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Chapter 1

Introduction

“What does matter consist of?” is one of the most ancient and fundamental ques-

tions. It is more than just a mere curiosity; one hopes that the myriad phenomena

around us and thousands of empirical laws governing them can be reduced to a

few basic constituents and the rules of their interaction. This was the basis of the

determinism of the XVII century – an attitude that claimed that everything was

calculable and predictable. The XX century, with establishing of probabilistic na-

ture of the microscopic world, with discovery of deterministic chaos, and with the

realization of the enormous computational difficulties that may arise in application

of simple theories to practice, has shattered this optimism. Still, there is no doubt

that understanding the primary constituents of matter will shed light on the most

exciting and challenging puzzles of the modern science.

During the last two centuries science has made a lot of progress in this di-

rection. It has been known for more than a century that ordinary matter is made

of atoms. It has also been known since Rutherford’s famous experiment in 1911
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that an atom consists of a heavy nucleus surrounded by light electrons. Further

experiments that followed in 1920-s and 1930-s revealed that nuclei, in their turn,

are comprised of protons and neutrons, two particles similar in mass and strong

interaction properties, but differing in electric charge and magnetic moment. And

finally, vast experimental evidence starting with the hard scattering experiments of

1960-s has convinced the scientific community that nucleons (as well as all other

strongly interacting particles) consist of point-like quarks interacting by means of

gluon exchange, even though quarks have never been observed directly.

The answer to the next important question, how matter is made, i.e. how

the elementary constituents interact strongly with each other, is to be given by

quantum chromodynamics (QCD). Even though the QCD Lagrangian is known, it

is very hard to solve it because of the extreme nonlinearity of the problem1. The

only method which allows model-independent QCD calculations to be made from

first principles, so-called lattice QCD, has only recently produced promising results.

A more practical approach to the problems of physics of strong interactions is to

construct models that emphasize the most important aspects of QCD, and to test

them by confronting them with the data.

Much about the electromagnetic structure of the nucleons can be learned by

probing them with virtual photons in electron-nucleon scattering. In particular, it

1At high momentum transfers the asymptotic freedom of QCD (i.e. weakening of the strong
interaction due to screening of the color charge at Q2 → ∞) allows to solve it perturbatively.
These results are often accurate only to logarithmic corrections and it is not always clear at what
Q2 the asymptotic behavior sets in.
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gives access to electromagnetic form factors of the nucleon (EMFFN). These form

factors not only provide a testing ground for QCD-inspired models, but also are

important in many areas of particle and nuclear physics, including nuclear charge

radii, parity-violating experiments, and many others.

Of the four elastic form factors of the nucleon, the charge form factor of the

neutron Gn
E is perhaps the most intriguing one. If the SU(6) spin-flavor symmetry of

QCD were exact, this quantity would vanish at all momentum transfers. Therefore

the non-zero experimental values of Gn
E are a clear signature of dynamical SU(6)-

breaking effects2, and thus by studying Gn
E we can achieve a better understanding

of spin-dependent interactions between the quarks.

At the same time, Gn
E has proven to be the most elusive form factor to mea-

sure. The reason for that is fourfold: first, since there is no free neutron target,

experiments on neutron form factors inevitably involve model-dependent nuclear

corrections. Second, since neutrons do not carry electric charge, they are much

harder to detect than the protons. Third, time-of-flight momentum measurements

for the neutron are usually less accurate the magnetic spectrometer measurements

for the proton. Fourth, due to its small magnitude, the electric form factor is com-

pletely overshadowed by a much larger contribution from the magnetic form factor

in the cross section, at least at experimentally accessible Q2.

Therefore, the large theoretical demand for the accurate information on Gn
E

2Recently it has been shown [1] that kinematic SU(6) breaking via Melosh rotations can be
important, too. However, the value of Gn

E cannot be explained by relativistic effects alone.
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(especially at high Q2) is far from being satisfied. A number of new-generation

experiments on Gn
E employing spin degrees of freedom are currently underway, re-

cently completed, or expected to run in near future. These experiments, being less

susceptible to the model dependence and various systematic errors than traditional

cross-section measurements, are bringing our knowledge of Gn
E to a new level. The

experiment described here is a part of this experimental program.

