23

Perturbation theory

From this book and most other books on mathematical physics you may have ob-
tained the impression that most equations in the physical sciences can be solved.
This is actually not true; most textbooks (including this book) give an unrepresen-
(ative state of affairs by only showing the problems that can be solved in closed
form. It is an interesting paradox that as our theories of the physical world become
more accurate, the resulting equations become more difficult to solve. In classical
mechanics the problem of two particles that interact with a ceniral force can be
solved in closed form, but the three-body problem in which three particles inter-
act has no analytical solution. In quantum mechanics, the one-body problem of a
particle that moves in a potential can be solved for a limited number of situations
only: for the free particle, the particle in a box, the harmonic osciltator, and the
hydrogen atom. In this sense the one-body problem in quantum mechanics has
no general solution. This shows that as a theory becomes more accurate. the re-
sulting complexity of the equations makes it often more difficult to actually find
solutions.

One way to proceed 18 to compuie numerical sotutions of the equations. Comput-
ers are a powerful tool and can be extremely useful in solving physical problems.
Another approach is to find approximate solutions to the equations. In Chapter 12,
scale analysis was used to drop from the equations terms that appear (o be irrel-
evant. In this chapter, a systematic method is introduced to account for terms in
the equations that are small but that make the equations difficult to solve. The idea
is that a complex problem is compared to a simpler problem that can be solved
in closed form, and to consider these small terms as a perturbation to the original
equation. The theory of this chapter then makes it possible to determine how the
solution is perturbed by the perturbation in the original equation: this technique
is called perturbation theory. A classic reference on perturbation theory has been
written by Nayfeh [741. The book by Bender and Orszag [14] gives a useful and
iHustrative overview of a wide variety of perturbation methods.
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- The central idea of perturbation theory is introduced for an algebraic equation
in Section 23.1. Sections 23.2, 23.3, and 23.5 contain important applications of
ifijerturbat.ion theory to differential equations. As shown in Section 23.4, perturbation
_theory has a limited domain of applicability, and this may depend on the way the
5;::3§i¢rttlrbat.i()11 problem is formulated. Finally, it is shown in Section 23.7 that not
:féﬁvery perturbation problem is well behaved; this leads to singular perturbation
theory. Chapter 24 is devoted to the asymptotic evaluation of integrals.

23.1 Regular perturbation theory

As an introduction to perturbation theory let us consider the following equation
X7 4x? 4 dx = 0.01, (23.1)

53_tLet us for the moment assume that we do not know how to find the roots of a third
:5"§'order polynomial, so we cannot solve this equation. The problem is the small term
;3_'?“}.01 on the right-hand side. If this term were equal to zero, the resulting equation can
‘be solved: x* — 4x? 4 4x = 0 is equivalent to x(x? — 4x +4) = x{x — 2)% = 0,
_which has the solutions x = 0 and x = 2. In Figure 23.1 the polynomial of (23.1)
;_:._1-3 shown by the thick solid line: it is indeed equal to zero forx =0 and x = 2.

- The problem that we face is that the right-hand side of (23.1} is not equal to
zero. In perturbation theory one studies the perturbation of the solution under a
"fperturbaiion of the original equation. In order to do this, we replace the original
equation (23.1) by the more general equation

X0 Ax® A dx o= g (23.2)

Z_'When g == 0.01 this equation is identical to the original problem, while for s = 0 it
reduces to the unperturbed problem that we can solve in closed form. It may appear

3

Fig.23.1 The polynomial x* — 4x? 4+ dx (thick solid line) and the lines & = .15
{dotted Hne) and & = —0.15 {dashed line).
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that we have made the problemn more complex because we still need to soive the
same equation as our original equation. but it now contains a new variable ¢ as
well! However, this is also the strength of this approach.

