are µ = 2.8µN and µd = 0.86µN , where µN is the nuclear
magneton.

4. The Dirac equation implies that the g-factor for the electron is ge = 2. This result
can also be obtained from the nonrelativistic limit of the Dirac Hamiltonian. For
a charge e coupled to an electromagnetic vector potential ~A(x) this nonrelativistic
Hamiltonian for the two-component wave function is H = [~σ · (~p − e

c
~A)]2/2m.

Show that this implies ge = 2. (Hint: It is convenient to use index notation, and
σiσj = δij + iεijkσk.)

5. The Weyl equation for massless, spin-1/2 particles is

i∂tχ = ±~σ · ~pχ,

where ~σ is the vector of Pauli matrices, χ is a two-component spinor, and ~p is the
usual quantum mechanical momentum operator. It is the time evolution equation
for a quantum system with Hamiltonian H = ±~σ · ~p. The two possible signs
correspond to the “chirality” of the massless spin-1/2 particle, called right-handed
(+) and left-handed (−).
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(a) Use dimensional analysis to restore the factors of h̄ and c in the Weyl equation
(but after this part set h̄ = c = 1).

(b) Establish the following:

i. The Hamiltonian is translation invariant, and momentum is conserved.

ii. The Hamiltonian is invariant under time reversal, but not under parity
(space inversion).

iii. The “helicity” 1
2~σ · p̂ (spin along the direction of momentum) is conserved

in time.

iv. An eigenstate of momentum and helicity is an energy eigenstate with
energy E satisfying E = ±|~p |. Energy eigenstates of right (left)-handed
Weyl particles with positive (negative) helicity have positive energy.

v. The Heisenberg spin operator ~S = h̄
2~σ is not conserved. Rather it satisfies

d~S/dt = ∓2~p× ~S.

vi. The Heisenberg velocity operator d~x/dt is ±~σ, which is not conserved.

(c) The Dirac equation consists of a pair of Weyl equations, for right and left
chirality spinors R and L, coupled by terms that transform R into L and vice
versa:

i∂tR = ~σ · ~pR+mL, i∂tL = −~σ · ~pL+mR.

i. Show that H2 = p2 + m2, where H is the full Hamiltonian acting on

the 4-component wave function

(
R
L

)
. This means that an energy and

momentum eigenstate satisfies E2 = p2 +m2, so that m is evidently the
mass of the particle.

ii. Find the positive energy eigenstates with zero momentum. How do they
transform under parity?
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