The rest of the dissertation is organized as follows: in the next chapter (Chap-

ter 2) we will present the definition and interpretation of the elastic form factors. In

Chapter 3 we will discuss previous measurements of the neutron charge form factor.

As the last preparation for the discussion of the experiment, we introduce the basics

of polarized electron-deuteron scattering in Chapter 4. Chapters 5-10 deal with the

experimental details; Chapter 5 describes the experimental setup, Chapter 6 de-

scribes the software used in the data analysis, and Chapter 7 is devoted to the data

analysis itself and its results. In Chapter 8 we will review various theoretical models

and calculations on the subject. Chapter 9 discusses the implications of our and

other recent experimental results for the electromagnetic structure of the nucleon.

The summary and the outlook are given in the Chapter 10.
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Chapter 2

Basic concepts and definitions

2.1 Nucleon form factors

Let us consider electron-nucleon scattering. Since the electromagnetic interaction

is relatively weak (the electromagnetic coupling constant α¿ 1), it can be treated

perturbatively. In terms of Feynman diagrams, rapid convergence of the perturba-

tion series means that the contribution of the one-virtual-photon-exchange diagram

(see Figure 2.1) dominates1. In this approximation, the invariant matrix element

becomes [2]

M =
4πα

Q2
〈~kfλf |jeµ|~kiλi〉〈~pfsf |jNµ |~pisi〉 (2.1)

where α = 1/137 is the fine structure constant, Q2 = −qµqµ is the four-momentum

transfer squared, ki,f and λi,f are the momentum and helicity of the initial and

the final state of the electron, pi,f and si,f denote the initial and final spin and

1The discrepancy between Gp
E/G

p
M measurements via Rosenbluth separation and with recoil

polarimetry have caused some concern with about validity of this approximation. See also the
footnote on page 157.

5



�������������������������
�������������������������

������������������������������������������������������������������������

����������������������������������������������������������������������������

� � 	 �

	 � �


 �
� �
� ����������

� �

Figure 2.1: One-photon-exchange diagram for electron-nucleon scattering.

momentum of the struck nucleon, and jAµ is the current operator for the particle

A = {e,N}. It is convenient to introduce lepton and nucleon response tensors as

ηAµν = NA〈jAµ jA†
ν 〉 (2.2)

where NA is a constant normalization factor (2m2
e for the electron and 1/(2m2

N) for

the nucleon) and angle brackets denote averaging over the initial states and summing

over the final states.

For the electron the unpolarized current is given by

〈~kfλf |jeµ|~kiλi〉 = ūfγµui. (2.3)

Using (2.3), spinor normalization relations and trace theorems it is straightforward

6



to calculate the leptonic tensor for unobserved helicities to be

ηeµν = 2(kiµkfν + kfµkiν − kikfgµν), (2.4)

where the electron mass has been neglected.

Let us now turn to the electromagnetic current of the nucleon. If the nucleon

were a point-like particle then we would obtain (2.3) for the nucleon current and

eventually the famous Mott formula (2.7) for the scattering cross-section. However,

as indicated by anomalous magnetic moments of the neutron and the proton, the nu-

cleon has additional electromagnetic structure. This structure can be parametrized

in terms of form factors Fi(Q
2) such that

jNµ = eū(~pf )[γµF1 + (κ/2mN)F2iσµνq
ν + qµF3

+ γµγ5F4 + qµγ5F5 ]u(~pi), (2.5)

where κ and mN are the anomalous magnetic moment and the mass of the nucleon,

correspondingly. Parity and current conservation rule out terms with F3, F4 and F5,

and the remaining terms result in the following expression for the electron-nucleon

scattering cross-section:

dσ

dΩ lab
= σMottfrec

[(

F 21 +
κ2Q2

4m2
N

F 22

)

+
Q2

2m2
N

(F1 + κF2)
2tan2

θ

2

]

, (2.6)
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where

σMott =
α2cos2(θ/2)

4E2i sin
4(θ/2)

(2.7)

is the cross-section of scattering from a point-like particle, θ is the scattering angle,

Ei,f is the initial and final energy of the electron, and frec = Ef/Ei is a recoil

factor.

