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In this presentation we review some results pertaining to black holes in

Anti-de Sitter space following Hawking and Page (1983). We use units in which

G = c = h̄ = kB = 1. The metric of the covering space of anti-de Sitter space

is of the form:

ds2 = −V dt2 + V −1dr2 + r2(dθ2 + sin2 θdφ2). (1)

Here V = 1 + r2

b2 and b = (− 3
Λ )1/2. Anti-de Sitter space is obtained by making

the above space periodic in t, such that the point labeled by (t, r, θ, φ) is the

same as that with the label (t + γ, r, θ, φ); the value of γ is 2πb.

We state without proof Hawking and Page’s result that for zero mass parti-

cles of a conformally invariant field, the energy momentum tensor is

T µ
ν = Aδµ

ν + f(T )V −2(δµ
ν − 4δµ

0 δ0
ν) (2)

where f(T ) = π2

90 gT 4 + O(b−2T 2) and g is the effective number of spin states.

The first term represents an anomaly (the conformal anomaly), a symmetry that

is broken in a quantum theory that is unbroken in the corresponding classical

theory. Its volume integral over all space is formally infinite; we treat it as an

unobservable renormalization of the vacuum energy.
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Einstein’s equations have solutions which describe a Schwarzchild black hole

in a spacetime which is asymptotically Anti-de Sitter. The metric in this case

is the same as in (1), but with V = 1− 2M
r + r2

b2 . We note that for both forms

of V we have Rµν = Λgµν and R = 4Λ.

The horizon occurs where g00 = 0, namely at r = r+ where V (r+) = 0.

Explicitly,

r+ =
b2/3

32/3

(9M +
√

81M2 + 3b2)2/3 − 31/3b2/3

(9M +
√

81M2 + 3b2)1/3
(3)

and r+ → 0 as M → 0. For this metric to be smooth and complete (i.e. prevent

the occurrence of a conical singularity), we need t to be periodic with a period

of −iβ where

β =
4πb2r+

3r2
+ + b2

(4)

or equivalently, we can let τ = it and say τ has period β; see the Appendix for

the calculation. Now, the quantum amplitude for a state |ϕ1 > at time t1 to

propagate to a state |ϕ2 > at time t2 is given by

< ϕ2, t2|ϕ1, t1 >=

∫

D[ϕ]exp(iI [ϕ]) =

∫

D[ϕ]exp(−Î [ϕ]) (5)

where we have taken a path integral over all matter fields ϕ that take the value

ϕ1 on the hypersurface t = t1 and the value ϕ2 at t = t2, and Î ≡ −iI is the

Euclidean action. The quantity Î is nonnegative for fields ϕ that are real on

the Euclidean space (τ, r, θ, φ). Therefore the integral converges, a result that

does not occur when evaluating the path integral on a Lorentzian space such as
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(t, r, θ, φ). In the Schrodinger picture this amplitude is also given by

< ϕ2|exp(−iH(t2 − t1)|ϕ1 > . (6)

We can also take the path integral over all fields ϕ that are real on the Euclidean

section and are periodic in the coordinate τ :

∫

all real periodic ϕ

D[ϕ]exp(−Î [ϕ]) ≡ Z. (7)

However, Z also corresponds to

Z =
∑

n

< ϕn|exp(−iH(t2 − t1)|ϕn > (8)

=
∑

n

exp(−iEn(t2 − t1)) < ϕn|ϕn > (9)

where |ϕn > are orthonormal eigenvectors of the Hamiltonian H . Therefore if

we define β ≡ i(t2 − t1) we get

Z =
∑

n

exp(−βEn), (10)

which allows us to identify Z as the partition function of the canonical ”en-

semble” of fields ϕ. Or conversely, insisting that Z correspond to the partition

function leads to β = i∆t = ∆τ. This construction associates a temperature

T = β−1 to the configuration of fields. In the case of the AdS Schwarzchild

black hole, the period given in (4) is the inverse temperature of the black hole.
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However, we must be careful to note that the temperature actually mea-

sured locally by an observer, Tloc, is a frame-dependent quantity. The ra-

tio of the temperatures measured by static observers at radii r1 and r2 is

T2/T1 = χ(r1)/χ(r2), χ being the norm of the time translation Killing vec-

tor field χa. This metric has the pleasant property that for both forms of V ,

χa = (1, 0, 0, 0), up to a constant factor. Hence |χaχa| = | − V | = V and

χ(r) = V 1/2(r) so that

Tloc ∝
1

χ(r)
= V −1/2(r). (11)