The solution of (23.2) 1s a function ol ¢ so that

X = x(&). (23.3}

In Section 3.1 the Taylor series was used to approximate a function f(x) by a power
series in the variable x:

_ i {f X df e

Sy = f{O)+ ,\‘i'f—(.\‘ =0+ - / (x=0)+ -, (3.11)

dx 2!

dx?

When the solution x of (23.2) depends in a regular way on &, this solution can also
be written as a similar power series by making the substitutions x — ¢ and f — x
in(3.11%

(6) = 2(0) + e e — 0y 4 21
x(ey= x{0) + gl = —
a’s( 2 g

This expression is not very useful because we need the derivative d.x /e and higher
derivatives " x /de™ as well; im order to compute these derivatives we need to find

(e=0+ --. (23.4)

the solution x(e) first, but this is just what we are trying to do. There is. however,
another way to determine the series (23.4). Let us write the solution x(e} as a power
series in &

n

xXie) = xp 4+ ex; + 82_‘:3 A {23.5)

The coetticients x,, are not known at this point, but once we know them the solution x
can be found by inserting the numerical value & = 0.01. In practice onc truncates the
series (23.5); it is this truncation that makes perturbation theory an approximation.

When the series (23.5) is inserted into (23.2) one needs {o compute X7 and x°
when v is given by (23.3). Let us first consider the x*-term. The square of a sum of
terms is given by

(C+b+c4 -V =a"+b"+c7 -

23,
+ 2ab + 2ac + 2be + - - - (23.6)

Let us apply this to the series (23.5) and retain only the terms up to order &, this
gives
2 2 2 202 4.0
(xi)+£x; et ) =y ety Fet o
4 2exp00 + 26 x0xs + 260k 30 + - - (23.77)

- . - .- * 2
If we are only are interested in retaining the terms up to order £°, the terms &*x3
and 2% x; x> in this expression can be ignored. Collecting terms of equal powers of
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¢ then gives
(}C() + exy + 82.\‘2 4. -)2 = X(";" + 28.’((}){[ + 82 (’(F’ -+ 2)(().3(2) + 0(83). (238)

A similar expansion in powers of ¢ can be used for the term x°. This expansion is
based on the identity

(a+bret Y =a+b" 1+
+3a’h 4+ 3ab® + 3atc + 3act + 30 + 3bct 4 -
(23.9)

Problem a  Apply this identity to the series (23.5). collect together all the terms
with equal powers of £ and show that up to order £7 the result is given by

5 3 3 . 3 3
(X() +ex;etxa o) = xg + 3exgx) + 3e” (x{]x]z -+ xS.rg) + O(e7). (23.10)

Problem b At this point we can express all the terms in (23.2) in a power series
ol . Insert (23.5), {23.8), and (23.10) into the original equation (23.2} and
collect together terms of equal powers of ¢ to derive that

xg = 4dxg + 4
+ & (3xgx — 8xpx; +dxy — 1)
+&® (Bxpx! + xgxg — 4x! — Sxgxy +4x) +- =0 (23.11)

In this and subsequent expressions the dots denote terms of order O(=°). The
term — 1 in the term that multiphes £ comes from the right-hand side of (23.2).

At this point we use that £ does not have a fixed value, but that it can take any value
within certain bounds. This means that expression (23.11) must be satisfied for a
range of values of . This can only be the case when the coefficients that multiply
the different powers " are equal to zero. This means that (23.11) is equivalent to

the tollowing system of equations which consists of the terms that multiply the
0

terms €Y, &' and 7 respectively:
O(1)-terms: x5 dxd + 4y = 0,
O{e)-terms: Axdx; — 8xox; + 4y — 1 =0, (23.12)
O(e)-terms: 3xpx] 4 xpxn - dxi — Bxpxs 4+ 4y = 0.

You may wonder whether we have not made the problem more complex. We started
with a single equation for a single variable x, and now we have a system of coupled
equations for many variables. However, we could not solve (23.2) for the single
variable x, while it is not difficult to selve (23.12).