The functions F1(Q
2) and F2(Q

2) are known as Dirac and Pauli form factors of

the nucleon. For practical purposes it is more convenient to use linear combinations

of F1(Q
2) and F2(Q

2) (so called Sachs form factors), which do not give rise to an

interference term in the expression for the cross-section:

GE(Q
2) = F1(Q

2)− τκF2(Q2) (2.8)

GM(Q2) = F1(Q
2) + κF2(Q

2), (2.9)

where τ = Q2/4mN is a kinematic factor. Rewritten in terms of Sachs form factors

formula (2.6) becomes the famous Rosenbluth formula:

dσ

dΩ
= σMottfrec

[

G2E(Q
2) + τG2M(Q2)

1 + τ
+ 2τG2M(Q2)tan2

θ

2

]

. (2.10)
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Finally, one often uses isotopic form factors of the nucleon:

GIS
E,M =

1

2
(Gp

E,M +Gn
E,M) (2.11)

GIV
E,M =

1

2
(Gp

E,M −Gn
E,M), (2.12)

where GIV
E,M and GIS

E,M are the isovector and isoscalar form factors, correspondingly.

2.2 Charge and magnetization densities

In order to understand the physical meaning of the EMFFN, let us consider classical

electromagnetism. For instance, the diffraction pattern from an object with a non-

trivial shape differs from that for a point-like obstacle by a factor which describes

the shape or form of the object (a form-factor). The classical form-factor is just

the Fourier transform of the optical density of the object (one often says that the

diffraction pattern is a spatial Fourier transform of the object).

As we shall presently see, in quantum mechanics there exists a very similar

relation between the charge form factor and the spatial charge density. However,

in the relativistic case, in general there is more than one form factor: for example,

for the nucleons, as we have already seen, there are two. This is due to the purely

relativistic phenomenon of spin. In general, the electromagnetic structure of a spin-j

object has to be described by 2j + 1 form factors associated with it.

To clarify the meaning of the EMFFN let us consider electron-nucleon scatter-

9



ing in the so-called Breit (or “brick wall”) frame, defined by the requirement that

the momenta of the incident and the scattered electron have equal magnitudes and

opposite directions. In this frame, there is no energy transfer and therefore Q2 = q2.

With this, the matrix elements of the electromagnetic current in the Breit frame

simplify to [3]:

〈~q/2, sf |jN0 | − ~q/2, si〉 = 2M GE(q
2)δsf ,si ,

〈~q/2, sf |~jN | − ~q/2, si〉 = 2M GM(q2) χ†
f i~σ × ~qχi, (2.13)

where χi,f are initial and final state spinors of the nucleon. Equations 2.13 can be

used to show that GE is related to a close analog of the classical charge density ρ(~r)

by [4]

ρ(~r) =

∫

d3q

(2π)3
e−i~q~r M

E(~q)
GE(q

2), (2.14)

where E(~q) is the neutron energy in the Breit frame defined by ~q. A similar rela-

tionship can be written for the magnetization density and the magnetic form factor.

One should be cautioned, however, that the interpretation of the charge form

factor of the neutron as a measure of the charge density distribution is non-relativistic.

In reality the physical meaning of the Gn
E is obscured by relativistic effects, because

one needs to boost the charge density (2.14) from the Breit frame to the rest frame of

the neutron, and the boost is interaction-dependent in the instant form formulation.

Some difficulties can be circumvented by using light-cone or point-form formu-

10



Figure 2.2: Nucleon charge and magnetization densities.

lations, where boost generators are kinematical. However, on the fundamental level,

the problem in the interpretation of form factors is due to the fact that EMFFN

are defined via transition matrix elements between states with different momenta,

and therefore are related to transition (rather than rest frame) charge and mag-

netization densities. Kelly [5] has studied various relativistic prescriptions for the

density extraction recently used in the literature. He found that all of them can be

represented in the form:

ρ̃ch(k) = GE(Q
2)(1 + τ)λE (2.15)

µρ̃m(k) = GM(Q2)(1 + τ)λM , (2.16)

where the intrinsic form factors ρ̃(k) are related to the densities by a usual Fourier

