Phys374, Spring 2008, Prof. Ted Jacobson
Department of Physics, University of Maryland

Complex numbers—version 5/21/08

Here are brief notes about topics covered in class on complex numbers,
focusing on what is not covered in the textbook.

1 Complex algebra and geometry

1.
2.

10.

i as a solution to 22 + 1 = 0, that is, i = /—1.

Complex numbers: z = x + iy, with « and y real numbers, called the
real and imaginary parts of z, = Re(z) and y = I'm(z).

Square roots of other negative numbers. E.g. v/—2 = iv/2.

Any quadratic equation az? + bz + ¢ = 0 has two roots, given by
z = (—b++/b? — 4ac)/2a. If b> —4ac is negative, the roots are complex.

Fundamental theorem of algebra: Every polynomial has at least one
root. This easily implies by induction that every nth order polynomial
can be factorized as a,(z —wy)(z — wa) - - - (z — wy). That is, it has n
roots, some or all of which may coincide. For a proof of this see below.

Complex conjugate: z* = x — y.

Inverse of a complex number:
1 z* T — 1y

——Z - (1)

z 2z x24y?
Modulus: |z| = Vz*z = /a2 + y2.

Everything is nice: (z + w)* = z* + w*, (zw)* = z*w*, (1/2)* = 1/2%,
|[zw| = |z]w], [2] = |2].

Exponential function: The exponential function f(z) = e® can be
defined as the unique function equal to its own derivative and equal
to 1 when = 0. To find its Taylor series, write f(z) = 1 + a1z +
azx? 4+ azx® + - -- and impose equality of df /dz and f for all x. The
coefficients of ™ must then be equal, which implies a,, = 1/n!. Thus
e’ =3 o2 x"/nl. This definition can be generalized to any complex

number z, replacing x by z.
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Key identity: e%® = e***. One can prove this by writing out each
of the series expansions, multiplying term by term on the left hand
side, and expanding (a + b)™ on the right hand side, then collecting
terms with equal powers of a and b on both sides. A much simpler
proof: define f(a) = %’ and g(a) = ¢***, and note that df /da = f
and dg/da = g. Also f(0) = g(0). So f and g are equal at one point
and satisfy the same first order differential equation, so they are equal
everywhere!

Complex plane: Complex numbers can be viewed as points or vec-
tors on a plane, with Re(z) on the horizontal axis and Im(z) on the
vertical axis. The distance from the origin to z is |z|.

Euler’s identity: e = cosf+isinf. Two different proofs: (a) Expand
both sides in a power series and show they are equal term by term,
or (b) note that both sides are equal to i times their own derivative
with respect to 6, so they satisfy the same first order differential equa-
tion. They are also obviously equal when 6 = 0, so they are equal
everywhere.

|ei9\ =1 for all real 8, so these complex numbers lie on the unit circle
in the complex plane.

e’™ + 1 =0, a remarkable equation, involving 0, 1, e, 7 and i.

Polar form of a complex number: z = re’’, where r and 6 are the
polar coordinates of z on the complex plane. The relation to the
Cartesian form z = x + iy is * = rcosf and y = rsinf. Conversely,
r=|z] = V22 + y2 and § = tan~!(y/x). There are two arctangents
within the interval § € (—m,7); the correct one has the same sign as
y. Conversely, x = rcosf and y = rsinf. The angle 6 is variously
called the “angle” or “argument” of z, Arg(z), or the “phase” of z.
Sometimes €% is called the phase.

Geometric interpretations of conjugation and multiplication:
z — 2z* is reflection across the real axis, and z — wz is scaling by
|w| and rotation counterclockwise by Arg(w). In other words, when
you multiply two complex numbers, the moduli multiply and the angles
add:

Z1%9 = (r1€i91)(r26i92) = Tl’l”gei(glJreQ). (2)
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i as a m/2 rotation: Note that multiplication by i effects a coun-
terclockwise 7/2 rotation. Thus 42 effects a counterclockwise 7 rota-
tion...which is equivalent to multiplication by —1. This gives a geo-
metrical interpretation to the defining property of i, namely 2 = —1.