416 Perrurbation theory
Problem ¢ Show that (23.12) can be rewritten in the following form:

Ny — dxg + 4y =0,
(3x5 — 8xg+4)xy =1, (23.1 %
(.\'{3] — 8xp+4) va = (4 - 3xp)x7

The first equation is simply the unperturbed problem, this has the solutions xy =
and xy = 2. For reasons that will become clear in Section 23.7 we {ocus here on the
solution xg = 0 only. Given xp. the parameter x| follows from the sccond equation:
because this is a linear equation in xy. The last equation 1s a linear equation in the
unknown v: which can easily be solved once vy and x| are known.

Problem d  Solve (23.13) in this way to show that the selution near x = 013 given
by

xo = O, Xp= -, Xy = e . (23,14
Now we are close to the {inal solution of our problem. The coefficients of the

previous expression can be inserted into the perturbation serics (23.5) so that the
solution as a Tunction of & is given by

L]

Lo, .
vy=0+ -+ —s + 0. 231
' FRTS &) (

Al this point we can revert (o the original equation (23.1) by inserting the numerical
value & = (L.01, which gives:

I .
XY= = x 077 — x 107 00107 = 0.002506 . (23.16;
4 16

It should be noted that this is an approximate selution because the terms ol order
£* and higher have been ignored. This is indicated by the term G107 % in (23.16).
Assuming that the error made by runcating the perturbation series is of the same
order as the first term that is truncated, the error in the solution (23.16) is of the
order 107°. For this reason the number on the right-hand side of (23,16} is given to
six decimals; the last decimal 15 of the same order as the tuncation error.

It this result is not sufficiently accurate for the application that one has in mind.
then one can eastly extend the analysis to higher powers ¢ in order o reduce the
truncation error of the truncated perturbation scrics. Although the algebra resulting
from doing this can be tedious, there is no reason why this analysis cannot be
extended to higher orders.

A truly formal analysis of perturbation problems can be difficult. For example.
the perturbation series (23.5) converges only for sufficiently small values of . It i
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often not clear whether the employed value of & (in this case & = 0.01) is sufficiently
small to ensure convergence. Even when a perturbation series does not converge
for a given value of &, one can often obtain a useful approximation to the solution
by truncating the perturbation series at a suitably chosen order |14]. In this case
one speaks of an asvmprotic series.

When one has obtained an approximate solution of a perturbation problem. one
can sometimes substitute it back into the original equation to verity whether this
solution indeed satisfies the equation with an acceptable accuracy. For example,
inserting the numerical value x = 0,002 506 1n (23.1) gives

% —dx? 4 4x = 00099989 = 0.01 — 0.000001 1 . (23.17)

This means that the approximate solution satisfies {23.1) with a relarive error that
is given by 0.0000011/0.01 = 107, This is a very accurate result given the fact
that only three terms were retained in the perturbation analysis of this section.

23.2  Born approximation

In many scattering problems one wants 1o account for the scattering of waves by
the heterogeneities in the medium. Usually these problems are so complex that they
cannot be solved in closed form. Suppose one has a background mediom in which
scatterers are embedded. When the background medium is sufficiently simple, one
can solve the wave propagation problem for this background medium. For example,
in Section 19.3 we computed the Green’s function for the Helmholtz egunation in a
homogeneous medium.

In this section we consider the Helmheliz equation with a variable velocity ¢(r)
as an example of the application of perturbation theory to scattering problems. This
means we consider the wave field p(r, @} in the frequency domain that satisfies the
following equation:

' plr.w) = 5(r.w) . {(23.18)
(r)

V2 p(r. w) +

oy
e
o2
in this expression S(r, w) denotes the source that generates the wave field. In order
to facilitate a systematic perturbation analysis we decompose I/¢*(r) into a term
1/c; that accounts for a homogeneous reference model and a perturbation:

1 1

= [+ en(r)]. (23.19)