11



transform

ρ̃(k) =
2

π

∫ ∞

0

dr r2j0(kr)ρ(r), (2.17)

and k is the intrinsic spatial frequency defined as

k2 =
Q2

1 + τ
. (2.18)

The choice of parameters λE and λM is determined by the model: soliton models

of Ji [6] and Holzwarth [7] use λE = 0 and λM = 1, and the cluster models of

Licht and Pignamenta [8] and that of Mitra and Kumari [9] use λE = λM = 1 and

λE = λM = 2, correspondingly. The form factor data were fitted using complete

sets of functions. Two expansions were considered, Fourier-Bessel expansion (FBE)

and Laguerre-Gaussian expansion (LGE). The paper is focused on the case λE =

λM = 2 (which ensures correct asymptotic behaviour of the fits), but other choices

of parameters were also studied. As expected, it has been found that the results

are practically independent of the choice of the expansion basis. The choice of

parameters λE and λM only affected the details of the density distributions, while

all essential features were independent of the model. The results of this study are

shown in Figure 2.2. The extracted densities are rather “soft”, in contrast to the

results of non-relativistic inversions, which produce an unphysical cusp at the origin.

Suppression of the cusp is a result of a high k constraint ρ(k) . ρ(km)k
−4 to get the

normalization right.
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2.3 Charge radius of the neutron

If one starts with the Fourier integral representation of the neutron charge form

factor

GE(Q
2) =

∫

d3rρ(r)e−i~q~r,

and then expands both sides into a Taylor series around q → 0 (since we are working

in the Breit frame, Q2 = q2 → 0):

GE(Q
2) = GE(0) + Q2

dGE(Q
2)

dQ2

∣

∣

∣

∣

Q2=0

+ ... = Q2
dGE(Q

2)

dQ2

∣

∣

∣

∣

Q2=0

+ ...

e−i~q·~r = 1− i~q · ~r + 1

2
(i~q · ~r)2 + ...

and calculates resulting integrals, it is straightforward to see that the first two terms

on the right hand side vanish (first one due to zero net charge and the second one

due to parity considerations), whereas for the remaining terms one has:

Q2
dGE

dQ2

∣

∣

∣

∣

Q2=0

=

∫

1

2
(iqr)2 cos2 θ ρ(r)d3r = −2π

3
Q2

∫

r4ρ(r)dr = −1

6
Q2r2En,

(2.19)

where r2En is the neutron charge radius r2En =
∫

r2ρ(r)d3r. Cancelling a factor of Q2

and rearranging the terms we have for the neutron charge radius

r2En = −6 dGE

dQ2

∣

∣

∣

∣

Q2=0

. (2.20)
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If one uses Equation 2.9 to express the r2En in terms of Dirac and Pauli form factors,

one gets for Q2 ≈ 0

Gn
E ≈ −

1

6
r2EnQ

2 = F n
1 − κn

Q2

4m2
F n
2 , (2.21)

and further, remembering that F n
2 (0) = 1 and κn = µn, and introducing the radius

r1n associated with the Dirac form factor r21n = −6dF1(Q2)
dQ2

,

r2En = r21n +
3µn

2m2
. (2.22)

The second term in Equation 2.22 is known as the Foldy term and takes its origin

in so-called zitterbewegung (jitter motion) of the nucleon. The value of the Foldy

term (−0.126 fm2 [10]) is very close to the experimental value of the charge radius

(−0.113± 0.005 fm2), which made some theorists believe that Gn
E does not describe

the rest frame charge distribution. However, Isgur [11] has shown that if some

simplifying assumptions are made, this Foldy terms exactly cancels against a term

coming from the Dirac form factor. The discussion whether the Foldy term is

dominating Gn
E or it cancels via Isgur’s cancellation mechanism, is still open.
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Chapter 3

Previous Gn
E experiments

3.1 Rosenbluth separation

One simple way of measuring nucleon form factors is suggested by the Rosenbluth

formula (2.10): by measuring the electron-nucleon scattering cross-section for two

different kinematics with common Q2 one obtains two linear equations for squares

of the form factors. This approach has a simple graphical interpretation, with the

help of so-called reduced cross-section

σR =
dσ

dΩ

ε(1 + τ)

σMott

= G2M(Q2) + (ε/τ)G2E(Q
2),

where ε = [1 + 2(1 + τ) tan2 θe/2]
−1 is the transverse polarization of the virtual

photon. If one plots σR versus ε for a fixed Q2 (and therefore τ), then the slope of

the line is proportional to G2E, while the intercept gives G2M (see Figure 3.1).