The constant of proportionality is β−1, so

Tloc(r) = β−1V −1/2(r). (12)

We see that Tloc → ∞ as r approaches the horizon and Tloc → 0 as r goes to

infinity. The value of r at which Tloc = β−1 is (2b2M)1/3. It is interesting to

note that

lim
M→∞

r+ = (2b2M)1/3 (13)

as well. But especially significant is that

lim
M→∞

β =
4π

3
2−1/3b4/3M−1/3. (14)

Thus, for large M, this black hole has T ∼ M 1/3, quite different from the

T ∼M−1 behavior of black holes in asymptotically flat space (which is discussed
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briefly in the Appendix).

Next we consider the quantity Î from (7). There are subtleties involved be-

cause the (Euclidean) action integral Î is infinite when integrated over all space

in the both the AdS case and the AdS-Schwarzchild case. However the differ-

ence in the two actions (ÎAdS−Schw. − ÎSchw) is actually the relevant quantity

and turns out to be finite. The action is written

Î = − 1

16π

∫

d4x
√

g(R − 2Λ) (15)

where R is the Ricci scalar. In general there is also a surface term in this action,

but it vanishes in our case. The equation of motion (Einstein’s equation) tells

us R = 4Λ (for both metrics!) which leads to

Î = − 1

8π
Λ

∫

d4x
√

g (16)

Thus we are left with the task of evaluating and subtracting the four-volumes of

the two spaces. To achieve this we impose a ”cutoff radius” rc as the maximum

value of the r coordinate, with the aim of taking the rc → ∞ limit as the final

step. The four-volume of AdS spacetime is

v1(rc) =

∫ β′

0

dτ

∫ rc

0

r2dr

∫

dΩ (17)
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and that for the black hole spacetime is

v2(rc) =

∫ β

0

dτ

∫ rc

r+

r2dr

∫

dΩ (18)

Witten (1998) explains that the black hole spacetime is smooth only if β is

given by (4), but any value of β′ is acceptable for smoothness of the AdS

spacetime. The correct choice of β′ gives β and β′ the same proper coordi-

nate value:

√

g
(AdS)
00 β′ =

√

g
(bh)
00 β. Thus we need

β′
√

1 +
r2
c

b2
= β

√

1− 2M

rc
+

r2
c

b2
. (19)

This allows us to compute the difference in actions,

Î0 ≡ ∆Î = (
−1

8π
)(
−3

b2
) lim

rc→∞

(v2(rc)− v1(rc)) =
πr2

+(b2 − r2
+)

b2 + 3r2
+

. (20)

We will use Î0 to obtain Z later on.

By differentiating (4) with respect to r+ we find that there is a maximum

possible value of β : 2π 3−1/2 b, which corresponds to a minimum of T :

1

2π

√

3

b2
=

1

2π

√
−Λ ≡ T0. (21)

This value of T occurs when r+ = 3−1/2b ≡ r0. It represents the minimum
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temperature at which the black hole solution exists. Now, using (4)

r+ =
4b2π ±

√

16π2b4 − 12b2β2

6β
. (22)

So there are two values of r+ for each T > T0. Using the definition of r+ we

can express M as

M =
1

2
r+(1 +

r2
+

b2
) (23)

and compute dM/dT using dM/dT = (dM/dr+)(dr+/dT ). As we shall see, it

is very significant that dM/dT > 0 for r+ > r0 and dM/dT < 0 for r+ < r0.