) ¢ 5

In this expression € is a small parameter which measures the strength of the het-
srogeneity. The function a(r) gives the spatial distribution of the heterogeneity,
’ombining the previous expressions it follows that the wave field satisfies the
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ow [3] that for elastic waves also the displacement is inversely proportional to
/+/Pc, where ¢ 1s the propagation velocity of the elastic wave under consideration.)
The fact that the ground motion is inversely proportional o the square-root of
e impedance is one of the factors that made the 1985 earthgualke along the west
coast of Mexico cause so much damage in Mexico City. This city is constructed on
soft sediments which have filled the swamp onto which the city is built. The small
value of the associaled elastic impedance was one of the causes of the extensive
damage in Mexico City after this earthquake.

23.7 Singular perturbation theory

In Section 23.1 we analyzed the behavior of the root of the equation x* — 4x* +
4x = ¢ that was located near x = (. As shown in that section, the unperturbed
problem also has a root x = 2. The roots x = 0 and x = 2 can be seen graphically
i Figure 23.1 because for these values of x the polynomial shown by the thick
solid Hne is equal to zero. In Figure 23.1 the value £ = +0.15 s shown by a
dotted line while the value ¢ = — (.15 is indicated by the dashed line. There is a
profound difference between the two roots when the parameter ¢ is nonzero. The
root near x = 0 depends in a continuous way on g, and {23.2) has for the root
near x = () a solution regardless of whether ¢ is positive or negative. This situation
is completely different for the root near x = 2. When ¢ is positive (the dotted
line}, the polynomial has fwe intersections with the dotted line, whereas when ¢
is negative the polynomial does nor intersect the dashed line at all. This means
that depending on whether ¢ is positive or negative, the solution has two or zero
solutions, respectively. This behavior cannot be described by a regular perturbation
ries of the form (23.5) because this expansion assigns one solution to each value
of the perturbation parameter €.

Let us first diagnose where the treatment of Section 23.1 breaks down when we
apply it to the root near x = 2.

roblem a Insert the unperturbed solution xg = 2 into the second line of (23.13)
and show that the resulting equation for x; is

0-x; =1, {23.83)

'This equation obviously has no finite solution. This is related to the fact that the
tangent of the polynomial at x = 2 is horizontal. First-order perturbation theory
ffectively replaces the polynomial by the straight line that is tangent to the poly-
omial. When this tangent line is horizontal, it can never have a value that is nonzero.
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Fig. 23.4  Graph of the function VE.

This means that the regular perturbation series (23.5) 1s not the appropriate wi
to study the behavior of the root near v = 2. In order to find out how this rooi
behaves, let us set

(2351

Ld

H
N
f

Problem b Show that under the substitution (23.84) the original problem {(23.7:
transforms o

42 = (23.85

We will not yel carry out a systematic perturbation analysis, but we will first deter
mine the dependence of the solution ¥ on the parameter . For small values of &. the
parameter ¥ is also small. This means that the term v can be ignored with respec
to the term v7. Under this assumption (23.85) is approgimately equal to 2y A e s
that v 7= /¢/2. This means that the solution does not depend on integer powers of
¢ as in the perturbation series (23.5). but thar it does depend on the square-root of
The square-root of & is shown in Figure 23.4. Note that for & = O the tangent of this
curve is vertical and that for & = 0 the function JE is not defined for real values ¢l
¢ ' This reflects the fact that the roots near x = 2 depend n a very ditferent was
on £ than the root near x = €.