This technique can be applied directly to protons by using a hydrogen target.

For the neutron, the simplest target available is deuteron. In the case of quasifree

15
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Figure 3.1: Longitudinal-transverse separation.

scattering the cross-section is, to a good approximation, an incoherent sum of scat-

tering cross-sections from individual nucleons1. The proton contribution has to be

either subtracted or eliminated by experimental means (for example, by making a

coincidence with the knocked-out neutron or an anti -coincidence with the knocked-

out proton), thus giving rise to additional systematic uncertainties.

Several such measurements were done in 1960’s and 1970’s (see [2] for a review),

following the pioneering work by Hofstadter and collaborators [12]. The results are

1A discussion of validity of the impulse approximation with application to polarized electron-
deuteron scattering can be found in 4.2.
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inconclusive and in most of the works the authors had obtained negative values of

(Gn
E)
2 for one or more data points. In 1992 the Rosenbluth approach was again

applied to neutron form factors by Lung et al. [13]. Despite improvements in

the beam technology, their results suffer from very large uncertainties, and for the

higher-Q2 points the measured values of (Gn
E)
2 were again found to be negative.

The reason for failure of the Rosenbluth method for the neutron is unfavorable

error propagation due to the dominance of the Gn
M term in the cross-section. The

difficulties of the method are illustrated in Figure 3.1. Since (Gn
M)2 À (Gn

E)
2 (at

least for experimentally accessible kinematics), the ε/τ(Gn
E)
2 term does not con-

tribute more than a few percent to σR (e.g. about 4% at Q2 = 1 (GeV/c)2). The

slope of the Rosenbluth fit, being almost parallel to the abscissa, receives a very large

error magnification factor (a few percent error in the cross section will translate into

a 200% uncertainty in (Gn
E)
2).

Under these conditions, an exact measurement of the slope of the Rosenbluth

plot requires not only high accuracy of the cross-section measurement for as widely

separated ε as possible, but also a very tight control over contributions from many-

body currents.

A plot of best Rosenbluth results for Gn
E is given in Figure 3.2. For comparison

with other data we will later present in this chapter, a commonly used Galster

parametrization is also plotted.
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Figure 3.2: Best Rosenbluth data for Gn
E. Symbols are: filled squares [14], [15]. The

solid line is the standard Galster fit [16].

3.2 Unpolarized elastic e− d scattering

Since the deuteron is a spin-1 particle, the most general form of conserved current

without parity and time-reversal violating terms involves three form factors: GE

(electric), GQ (quadrupole) and GM (magnetic). By introducing structure functions

A(Q2) and B(Q2) one can bring the expression for the e− d scattering cross-section

into a form resembling the Rosenbluth formula:

dσ

dΩ
= σMottfrec[A(Q

2) +B(Q2)tan2(θe/2)]. (3.1)
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The deuteron structure functions can be expressed in terms of the form factors of

the deuteron, as follows:

A(Q2) = G2E(Q
2) +

8

9
τ 2G2Q(Q

2) +
2

3
τG2M(Q2) (3.2)

B(Q2) =
4

3
τ(1 + τ)2G2M(Q2), (3.3)

where τ is a kinematic factor, τ = Q2/4MD. In the non-relativistic impulse approx-

imation the deuteron quadrupole and charge form factors become directly propor-

tional to the isoscalar charge form factor Gs
E with the proportionality factors CE

and CQ known as ”body form factors” or “structure integrals”:

CE =
∫∞
0

[u2(r) + w2(r)] j0(
1
2
qr)dz (3.4)

CQ = 3
τ
√
2

∫∞
0

[

u(r)w(r)− w2(r)

