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Abstract

I review the classic papers of Hawking, King, and McCarthy, and

Malament that demonstrate a close relationship between the topolog-

ical properties of a spacetime and the causal connectivity of points

within it.



1 INTRODUCTION

With the advent of general relativity came the realization that the world

might have a non-trivial network of causal connections, or futher, the thought

that the world might have any causal structure that existed independently

of the objects through which the patterns of causation might be observed. A

grand prophet of causal structure must be Stephen Hawking, and in 1975,

with A. R. King and P. J. McCarthy, he announced ‘A new topology for

curved space-time which incorporates the causal, differential, and conformal

structures’ [1]. Shortly after, David Malament followed this by announcing,

‘The class of continuous timelike curves determines the topology of space-

time’ [2].

Despite the demonstrative title, Malament’s paper, like that of Hawk-

ing, King, and McCarthy (HKM), does not forcibly convey the subtleties

of its meaning. With this essay, I wish to review these works, with an eye

to extruding their content. I make no wild claims; I wish only to convey

the original ideas. I begin by discussing two concepts central to the mean-

ing of the results: conformal diffeomorphisms and the meaning of the term

‘causal structure’. From there, I discuss the paper of HKM, followed by

that of Malament. Regarding any terminology left undefined in the discus-

sion, I have followed the conventions of HKM and Malament, which derive

primarily from conventions in Hawking and Ellis [3].
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1.1 Conformal Diffeomorphisms

A spacetime consists of a smooth manifold (with certain other properties,

see [3]), and an at least twice-differentiable Lorentzian metric. Now, a dif-

feomorphism just maps points on one manifold to points on another, while

the tangent space at a point (including the metric) is mapped to the tan-

gent space at the image point by a uniquely associated isomorphism (see

[3], pp 22-24). Given a diffeomorphism between two spacetime manifolds,

one can then meaningfully compare their respective metrics by comparing,

in the tangent spaces of one manifold, the metric of that spacetime and the

inductively mapped metric of the other.

The common adage, ‘Diffeomorphic spacetimes are physically equiva-

lent,’ implicitly requires that the manifolds be diffeomorphic and that the

metrics be equivalent via the induced mapping. In parlance, such a diffeo-

morphism, that ‘preserves the metric’, is an isometry. A homothetic diffeo-

morphism equates two spacetime manifolds for which the mapped metric of

one is equal to the metric of the other up to a globally constant factor. A

conformal diffeomorphism equates two spacetimes with metrics equal up to

a position dependent factor. Note that a conformal class of spacetimes, all

spacetimes equivalent under a conformal diffeomorphism, can include many

distinct physical-equivalence classes.

1.2 Causal Structure

By the ‘causal structure’ on a manifold, one often means abstractly a set of

binary relations between points, with characteristics that intuitively capture

the notion of ‘is lightlike related’ or ‘is timelike related’ or some other suitable
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sense (see Kronheimer and Penrose [4] for a precise, technical foray). In this

way, one can define the causal structure without the explicit presence of a

metric. However, when it comes time to express the physical meaning, or

even just the geometric meaning in the attempt to associate a metric to the

structure, one must conclude as the references cited here do, that ‘p relates

to q’ means that p connects to q via a suitable causal curve, as defined by

the Lorentzian geometry.

To be precise, HKM and Malament declare a point q to be in the causal

future (resp. past) of point p iff there is a smooth, future-(past-)directed,

causal curve—that is, a continuously differentiable curve whose tangent vec-

tor at every point along the curve does not point out of the future (past)

null cone at that point. One can also consider the set of points connected

by timelike curves, and in this discussion, unless preceeded by ‘causal’, the

terms ‘future’ and ‘past’ will designate these sets. There are various other

equivalent ways to define these properties (see [5], sec. 2); for instance, any

two points connected by a causal curve that is not a null geodesic can also

be connected by a timelike curve.

A mapping ‘preserves the causal structure’ iff the image of the future

(and past) of a point equals the future (and past) of the image of that point.

Sets of the form, A(p,q) = { z : z is in the future of p and the past of q}

constitute a topology on a spacetime manifold (the Alexandrov topology, see

[5] pp 33-34), and any one-one, onto causal-structure-preserving mapping is a

homeomorphism of this topology. The A(lexandrov) topology of a spacetime

is equivalent to the standard manifold topology iff the spacetime is strongly

causal—about every point, there is some open set such that no future- or
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past-directed timelike curve leaves the set and then returns, meaning that

no path comes arbitrarily close to being a closed timelike curve.

HKM and Malament adapt the notion of ‘causal’ (and ‘timelike’ in the

obvious sense) so that one can designate a non-differentiable, but continuous,

curve as such: intuitively, at every point on the curve, the immediately

preceeding points of the curve lie in the causal past of that point, and

the immediately succeeding points lie in the causal future. Two points are

connected by a non-smooth timelike curve iff they are connected by a smooth

timelike curve, so we reach the actual working sense of ‘causal structure’:

two points are (time-wise) causally connected iff they are connected by a

continuous timelike curve.