We know now that a regular perturbation series (23.5) is not the correct tool o
use to analyze the root near v = 2. However, we do not vet know what type o
perturbation serics we should use for the root near x = 2: we only know that the
perturbation depends Lo leading order on /&, That is. let us make the following

. When one allows a complex solution v{s) ot the cguaion, there are always WO Tools near v = 2. Howew
these complex solutions also display @ fundwmental change in their behavier when r = U, which is characterias !
by @ biturcation.
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x =24 ez (23.86)

Insert this solution into (23.2) and show that z satisfies the following
equation:

et 4220 = 1 (23.87)

?;f;:Now we have a new perturbation problem with a small parameter. However, this
small parameter is not the original perturbation parameter &, but it is the square-root
/%, The perturbation problem in this section is a singular perturbation problem.
- In a singular perturbation problem the solution is not a well-behaved function of
;51'_i'ihe perturbation parameter. This has the result that the corresponding perturbation
§g-';:§éries cannot be expressed in powers &7, where # 1§ a positive real integer. Instead,
.:;.g_iégative or fractional powers of s are present in the perturbation series of a singular
"jt;')'erturbation problem.

E;'.:E’roi)lem d Since the small parameter in (23.87) is /¢, it makes sense to seek an
=" expansion of 7 in this parameter:

s=zo+&z ez 4. (23.8%)
Collect together the coetficients of equal powers of ¢ when this series is in-
serted into (23.87) and show that this leads to the following equations for the
coefficients zg and z;;

O(1)-terms: 270 — 1 =0. }

., 23.8¢
(' )-terms: :3 +dzaz = 0. (23.89)

Probleme The first equation of (23.89) obviously has the solution 7o = +1/+/2.
Show that for both the plus and the minus signs z; = —1/2. Use these results
to derive that the roots near ¥ = 2 are given by

1 1 ”
x =24 — s — —g + 0@V, (23.90)
V2 2

fit is iHlustrative to compute the nuomerical values of these roots for the original
problem (23.1), where ¢ = §.01; this gives for the two roots:

x = 1.924 and x = 2.005. (2391

these numbers only three decimals are shown. The reason is that the error in the
incated perturbation series is of the order of the first truncated term, hence the
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error is of the order (0,017 = 0.001. When these solutions are compared with 1
perturbation solution (23.16} for the root near x = 0, it is striking that the somest:
perturbation series for the root near ¥ = 2 converges much less rapidiy thes:

regular perturbation series (23.16) for the root near x = 0. This is a consegu

of the fact that the solution near x = 2 is a perturbation serics in /&(= 0.1+
than e(== 0.01). When the roots (23.91) are inserted into the polynomial (231
following solutions are obtained for the two roots:

x o= 1.924 v — Ay 4y = 00111 =001 +0.0011. -
x =2.065: ¥ —dx7 4 4x = 0.0087 = 0.01 — 0.0012. '
Note that these results are much less accurate than the corresponding result (.75

for the root near x = 0. Again this is a consequence of the singular behavior of 1
roots near x = 2.

The singular behavior of the roots of the polynomial {(23.1) ncar x == ) o
responds to the fact that the solution changes in a discontinuous way when
perturbation parameter & goes to zero. It follows from Figure 23.1 that for the o
turbation problem in this section the problem has one root near x = 2when ¢ = 1
has no roots when & < 0 and there are two roots when & = 0. Such a discontinse::
change in the character of the solution also occurs in fluid mechanics in which i
equation of motion is given by

dpv)
it

+ V- (pvy) = p Vv + F. (1755

In this expression the viscosity of the fluid gives a contribution (£ Viv, where j1 1
viscosity. This viscous term contains the highest spatial derivatives of the veloo
that are present in the equation. When the viscosily p goes o 7ero. the equatis
for fluid flow becomes a first order differential equation rather than a second orde
differential equation. This changes the number of boundary conditions thal i
needed for the solution. and hence it drastically affects the mathematical structu:.
of the solution. This has the effect that boundary-layer problems are, in genci:f
singular perturbation problems [111].

When waves propagate through an inhomogeneous medium they may be focued
onto focal points or focal surfaces [16]. These regions in space where the wie
amplitude is large are called caustics. The formation of caustics depends on &=
where £ is a measure of the variations in the wave velocity [58. 102]. The non
integer power of & indicates that the formation of caustics constitutes a singuly
perturbation problem.
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