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Griffiths and Li' suggest with some reluctance that the
linear charge density on a conducting needle might be ‘‘in

fact a constant.”” The purpose of this Comment is to support

that conjecture with a geometrical demonstration.

We shall begin with the well-known proof that the elec-
trostatic field inside a uniformly charged spherical shell is
zero. Pick an arbitrary point, and draw a narrow cone (in
both directions). The charge Q is proportional to the area
subtended, which is proportional to the square of the distance
r; so for the two areas at opposite ends of the cone:
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which is the same as the condition that the £ fields from the
two charges are equal and opposite at the point. (It works
only for a sphere because an arbitrary straight line hits op-
posite sides at the same angle to the spherical surface.) The
whole sphere can be mapped into such mutually canceling
pairs for any interior point. Therefore, the E field is zero
inside the sphere.

Building on this concegt, we approach the conducting cir-
cular disk. R. Friedberg” suggests (p. 1087): ‘‘Imagine a
sphere of radius a centered at the origin, and on its surface
place a uniform surface charge density o,=Q/4ma’. Now
collapse the z direction so that the charge is projected verti-

Fig. 1. Equipotential disk.
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cally onto the x—y plane. This gives a surface density
o(x,y) on the disk... .”” Referring to Fig. 1, for a point on the
disk,
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(similar triangles). So, from Eq. (1),
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and, in general, the x and y components of the E field cancel
out as above, which means that the disk is an equipotential,
as required for a conductor in electrostatics.

The expression for the surface charge density follows im-
mediately. For o(x,y) we can write a(p), with p = JxZ+y?
(see Fig. 2). The projection from the two hemispheres to the
disk gives o(p) =20 /sin 8, where cos 8 = p/a; so
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(which increases without limit at the edge of the disk).

Let us apply a similar procedure to the conducting needle,
Fig. 3. Now, instead of projecting down to a plane, we are
projecting the charge onto a line along the x axis. As before,
the E field component along the line is zero, so the resulting

Fig. 2. Projection onto a disk.
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Fig. 3. Projection onto a line.

linear charge density M\ is appropriate for a conductor. In
order to find A, we project a ring of charge from the spherical
surface onto the corresponding line element of the needle:

g2 ma sin @ adf=\ad¥@ sin 6. 5)

So the linear charge density turns out to be a constant,
Q
AN=2macy= 32 (6)

corresponding to ‘‘the counterintuitive possibility”” sug-
gested by Griffiths and Li.

It is always possible to carve up a uniform line charge in
such a way as to show that the field at an arbitrary point
within the line is zero. A numerical exampie will probably be
most understandable, and most convincing, Fig. 4. For clar-
ity, we measure x; from the origin toward the right, and x,
toward the left. What we need is that, for an arbitrary origin
0, any given segment dx, is canceled by the corresponding
segment dx,, in terms of field at the origin:

dx; dx,
= —a 7
xl§ x% ’ ( )

since dx is proportional to charge. The solution is
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Fig. 4. Apportionment of a line charge.

For the example given, C =1/10—1/30=2/30=0.0667. Then
we find that x; =8 cotresponds to x,=17.1, and x,=9 to
x,=22.5. Taking averages of these distances, if the two seg-
ments cancel out then
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so that checks pretty well. For any given segment on the
right of the origin, the corresponding one on the left pro-
duces a field that is equal and opposite.

And that’s all very plausible, except for the following
paradox, alluded to in Griffiths and Li’s conclusion. Refer-
ring to Fig. 4, symmetry would seem to dictate that the E
field at the origin O due to the charge on the right should be
exactly equal to the field due to the charge just up to the
‘10’ mark on the left, and so the remaining charge on the
left should provide a net field pointing to the right (for posi-
tive \), in contradiction to our conclusion that there is no
field component along the needle. This might be called a
“‘paradox of infinity’’ which produces what Griffiths and Li
refer to as a ‘‘deep pathology in the reduction to a one-
dimensional object that does not infect the reduction from
three to two.”” The E field and scalar potential V are infinite
for the needle, and the capacitance is zero, none of which is
true for the disk (except for E at the very edge). In particular,
in Fig. 4, the field at the origin due to the charge on the right
is infinite, and the field from the left is also infinite; so add-
ing a finite field due to the charge from 10 to 30 on the left
will make only a negligible difference to the situation at that
point. This is presumably a satisfactory approximation for a
physically realizable thin needle.

So, in view of the above and Ref. 1, it appears that the
linear charge density is uniform for a needle of infinitesimal
thickness and for a thin prolate spheroid; and that, for a
cylinder of finite girth, there is an excess of charge at the
ends.
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Wally [Selove] was a superb student in high school, and the University of Chicago offered him
a tuition scholarship. The university awakened his intellect. He had thought he wanted to be a
radio engineer but Chicago has no such major. He was advised that physics was the closest area.
Wally sought out extra work to do in his classes because he needed an A average to maintain his
scholarship. He found physics to be much more interesting than he had imagined, and he was
fascinated by marvelous courses in the classics and in history.
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