Our discussion next leads to the gravitational properties of radiation itself,

which can be treated as a perfect fluid with an equation of state P = (1/3)µ

where µ is the energy density of the radiation. Anti-de Sitter space acts as a

potential well which effectively confines most of the photons to a volume L3

where L is on the order of b. Thus if more and more photons are added to the

system, the mass becomes such that the corresponding r+ given by (3) is greater

than L, at which point the photon fluid collapses to form a black hole. This is

completely analogous to the asymptotically flat case: a black hole appears when

a mass distribution is confined to a radius less than the horizon distance, which

is just 2M in the Schwarzchild case. The critical mass at which this occurs we

call M2; Hawking and page further claim that M2 is of order b. This critical

mass corresponds to a critical temperature T2. But we know that the mass of

the radiation within a ball of radius b goes like µb3, and thermodynamics tells

7



us that µ ∼ gT 4 for radiation. Thus we have

µb3 ∼M2 ∼ b, b−2 ∼ µ ∼ gT 4
2 (24)

and

T2 ∼ g−1/4b−1/2. (25)

Returning to the partition function, we use Hawking and Page’s result that

log Z = −Î0 so that

log Z = −πr2
+(b2 − r2

+)

b2 + 3r2
+

. (26)

This yields the expectation value of the energy:

< E >= − ∂

∂β
log Z = −d(log Z)

dr+

dr+

dβ
. (27)

Using (4), (23), and (26) the result is

< E >=
1

2
r+(1 +

r2
+

b2
) = M. (28)

Let U ≡< E > be considered the thermodynamic energy and F = U − TS

be the free energy of the black hole, where S is the black hole’s entropy. From

statistical mechanics, F = −T log Z and S = − ∂F
∂T . The entropy is thus given

by

S = − d

dT
(−T log Z) = log Z + βU = πr2

+ =
1

4
A, (29)

where A is the area of the event horizon; this is same form of entropy as in
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asymptotically flat space. From (23) we can deduce that for large M, A ≈

4π(2b2M)2/3 in contrast with A ∼ M2 in Schwarzchild spacetime. Since S =

log N , where N is the number of states, the density of states is proportional to

M−1/3exp (π(2b2M2/3)). The partition function,

Z =

∫

N(U)e−βUdU =

∫

N(M)e−M/T dM (30)

goes like
∫

M−1/3exp (αM2/3 −M/T ) with constant α, which converges. This

is indicative of a ”well behaved” canonical ensemble. Such a situation does not

occur in asymptotically flat space since there N(M) ∼ exp(4πM 2).

Now we return to equation (2), which pertains to radiation in AdS spacetime

without a black hole. The constant term is unobservable, so we will take

T µ
ν = f(T )V −2(δµ

ν − 4δµ
0 δ0

ν) (31)

from here on. The energy U of the radiation is

U =

∫

T00n
0n0d3x (32)

where na is a unit vector orthogonal to the spatial hypersurface: na = V −1/2(1, 0, 0, 0).

Thus

U =

∫

g00T
0
0 n0n0 =

∫

3V −2f(T )d3x. (33)
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Using V = 1 + r2

b2 yields

U = 3f(T )

∫

∞

0

r2(1 +
r2

b2
)dr

∫

dΩ = 3π2b3f(T ) ≈ π4

90
gb3T 4. (34)

This allows us to use

U = − ∂

∂β
log Z → log Z =

∫ T

0

T−2UdT (35)

to obtain log Z ≈ π4

90 gb3T 3 for the radiation, and

F = −T log Z ≈ −π4

90
gb3T 4. (36)

Hawking and Page are confident that the AdS spacetime and the AdS-

Schwarzchild black hole are the only nonsingular positive-definite solutions of

Einstein’s equation that satisfy the periodic boundary conditions. Thus the

radiation field will settle into one of two equilibrium states: thermal radiation

on AdS space (no black hole) or AdS-Schwarzchild space, which represents a

black hole. We have already determined that the latter option is not available

(i.e. the solution does not exist) for T < T0. Moreover, we concluded that the

black hole is a certainty for T > T2 (we are referring to the ”high mass” black

hole solution; see below). The following topic, then, will be the behavior of the

system between these two limits.