2
√
2

]

j2(
1
2
qr)dr. (3.5)

These depend on the deuteron S- and D-wave functions u(r) and w(r) and therefore

introduce model-dependence into the method. The procedure for determining

Gn
Efrom the elastic e− d cross-section consists of a few steps:

• determining structure function A(Q2) using Rosenbluth separation

• subtracting from it the small contribution coming from GMn

• calculating the IA value of A(Q2) as Aexp(Q
2)−∆AMEC(Q

2)−∆Arel(Q
2)

• picking an N −N interaction potential and calculating structure integrals
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Figure 3.3: Elastic measurements of Gn
E, (a) – 1960-1980’s data: triangles [16],

diamonds [17], stars [18], circles [19], squares [20], the solid line is the standard
Galster parametrization; (b) – 1990 data of Platchkov et al. [21] extracted with the
Paris potential. Lines are fits to the same data extracted with Paris (solid), RSC
(dotted), Argonne (dash-dotted), Nijmegen (dash-dotted) potentials.

20



• calculating the nucleon isoscalar form factor:

G2IS(Q
2) = A(Q2)/(C2E(Q

2) + C2Q(Q
2))

• choosing a parametrization for GEp and subtracting it from the isoscalar nu-

cleon form factor to get Gn
E.

First elastic measurements ofGn
E were performed in 1960’s atQ2 < 0.2 (GeV/c)2

at SLAC [17] and Orsay [18], [19]. In 1971 the elastic data on Gn
E has been extended

to higher Q2 by a measurement at DESY by Galster et al. [16]. In a later work

by Simon et al. [20] the data were analyzed with the inclusion of the effects from

meson exchange currents and isobar configurations.

The most recent measurement of Gn
E using the above approach was carried

out by Platchkov et al. for Q2 up to 0.7 (GeV/c)2 [21]. The relativistic and MEC

effects for the kinematics covered were estimated to be of order of 10%, and were

corrected for, with the systematic uncertainty due to this correction of about 5%.

These uncertainties resulted in an uncertainty of about 20% for the extracted value

of Gn
E. The results extracted with different N −N interaction potentials are shown

in Figure 3.3(b). The open circles correspond to the Paris potential. For clarity,

for the other potentials only the fits to the extracted data points (not data points

themselves) are shown. As one can see, the model-dependence of the results is of

order of 30− 40%.

21



3.3 Hybrid analysis of the elastic e− d data

The extraction of Gn
E as described in the previous section relies on the charge and

the quadrupole form factors of the deuteron (after removing a small contribution

from the magnetic form factor to the cross section). Recently it has been shown

that of the two form factors the quadrupole one has less sensitivity to two-body

currents and the choice of the N −N potential [22]. Schiavilla and Sick have used

this fact to extract Gn
E using the quadrupole form factor GQ and the polarized

observable t20 (we call their approach a hybrid one since it uses both polarized

and unpolarized data). In their analysis, they first fit the world data on the e − d

elastic cross-section with flexible parameterizations for the deuteron form factors,

and then extract Gn
E by comparing the theoretical predictions of the quadrupole

form factor with the experimental values. The theoretical prediction is the average

of five different theoretical calculations performed with different N −N interaction

potentials. For the proton form factors, the Hoehler parametrization [23] is used,

and Gn
E is taken in the Galster [16] form 2. A deviation of the theoretical prediction

from the experimental data is taken as an indication of deviation of the Gn
E from

the adopted parametrization, and the value of Gn
E is adjusted such that a perfect

agreement between the theoretical and the experimental values of GQ is reached.

The extracted Gn
E values are shown in Figure 3.4. The error bars included

the spread in theoretical predictions on GQ. One can see that Sick and Schiavilla’s

2To be more accurate, they use both Galster and Hoehler parameterizations for Gn
E . However,

in the Q2 range of interest the two are very close to each other.
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data roughly follow the Galster parameterization, although the error bars are fairly

large (since the points are correlated, they really represent an error band rather

than independent errors).
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Figure 3.4: Sick and Schiavilla’s extraction of Gn. The solid line is the standard
Galster parametrization.