Logarithm: In z is any complex number such that e? = 2. So Inz
is multi-valued: any integer multiple of 27 can be added. In terms of
polar coordinates, Inz = In(re”?) = Inr + i( + 27n) where n is any
integer.

Complex powers of complex numbers: 2z is defined to be e "2,
This is in general multiple-valued, since In z is. The multiple values
are related by factors of e®(2™)  If w is an integer, this is always 1.
If w is rational, it can take on just a finite number of different values.
For example, if w = 1/2, it is just 1, the familiar sign ambiguity of
the square root z%/2.

Caution! There is a tricky point about the laws of complex expo-
nents. Because of the multi-valuedness of the logarithm, in general
abat # abt¢, since Ina can be chosen differently in defining a® and a®.
Moreover, depending on the values of a, b, and ¢, a®a® may have more
possible values than a’*¢. Similarly, a®b¢ # (ab)¢ and (a®)¢ # a* in
general. What’s more, generally Ina® # blna. Ezercise: Find exam-
ples of these situations.

Inl/n i2rm/n

Roots of unity: 1/ = ¢ =e ,m=20,1,...,n—1. So
there are n distinct nth roots of unity. Note that if w is an nth root
of unity, then so is w*.

Any complex number z has n distinct nth roots 2/, since any one

can be multiplied by an nth root of unity. In polar form, 2n =
(r€i9+i27rm)1/n — rl/neié/n—l—i%rm/n’ with m=0,1,...,n—1

Example: i'/3. Let’s consider two different viewpoints. Algebraically,
il/3 = end)/3 — gi(m/242mn)/3 — oi(n/6+27n/3) Tn Cartesian form, the
cube roots of i are (v/3 +14)/2, (—v/3 +1i)/2, and —i. Check these by
cubing them. Graphically, since multiplication by i is a 7/2 counter-
clockwise rotation, i1/3 can be 1/3 of that rotation, i.e. a 7/6 counter-
clockwise rotation, i.e. €/%. But it can also be a m/2 clockwise
rotation, i.e. e /2 = —j. There is still one more possibility: one
can multiply any value of i'/3 by a cube root of unity and get another



value. The three cube roots of ¢ are therefore spaced equally around

a circle: /6 ¢i5m/6 i97/6 — _j

25. The fundamental theorem of algebra can be proved as follows. Let p(z)
be an nth order polynomial with nonzero contant term, i.e. p(0) # 0.
Then p(re) is a closed curve in the complex plane for each 7. When
r = 0 this curve is just the point p(0). For sufficiently large r it is
dominated by the highest order term in the polynomial, a,z", so it
is approximately a,r"e™?, which follows a circle of radius |a,|r"™ and
loops around n times. As r decreases, this n-fold loop shrinks down,
eventually to the point p(0). On the way, each of the n turns of the
loop must cross over the origin, and each re? for which that happens is
a root of the polynomial, i.e. p(re?®) = 0. Generically these crossings
are distinct, so there are n distinct roots. But for special polynomials
one or more of these crossings can occur at the same value of re?. In
that case the roots are degenerate. But there is always at least one
root.

2 Complex calculus

1. Analytic functions: A complex function h(z) is analytic if its deriva-
tive dh/dz is well-defined, i.e. exists and is independent of the direction
dz takes in the complex plane. Other names for analytic functions are
“regular” and “holomorphic”.

2. Ezxamples: Any power of z is analytic, and so is any power series in z,
or in (z—zg) for some fixed zy. The prototypical non-analytic function
is h(z) = 2" = —iy. Why? Well the derivative in the z direction is
1, while the derivative in the iy direction is d(—iy)/d(iy) = —1, so the
two have opposite signs. More generally, if dz = d(re'¥) = e'?dr, with
¢ fixed, then dz* = e~¥dr, so dz*/dz = e~"%. So each direction for
dz gives a different result, hence the function is not analytic. Other
examples of non-analytic functions are h(z) = (2 + 2*)/2 = z and
h(z) = zz*.

