HW#10 —Phys374—Spring 2008 Due before class, Friday, April 25, 2008 www.physics.umd.edu/grt/taj/374c/ Prof. Ted Jacobson Room 4115, (301)405-6020 jacobson@physics.umd.edu

1. Consider the "rectified cosine function" defined by

$$f(x) = \cos(\pi x/2L), \qquad L \le x \le L, \tag{1}$$

and continued periodically so that f(x+2L) = f(x). [2+3+5+5=15 pts.]

- (a) Sketch the function f(x) over several periods.
- (b) Use the symmetry to explain why the Fourier coefficients b_n vanish.
- (c) Find the non-vanishing Fourier coefficients. (*Hints*: (i) To clean things up, change variables to $\theta = \pi x/L$. (ii) You'll need to do a probably unfamiliar integral, which you can look up or work out for yourself.)
- (d) Using a computer program (Mathematica, Maple, Matlab, or something else) plot the sum of the first few terms in the Fourier series, together with (1), for $\theta \in (-2\pi, 2\pi)$. Show the result with 1 (just the constant part), 2, 5, and 20 terms included. With 5 terms the sum should already be quite close to (1), except near the zeros where the slope is discontinuous.
- 2. In section 11.5, Explosion of a nuclear bomb, and hw6, the neutron density is assumed to have a factored form N(r,t) = F(r)H(t), and we found the equations satisfied by F(r) and H(t). Then we wrote F(r) = f(r)/r and found that f(r) must be a sin function. After applying the boundary conditions f(0) = 0 = f(R) the solution took the form

$$N_n(r,t) = A_n \exp(\mu_n t) \sin(k_n r) / r, \tag{2}$$

where n is a positive integer, A_n is an arbitrary constant, $k_n = n\pi/R$, and μ_n is determined by the diffusion constant κ , the production rate λ , the radius of the sphere R and the integer n. A general solution is a linear combination of such solutions, $N(r,t) = \sum_n N_n(r,t)$, with different values of the constants A_n .

Once the coefficients A_n are known, N(r,t) is determined for all time. Consider for example the case when initially at t=0 there is a constant density of neutrons N_i in a sphere of radius a < R, and no neutrons outside that sphere. Find the values of the coefficients A_n in this case, and use these to write out the function N(r,t) as an explicit series. [5 pts.]

(*Hint*: To evaluate the coefficients A_n , I suggest you multiply N(r,0) by $r\sin(k_nr)$ and integrate over r from 0 to R. Using the given initial density you'll get one value, and using the series expansion you'll encounter integrals very close to (15.3,5) in the textbook, with L replaced by R and with the range of integration cut in half. The latter will be proportional to A_n , so you'll be able to solve for A_n .)

- 3. Find the Fourier transform of $f(t) = A\sin(\omega_0 t + \varphi)$. [10 pts.]
- 4. Problems 15.6 g,h (Fourier transform of correlation and Parseval's theorem) [10 pts.] (*Note*: The conventions (15.42), (15.43) are used here.)

5. Sampling Theorem

Exact reconstruction of a continuous-time signal from its discrete-time samples is possible if the signal is band-limited and the sampling frequency is greater than twice the signal bandwidth.

Consider a signal f(t) whose Fourier transform $F(\omega)$ is zero for $|\omega| > \Omega$,

$$f(t) = \int_{-\Omega}^{\Omega} F(\omega) e^{-i\omega t} d\omega.$$
 (3)

This is called a band-limited signal. (Note the exponent sign convention of (15.42) is used here. See section 15.5 for a discussion of the alternate conventions.) Evaluating (3) at the discrete times $t = nt_s$, where the sampling time t_s is defined by $t_s = \pi/\Omega$, yields

$$f(nt_s) = \int_{-\Omega}^{\Omega} F(\omega) e^{-in\pi\omega/\Omega} d\omega.$$
 (4)

The right hand side of (4) is recognized as 2Ω times the *n*th coefficient in the Fourier series for $F(\omega)$ on the interval $(-\Omega, \Omega)$. Being limited to this interval, the function $F(\omega)$ is determined by these Fourier coefficients, and therefore by the discrete "samples" $f(nt_s)$. The sampling frequency $1/t_s = \Omega/\pi$ is twice the bandwidth $\Omega/2\pi$.

Show that f(t) can be reconstructed explicitly from the samples $f(nt_s)$ via

$$f(t) = \sum_{n = -\infty}^{\infty} f(nt_s) \frac{\sin(\Omega t - n\pi)}{\Omega t - n\pi}.$$
 (5)

[10 pts.]

(*Hint*: Write $F(\omega)$ as a Fourier series, substitute in (3), and integrate over ω .)