HW#10 —Phys374—Spring 2008 Prof. Ted Jacobson
Due before class, Friday, April 25, 2008 Room 4115, (301)405-6020
www.physics.umd.edu/grt/taj/374c/ jacobson@physics.umd.edu

1. Consider the “rectified cosine function” defined by
f(x) = cos(mz/2L), L<z<L, (1)
and continued periodically so that f(x +2L) = f(z). [2+345+5=15 pts.]

(a) Sketch the function f(z) over several periods.
(b) Use the symmetry to explain why the Fourier coefficients b,, vanish.

(¢) Find the non-vanishing Fourier coefficients. (Hints: (i) To clean things up, change
variables to § = wz:/L. (ii) You'll need to do a probably unfamiliar integral, which
you can look up or work out for yourself.)

(d) Using a computer program (Mathematica, Maple, Matlab, or something else)
plot the sum of the first few terms in the Fourier series, together with (1), for
0 € (—2m,27). Show the result with 1 (just the constant part), 2, 5, and 20 terms
included. With 5 terms the sum should already be quite close to (1), except near
the zeros where the slope is discontinuous.

2. In section 11.5, Explosion of a nuclear bomb, and hw6, the neutron density is assumed
to have a factored form N(r,t) = F(r)H(t), and we found the equations satisfied by
F(r) and H(t). Then we wrote F(r) = f(r)/r and found that f(r) must be a sin
function. After applying the boundary conditions f(0) = 0 = f(R) the solution took
the form

Ny(r,t) = Ay exp(pnt) sin(kyr) /1, (2)

where n is a positive integer, A, is an arbitrary constant, k, = n7/R, and p, is de-
termined by the diffusion constant %, the production rate A, the radius of the sphere
R and the integer n. A general solution is a linear combination of such solutions,
N(r,t) =3, Ny(r,t), with different values of the constants A,.

Once the coefficients A,, are known, N(r,t) is determined for all time. Consider for
example the case when initially at ¢ = 0 there is a constant density of neutrons N;
in a sphere of radius a < R, and no neutrons outside that sphere. Find the values of
the coefficients A,, in this case, and use these to write out the function N(r,t) as an
explicit series. [5 pts.]

(Hint: To evaluate the coefficients A,, I suggest you multiply N(r,0) by rsin(k,r)
and integrate over r from 0 to R. Using the given initial density you’ll get one value,
and using the series expansion you’'ll encounter integrals very close to (15.3,5) in the
textbook, with L replaced by R and with the range of integration cut in half. The
latter will be proportional to A, so you’ll be able to solve for A,,.)



3. Find the Fourier transform of f(t) = Asin(wot + ¢). [10 pts.]

4. Problems 15.6 g,h (Fourier transform of correlation and Parseval’s theorem) [10 pts.]
(Note: The conventions (15.42), (15.43) are used here.)

5. Sampling Theorem

FEzact reconstruction of a continuous-time signal from its discrete-time sam-
ples is possible if the signal is band-limited and the sampling frequency is
greater than twice the signal bandwidth.

Consider a signal f(t) whose Fourier transform F'(w) is zero for |w| > Q,
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This is called a band-limited signal. (Note the exponent sign convention of (15.42) is
used here. See section 15.5 for a discussion of the alternate conventions.) Evaluating
(3) at the discrete times t = nts, where the sampling time t4 is defined by ts = 7/9Q,
yields
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The right hand side of (4) is recognized as 2( times the nth coefficient in the Fourier
series for F'(w) on the interval (—, Q). Being limited to this interval, the function
F(w) is determined by these Fourier coefficients, and therefore by the discrete “sam-
ples” f(nts). The sampling frequency 1/t, = Q/7 is twice the bandwidth /2.

Show that f(t) can be reconstructed explicitly from the samples f(nts) via

sin(Qt — nm)
Qt —nm

f&y=">_ flnty)

n=—oo

[10 pts.]
(Hint: Write F(w) as a Fourier series, substitute in (3), and integrate over w.)