3. Analyticity and Taylor series: If h(z) is analytic in some region
then in fact not just the first derivative but the derivatives of every
order exist and are analytic in the region. Moreover, the Taylor series
for h(z) about any point zp in the region converges to h(z) within
a circle centered on zy that extends out to the nearest singularity of
h(z).



4. Cauchy-Riemann equation: The derivative dh/dz with dz = dx
is Oph, while with dz = d(iy) = idy it is —idyh (since 1/i = —i).
Analyticity implies these two are necessarily equal,

Oyh = i0h complex form of Cauchy-Riemann equation  (3)

Conversely, if d,h and 0,h exist and are continuous in a region and
satisfy the Cauchy-Riemann equation, then h is analytic in that region.
In terms of the real and imaginary parts f and g of h(z) = f(z)+ig(z),
the Cauchy-Riemann equation becomes a pair of real equations,

Oz f = Oyg and Oyf = —0yg. (4)

5. If h is analytic then it is harmonic, i.e. it satisfies Laplace’s equa-
tion:

Vih = 0Zh+ 02k (5)
—i030yh + 10,0 h (6)
=0 (7)

(using the Cauchy-Riemann equation (3) in the first step). This com-
plex equation implies that the real and imaginary parts f and g are
separately both harmonic. Conversely, if a real function is harmonic
in a simply connected region, then it is the real (or imaginary) part
of some analytic function in that region. This gives a powerful way to
find harmonic functions.

6. If h is analytic then its gradient has zero norm:

Vh-Vh = (0:h)*+ (9,h)? (8)
= (0:h)* 4 i%(0h)? (9)
= 0. (10)

The real and imaginary parts of this complex equation imply that the
gradients of f and ¢ have the same norm and are orthogonal:

IVf| =|Vy| and Vf-Vg=0. (11)

The second of these equations implies that the contours of f and ¢
(i.e. the curves of constant f and g) intersect each other orthogonally.
It also implies that the curves tangent to V f, i.e. the flow lines of V f,
coincide with the contours of g, and wvice versa.



7. Contour integration: [ h(z)dz, where C is a contour (curve) in the

10.

11.

complex plane. This is defined in the usual way an integral is defined,
as a limit of sums. It can also be expressed as a line integral of the
complex vector field H = hx + ihy:

/hdz _ /h(daz+idy) (12)
_ / (hdz + ihdy) (13)

= /H -dr. (14)

If h is analytic the vector field H introduced in the previous item
has vanishing curl and divergence, as a consequence of the Cauchy-
Riemann equation: Since we are living on the z-y plane here, (V x H)
has only one component: 0,H, — 0yH, = 0,(ih) — Oyh = 0 by the
complex Cauchy-Riemann equation. Similarly V-H = 0, H,+0,H, =
Ogh + 0y(ih) = 0.

Cauchy’s theorem: The integral ¢ h(z)dz around a closed contour
vanishes if h(z) is analytic in the enclosed region. This follows from
writing the contour integral as the line integral of H and converting
it to the surface integral of V x H using Stokes’ theorem, and then
invoking the fact that for analytic h the vector field H has vanishing
curl.

“Deforming the contour”: If the integrand is analytic in the region
between an original contour and a continuously deformed contour, then
Cauchy’s theorem implies that the two contour integrals are equal.

Key example: Consider the integral ¢ 2" dz around a counterclock-
wise circle of radius r, where n is any integer. Cauchy’s theorem tells
us that this integral vanishes if n > 0, since then the integrand is an-
alytic. But it also vanishes if n < 0, except if n = —1. This fact is
central to the evaluation of contour integrals, and is simple to prove:
On the circle we have z = re' and dz = izd#, so

2r
7{,2” dz = ir”“/ e+ g (15)
0
= 2midn 1, (16)
where the Kronecker delta 0, —1 is unity if n = —1 and vanishes oth-

erwise. If the circle is deformed to any other closed contour without
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crossing over the singularity at z = 0, the value of the integral remains
unchanged. This key example is easily generalized to apply when the
singularity is located somewhere other than z = 0.