With this formulation, we now see that any one-one onto mapping be-

tween spacetimes that sends continuous timelike curves to continuous time-

like curves, regardless of whether or not smooth curves go to smooth curves,

preserves the causal structure (it is probably not obvious that points con-

nected by null geodesics remain so connected under such a mapping, but

by the results below, they do). As a result, any such mapping is a home-

omorphism of the A-topology; that the converse is false, we shall discuss

below.

2 WORKS

2.1 “A New Topology For Curved Spacetime. . . ”

HKM include ‘curved spacetime’ in their title presumably to emphasize that

the paper was meant to improve upon results of E. Zeeman [6, 7] involving
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flat spacetime. Zeeman—as well as A. Alexandrov [8], although he is not

credited by HKM—had shown that the group of one-one, onto mappings

of Minkowski space that preserve (or universally reverse) causal relations

is just the flat conformal group—the group of homethetic diffeomorphisms

of Minkowski space—, consisting of the Lorentz group, translations, and

global dilitations. Zeeman also established that one could define a non-

standard topology on Minkowski space, generalizable to curved space, such

that the homethecy group is equal to the group of homeomorphisms of this

new topology.

HKM construct a ‘new topology’ for which, at least in a strongly causal

spacetime, the group of homeomorphisms equals the group of conformal

diffeomorphisms of the standard topology. This ‘path’ topology has the

defining quality of being the finest such that the induced topology on any

timelike path is equal to the topology induced by the standard topology,

where a ‘finer’ topology allows as an open set every open set of a ‘coarser’

topology. HKM explicitly define this topology by giving its basis of open

sets: for some open convex set U containing point p, take the intersection of

all points in U reachable from p by a timelike curve contained entirely in U

(the future and past of p in U), and a Euclidean open ball about p contained

in U; then add the point p. The presence of p in a basis set means that that

set is not open in the standard topology; however, as shown by HKM, every

standard open set is open in the P(ath)-topology, making it strictly finer,

hence non-homeomorphic to, the standard topology.
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2.2 “. . .Which Incorporates the Causal, Differential, and

Conformal Structures”

As alluded to above, the ultimate result of the paper is the

Theorem HKM: For a strongly causal space-time, the group of

homeomorphisms of the path topology is equal to the group of

conformal diffeomorphisms of the standard topology.

To demonstrate the equivalence of the topologies, HKM first show that

P-homeomorphisms preserve timelike paths, that is, every timelike path is

mapped to a timelike path. By the discussion above, the P-homeomorphism

is then an A-homeomorphism. Under the assumption that the spacetime

is strongly causal, so that the A-topology and the standard topology are

equivalent, the P-homeomorphism is a standard homeomorpism.

For the next step, HKM show that in the event of strong causality,

P-homeomorphisms preserve null geodesics—essentially because such paths

can be expressed in terms of causal relations (p connects to q via a null

geodesic iff it connects via a null curve but not a timelike curve), preserved

by the mapping. This leads to a proof, originally given ten years earlier by

Hawking [9], inspired by a proof of Zeeman [6]:

Theorem H : A homeomorphism of the manifold topology that

takes null geodesics to null geodesics is a diffeomorphism1.
1Two comments. First, both Zeeman’s and Hawking’s proofs are not valid in two

dimensions. Second, in both the original version of this proof and the ‘improvement’ in

the HKM paper, the theorem actually appears as a sub-theorem amidst several other

statements that explicitly require the assumption of strong causality, and this particular
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In both versions of the proof, the respective authors define co-ordinate charts

via null geodesics. The proofs demonstrate that a particular smooth, co-

ordinate-defining function (such as the parameter of a geodesic, in the ear-

lier case) is mapped to a smooth counterpart so that smooth co-ordinates

are mapped to smooth co-ordinates, thus declaring the map a diffeomor-

phism. Hence, a P-homeomorphism is a standard diffeomorphism; any two

spacetimes that possess equivalent P-topologies must be diffeomorphic.

At the next step enters a piece of wisdom (see [3], pg 61), telling that

the metric at a point can be inferred, up to a constant, by knowing the

separation of vectors in the point’s tangent space into spacelike, timelike, and

null categories. The tangent null cone can in turn be inferred from the null

geodesics on the manifold2, so from them the metric can be reconstructed,

up to a varying factor. Since, under the assumed conditions, the mapping

of interest preserves the cones, it must connect two conformally equivalent

metrics. Thus, every P-homeomorphism is a conformal diffeomorphism; two

spacetimes with equivalent P-topologies must have conformally equivalent

metrics.

clause is proven in this context. However, both versions read abstruse enough that I

could not conclusively determine whether or not the assumption is necessary to prove this

particular clause. I suspect that it is not; if it is, I sense that it is necessary to ensure

that one can define coordinate charts in the way integral to the proofs. I mention this

because Malament also makes use of this theorem but without making the assumption.