Now we recall the observation that there are two values of r+, and thus two

black hole masses, associated with each temperature. As we saw, the higher
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mass black hole has positive heat capacity, i.e. dM/dT > 0 while the lower one

has dM/dT < 0. A black hole with negative heat capacity becomes hotter as its

mass decreases. As it becomes hotter, its emission rate and thus the loss of its

mass accelerates. Eventually it evaporates; this is what is believed to happen in

asymptotically flat space. (The reverse process, in which the black hole becomes

cooler and cooler as its mass increases indefinitely, is also conceivable.) However

a black hole with positive heat capacity cools down as its mass decreases and

heats up as its mass increases. Therefore, regardless of whether it begins in

a hotter or cooler state than the ambient radiation, it will eventually come

into equilibrium with the radiation. (However, most of the entropy will be

contained in the black hole.) The upshot is that the high mass black hole is

thermodynamically stable, like the ”non-black hole”(thermal radiation on AdS

space) whereas the low mass black hole is unstable.

We denote the free energy of the black hole solutions by Fbh:

Fbh = −Tbh log Zbh =
b2 + 3r2

+

4πb2r+

πr2
+(b2 − r2

+)

b2 + 3r2
+

=
r+

4
(1− r2

+

b2
), (37)

The low (high) mass black hole by Fl (Fh) and is obtained from Fbh by sub-

stituting the smaller (larger) value of r+ for that temperature. This results

in

Fl = T 3

27

(

2πb2 −
√

4π2b4 − 3b2

T 2

) (

π(−2πb2 +
√

4π2b4 − 3b2

T 2 ) + 3
T 2

)

, (38)

Fh = −T 3

27

(

2πb2 +
√

4π2b4 − 3b2

T 2

) (

π(2πb2 +
√

4π2b4 − 3b2

T 2 )− 3
T 2

)

. (39)

11



The free energy of the non-black hole, will be written FAdS ; its form is given in

(36). For consistency with the notation of Hawking and Page, we define T1 to be

the temperature above which Fh becomes negative, i.e. Fh(T = T1) = 0. (Fl is

never negative.) From (37), T1 = (πb)−1. The free energy of the high mass black

hole state is negative for T > T1 and becomes less than that of the non-black

hole state when T > T̃1. [Hawking and Page for some reason did not explicitly

define T̃1.] Obtaining an expression for T̃1 would involve setting Fh = FAdS ;

however this equation is transcendental in b. However we do know that T̃1 is

only slightly greater than T1 if b is at least of order 1. We also note that Fh ≤ Fl

with equality only at T = T0. Furthermore, Fbh (low mass) > FAdS for all T.

Thus for T0 < T < T2 we have two stable phases (non-black hole and high mass

black hole) and one unstable phase (low mass black hole.) Any phase has a

quantum amplitude to tunnel into the any other, but we expect the amplitude

to tunnel into a state of higher free energy to be exponentially smaller than that

of tunneling into a state of lower free energy. Thus we consider the following

possibilities: the low mass black hole tunneling to either of the other two states

for T0 < T < T2; the high mass black hole tunneling to the non-black hole state

when T0 < T < T̃1; and non-black hole tunneling to the high mass black hole

state when T̃1 < T < T2. The tunneling probability between two states takes

the form

Γ ∼ e−B (40)

where B is the difference in the actions of the two states at the same tempera-

ture.
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We now turn to a purely (semi)classical analysis, restricting ourselves to

phenomena expected without the consideration of quantum tunneling. First,

the high mass black hole is thermodynamically stable, so once it forms, there

is no purely thermodynamic impetus for it to, say, evaporate into the non-black

hole state, even in the temperature range T0 < T < T̃1. The non-black hole

state, consisting of radiation in equilibrium, is also thermodynamically stable.