Poles and Residues: Consider functions h(z) that have an expansion

o0

h(z)= 3 an(z—2)"

n=—oo

in negative and positive integer powers of (z — zp), that is convergent
for sufficiently small |z — z9|. This is called a Laurent expansion.
If a,, is non-zero for any negative n then h(z) is singular at zp. If the
number of such nonzero a, is finite the singularity is called a pole of
order |m|, where m is the highest negative power of (z — zp). A pole
of order 1 is called a simple pole. The coefficient a_1 of the (z — zp) ™!
term in the expansion is called the residue Resh(zp) of h(z) at the
pole zp.

Residue theorem: The integral of h(z) counterclockwise around a
closed contour enclosing poles at points z; is given by

fh(z) dz =210 Y Resh(z) (17)

This generalizes the key example given above.

Computing residues: I'll discuss a few example situations. The
simplest case occurs if h(z) = g(2)/(z — z9) with g(z) analytic and
nonzero at zp. Then h(z) has a simple pole at zp and the residue is
just g(z0). For example, the residue of e*/(z+2) at z = —2is e72. In
terms of h(z), we can write this as Res h(zp) = lim,_..,(z — 20)h(z).

A slightly more involved case occurs if instead h(z) = f(z)/g(z) has a
simple pole at zgp, where again f(z) is analytic and nonzero at zy. Then,
since g(2) = ¢'(20)(z — 20) + O((z — 20)?), the residue is f(20)/9'(20)-
(Since we assumed zq is a simple pole, ¢’(z9) # 0.) This is often a
convenient, applicable rule. For example, the residue of (23 +1)7! at
one of its three simple poles (which occur at the cube roots of —1) is

1/(32?) evaluated at the pole. For instance, the residue at z = ¢/3 is
(36i2ﬂ—/3)_1.

A more complicated situation arises if h(z) can be expressed in the
form h(z) = f(2)/(z — 2z0)", where f(z) is analytic and nonzero at zp.
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Then h(z) has a pole of order n at zy. The residue is the coefficient of
the (n—1)st term in the Taylor series of f(z) about zy, f~ Y (2g)/(n—
1)!. For example, z3/(z — 3)3 has a pole of order 3 at z = 3, where the
residue is (1/2)(z%)” = 3z evaluated at z = 3, i.e. 9.

In terms of h(z), the residue in this last case can be expressed as

Res h(z) = Tim — L 4"
es h(zo0) = % (n— 1)l dzn1

(== 20)"h(2)]. (18)

In this form the result applies even if h(z) is not presented in the form
f(2)/(z — z0)™ with f(2) # 0. For example consider (sinz)/z%. The
numerator is analytic at z = 0, but it vanishes there, so this function
does not have a pole of order 4 as it might at first seem to. Actually
it has a pole of order 3 at z = 0,

sinz  z—23/314+25/5!—.. 1 11 1

T p B R

z

The residue at z = 0 is —1/3!. Here I found the residue by inspecting
the expansion, of the numerator. It is equivalent to using the above
formula, but use of the formula without making the series expansion
of the sin would be more complicated, since you'd have to take the
third derivative of (sin z)/z and then evaluate it at z = 0.

“Closing the contour”: Often a real integral (or a contour integral
over an open contour) can be related into a closed contour integral in
the complex plane. In this case, the integral may be evaluated using
the residue theorem. In extending an open contour to a closed contour
one must add pieces to the contour. Sometimes an extra piece can be
seen to contribute zero, for instance because it may be at infinity and
the integrand may fall off rapidly enough for the integral over that part
of the contour to vanish (even if that part of the contour is infinitely
long). Sometimes two extra pieces can be seen to cancel each other.
Sometimes an extra piece is nonzero, but is related by a multiplicative
constant factor to the original integral. Then one can solve for the
original integral in terms of the closed contour integral.