As it seems to me feasible that he is right to do so, I will take his results as correct, but I

will make clear where this theorem enters into his arguments.
2. . . but only in the event that the manifold is geodesically complete?

7



As a last step, HKM cover a result that holds on a general spacetime.

Since a conformal diffeomorphism, g, preserves the standard topology and

timelike paths, then the intersection of any standard open set, O, with a

timelike path, γ, will again be the intersection of some standard open set

with a timelike path. A P-open set, E, is any set such that its intersection

with some timelike path, γ, is equal to O∩γ, for some standard open O;

thus, g(E)∩g(γ) = g(O)∩g(γ). By the above note, g(E) must be P-open, so

a conformal diffeomorphism is a P-homeomorphism; hence, Theorem HKM.

2.3 “The Class of Continuous Timelike Curves Determines

the Topology of Spacetime”

Malament’s work brings to the foreground a property underlying all of

HKM’s results. This is Malament’s

Theorem M1: A one-one, onto mapping between spacetimes

that preserves future directed timelike curves is a homeomor-

phism of the manifold topology.

Lemma and Corollary : Such a mapping also preserves null geodesics,

so by H, is a conformal diffeomorphism.

Malament works with a notion of continuity based on convergence of

sequences: an infinite sequence of points converges to a point p iff every

open set containing p contains an infinite number of points of the sequence;

a map is continuous at p iff the image of every sequence converging to p

converges to the image of p. Malament begins his proof by deriving several

properties of the set of points of discontinuity, in the case that this set were
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non-empty; in particular, this set would intersect some open set achronally—

such that no two points in the intersection were timelike related.

Malament then exploits the lemma on preservation of null geodesics by

considering, for some sequence convergent on a ‘bad’ point p, any null

geodesic Ω through p and a sequence of null geodesics, one through each

point in the sequence, that converges on Ω (‘in the sense that every open

set which intersects Ω intersects eventually all [the converging geodesics]’

[2]); the mapping will preserve the null geodesic character of these curves.

Malament can then argue that the properties of the ‘bad’ set, the converg-

ing geodesics, and the non-converging image sequence imply the existence

of distinct causal curves through p contained in the achronal intersection.

However, an achronal set can contain at a point at most one null curve and

no timelike curves, hence a contradiction, hence the ‘bad’ set is empty.

Since HKM show that in general, a P-homeomorphism preserves timelike

paths and a conformal diffeomorphism is a P-homeomorphism, with M1 we

have a generalization of HKM:

Theorem HKMM: For a general spacetime, the group of homeo-

morphisms of the Path topology is equal to the group of timelike

path-preserving maps is equal to the group of conformal diffeo-

morphisms of the standard topology.

2.4 The Causal Structure Alone Does Not Always Deter-

mine Such Things

As for the question of when a mapping that preserves the causal structure

also preserves continuous timelike paths, Malament proves that if the space-
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time is past and future distinguishing (p and q have the same past and

future iff p = q), then:

Lemma: A one-one, onto mapping, f, between past and future

distinguishing spacetimes, such that the image of the future

(past) of any point is the future (past) of the image of that point

maps continuous timelike curves to continuous timelike curves.

Theorem M2: From M1, such a mapping is a homeomorphism

of the standard topology.

Corollary : By H, such a mapping is a conformal diffeomorphism.

The proof rests on an equivalent characterization of past and future

distinguishability—about every point is an open set such that no future or

past directed timelike curve through p leaves the set but returns to it (thus,

strong causality implies pf distinguishability). This allows one to show,

essentially, that about every point p on a timelike curve, the images of other

arbitrarily close points on the curve must still be arbitrarily close to the

image of p: in one of the ‘good’ sets about p, one would have a point that

contained in its past p and some of the points on the curve; if the image

points were not still close, one would have to have a timelike path connecting

q, p, and the curve points, that left the neighborhood of p only to return to

pass through q.

Malament illustrates the failure of M2 to hold in the case of non past and

future distinguishing spacetimes with a canonical example (see variations

in [5] p 28 and [3] p 193). The 2-d plane is rolled into a cylinder, with

the spacelike direction compact; the metric is conformally Minkowskian at

t = −∞, tips over at t = 0 so that this equator is a closed null geodesic,
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then tips back up at t = ∞. Every point below the equator has every point

above the equator in its future, and vice-versa; the points on the equator

contain all points above in their future and all points below in their past.

Under any map that leaves the bottom half fixed but rigidly rotates about

the cylindar axis all points on and above the equator, preserves the causal

relations while severing every timelike curve passing across the equator. One

can delete lines from the cylinder to obtain similarily pathological examples

that are past or (but not and) future distinguishing.

This example contrasts with the claim that we should regard the causal

structure as most fundamental—the image of a spacetime under such a map-

ping would fail to be physically equivalent. But since the most physically

relevant spacetimes exhibit strong causality, this concern may not be too

severe.
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