Therefore in the semiclassical picture it persists even when T̃1 < T < T2. But

when T > T2 the state no longer exists and the radiation spontaneously col-

lapses into a black hole on the high mass branch. Then there is the low mass

black hole state. If it exists at a higher temperature than its surrounding radia-

tion, semiclassically it will heat up, reducing its free energy in the process, and

eventually evaporating. However, if it is cooler than its surrounding radiation,

it gains mass and cools down even more. Intriguingly, this process actually in-

creases its free energy Fl. This continues to happen until its temperature reaches

T0 at which point it enters the high mass black hole branch and stabilizes soon

afterward. The addition of quantum considerations to this picture means that

the tunneling transitions described above may alter this scheme over long time

scales.

Thus we have reviewed a phase transition with three characteristic tem-

peratures, T0, T̃1, and T2 and discussed them in the context of the canonical

ensemble. Hawking and Page also discuss this phenomenon with regard to the

microcanonical ensemble; Witten elaborates (fifteen years later) on how this

transition can be viewed from the perspective of a conformal field theory, per-
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haps even in dimensions other than four. These topics unfortunately could not

be addressed in a paper of this size, but indicate that this topic is rife with

possibilities for further directions of exploration.

Appendix: Additional Calculations

The period of τ for the AdS-Schwarzchild metric is obtained by thinking of τ

as an angular coordinate in l− s space, where l is the proper radius
∫

V −1/2dr

and s is the proper time
∫

V 1/2dτ . The change in s when s has undergone one

period is set equal to 2πl in the limit that r → r+, so that

∫ τ2

τ1

V 1/2(r)dτ = 2π lim
r→r+

∫ r

r+

V −1/2(r′)dr′ (41)

Now we make use of the fact that near r+, V (r) ≈ V (r+) + (r − r+)V ′(r+) =

(r − r+)V ′(r+). Thus we have

(τ2 − τ1)V
1/2 ≡ βV 1/2 = 2π lim

r→r+

∫ r

r+

dr′
√

(r′ − r+)V ′(r+)
(42)

Now V ′(r+) is just 2M
r2
+

+ 2r+

b2 , giving

β

√

(r − r+)(
2M

r2
+

+
2r+

b2
) = (2π)2

√

(r − r+)(
2M

r2
+

+
2r+

b2
)−1 (43)

β = 4π(
2M

r2
+

+
2r+

b2
)−1 (44)

→ β =
4πb2r+

3r2
+ + b2

. (45)

Another option is to use dl = V −1/2dr and let l = 0 at the horizon r = r+.
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The metric can now be written

ds2 = V (l)dτ2 + dl2. (46)

Next, V (l) ≈ V (0) + lV ′(0) + 1
2 l2V ′′(0), where primes now signify derivatives

with respect to l. But V ′(0) = (dV/dr)(dr/dl)|l=0 = 0 since dr/dl = V , which

vanishes at the horizon. Since V (0) vanishes as well, V (l) ≈ 1
2 l2V ′′(0). So

ds2 ≈ l2(
1

2
V ′′(0))dτ2 + dl2 (47)

The form of the metric is the same as that of polar coordinates in two dimen-

sions, and thus the period of the variable
√

1
2V ′′(0)τ is just 2π ! This leads us

to β, the period of τ :

β =
2π

√

1
2V ′′(0)

. (48)

After some algebra,
√

1
2V ′′(0) = 1

2 ( 2M
r2
+

+ 2r+

b2 ) and we get

β =
4πb2r+

3r2
+ + b2

. (49)

We also consider in more detail the form of the black hole temperature in

asymptotically flat space. It is related to the surface gravity κ by T = κ
2π . From

Wald (1984) we gather that

κ =

√

M2 − J2/M2 −Q2

2M(M +
√

M2 − J2/M2 −Q2)−Q2
. (50)
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For M >> J, Q the result is κ→ (4M)−1 and T → (8πM)−1.
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