3.4 Polarized measurements

To use spin degrees of freedom for determination of Gn
E was first suggested by

Dombey [24] in late 1960’s. The idea is that various polarization observables (es-

pecially beam-target asymmetry and the recoil polarization) in e− d scattering are

sensitive to Gn
E. For instance, in plane wave impulse approximation (PWIA) the
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polarization transfer to the recoil nucleon is given by:

P x
eN = −PB ·

√

2τε(1− ε)
εG2E + τG2M

·GEGM (3.6)

P y
eN = 0 (3.7)

P z
eN = PB ·

τ
√
1− ε2

εG2E + τG2M
G2M , (3.8)

where PB is the beam polarization. A similar set of equations can be written down

for the components of the spin-correlation vector in scattering from a polarized nu-

cleon3. However, it should be mentioned that the formalism of polarization transfer

and polarized target scattering is only identical in one-photon approximation. Two

photon exchange contributions may in general affect the results of the two methods

differently.

Polarized experiments offer several important advantages over traditional cross-

section-based measurements, including reduced susceptibility to experimental sys-

tematic errors (like neutron detector efficiencies, etc.) and lower sensitivity to two-

body currents. Since polarized scattering experiments require high intensity polar-

ized beams in combination with either a polarized target or a recoil polarimeter, the

first such experiments did not occur until early 1990’s, when technological advances

made them possible.

The first recoil polarization measurement of Gn
E was performed in early 1990’s

at MIT-Bates [25] with a neutron polarimeter calibrated at Indiana University Cy-

3Scattering from a polarized deuterium target will be considered in detail in Section 4.
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clotron Facility. Despite low statistical accuracy (due to low 0.8% duty factor of

the accelerator) that experiment was an important demonstration of feasibilty of

the method. Another measurement with this technique was performed at MAMI at

Q2 = 0.15 and Q2 = 0.34 [26]. The most recent polarization transfer Gn
E experiment

was conducted at the Jefferson Lab at Q2 up to 1.45 [27]. These data provide the

most accurate high-Q2 data on Gn
E to date.

Early Gn
E experiments employing the beam-target asymmetry were performed

with the polarized 3He target. In a 3He nucleus, about 86% of the nuclear polar-

ization is carried by a neutron, and therefore it can be used as an effective neutron

target, as originally suggested by Blankleider and Woloshyn [28]. From the exper-

imental point of view, 3He is very convenient (high luminosity and small dilution

afford a very good figure-of-merit). On the other hand, since a 3He nucleus is more

complicated than a deuteron, unfolding nuclear effects becomes a more difficult task.

The analysis of the first measurements with the 3He polarized target neglected

final state interactions and thus resulted in Gn
E values significantly lower than other

polarized data [29],[30]. A later reanalysis of the data of [30] in [31] with inclusion

of the FSI has brought this data point into a better agreement with the results

obtained with other measurements. Another recent reanalysis of PWIA results from

[32] performed by Bermuth et al. [33] has also somewhat improved the agreement

with the phenomenological Galster parametrization which is roughly followed by

other experimental points at this region.

25



Since the polarized deuteron target is used in the experiment presented in this

dissertation, we shall devote the next chapter to explore this method in detail. Only

two measurements have been taken with this method in the past, one of them being

the 1998 run of the present experiment [34], which yielded an accurate measurement

of Gn
E at this kinematics (Q2 = 0.5) at that time. In an earlier experiment at

NIKHEF [35] the technique was successfully tested for the first time at Q2 = 0.21.
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Figure 3.5: Polarized measurements of Gn
E. Recoil polarimetry data: open circles

[27], open square [25] and open stars [26]. Polarized 3He data: filled square [31],
filled circle [33] and filled triangle [29]. Polarized d target: cross-hair [35] and
asterisk [34]. The solid line is the standard Galster parametrization.
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Chapter 4

Experimental technique

4.1 Polarized scattering from a free nucleon

In Section 2.1 we have already considered the case of unpolarized electron-nucleon

scattering. In the polarized case the Rosenbluth cross-section (2.10) is modified to:

(
dσ

dΩ
)pol = (

dσ

dΩ
)unpol(1 + h ~AeN · ~PT ), (4.1)

where h is the beam helicity, ~PT is the target polarization, ~AeN is the beam-target

asymmetry with components

Ax
eN = − 2

√
2Mρ′LTGEGM

ρL(GE)2 + ρT (GM)2
(4.2)

Ay
eN = 0 (4.3)

Az
eN = − ρ′T (GM)2

ρL(GE)2 + ρT (GM)2
, (4.4)
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and ρα, ρ
′
α (α = L, T, LT ) are elements of the virtual photon density matrix

which only depend on the kinematics and the target polarization angles θ∗, φ∗

(see Figure 4.1). As first pointed by Dombey [24], the sensitivity of the asymmetry

(4.2)-(4.4) to the electric form factor can be used for experimental determination of

Gn
E. This sensitivity is maximizied for the case of in-plane target polarization per-

pendicular to the momentum transfer, i.e. φ∗ = 0 and θ∗ = π/2. The beam-target

asymmetry then simplifies to:

AV
en =

−2
√

τ(1 + τ) tan(θe/2) GEGM

(GE)2 + τ [1 + 2(1 + τ) tan2(θe/2)](GM)2
. (4.5)

On the other hand, from the definition (4.1) the asymmetry can be expressed in

terms of cross-sections for different helicities, σ+ (for h = +1) and σ− (for h = −1):

AV
en =

1

PBPT

σ+ − σ−
σ+ + σ−

, (4.6)

where we added beam polarization PB to the denominator to account for possibility

of PB < 100%. In the experiment, the cross-sections σ+,− are proportional to

detector yields N+,−, with proportionality factors that carry little or no helicity

dependence, i.e.

AV
en =

1

PBPT

N+ −N−
N+ +N−

. (4.7)

Equations 4.5 and 4.7 contain all information necessary for experimental determina-

tion of Gn
E by scattering polarized electron beam off a free polarized nucleon target.
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Figure 4.1: Polarized electron-nucleon scattering.

4.2 Deuteron target

The formalism of the previous section is self-sufficient in case of a proton. For the

neutron, however, the problem is the lack of a free neutron target (unbound neutron

decays into a proton, an electron and an anti-neutrino with the lifetime of about

15 minutes). The best surrogate for the neutron target is the deuteron.

In the impulse approximation (i.e. neglecting interactions between the nu-

cleons), the electron-deuteron scattering asymmetry AV
ed is equal to that of a free

neutron, AV
en (up to a correction factor γ due to the D-state admixture). However,

the relationship of the spin-dependent scattering cross-section to the asymmetry

becomes more complicated, since deuteron possesses tensor asymmetry [36]:

(
dσ

dΩ
)pol = (

dσ

dΩ
)unpol

[

1 + hAe + P VAV
d + P TAT

d + h(P VAV
ed + P TAT

ed)
]

, (4.8)

where PV (T ) is the vector (tensor) polarization, Ae is the single-spin beam asymme-
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try, AT
d is the single-spin tensor target asymmetry, and AT

ed is the tensor beam-target

asymmetry. Fortunately, in the experiment, the events are normally sampled sym-

metrically in the azimuthal angle, and for this case the contributions from Ae, A
V
d

and AT
ed vanish. The remaining AT

d term is suppressed by low tensor polarization of

the deuteron.

Since the deuteron is a weakly bound system, the impulse approximation is a

reasonable first guess. However, for a precise measurement of Gn
E one needs to take

into account reaction mechanisms listed below.

Meson exchange currents (MEC) are due to the fact that the nucleons in

the deuteron are interacting by meson exchange. Thus, apart from the quasifree

scattering amplitude, there will be contributions from direct coupling to the elec-

tromagnetic current of the exchanged meson. A few basic MEC diagrams are given

on the Fig.4.2.

Isobar currents (IC) arise from intermediate excitation of nucleon resonances

and from the resonance component of the deuteron wavefunction. Unlike the free

case, the scattering from a resonant state cannot be discriminated versus scattering

from the ground-state configuration since the pion, emitted in the resonance decay

may be reabsorbed by the other nucleon.

Final state interactions (FSI) may be important since the final state is a system

of two interacting nucleons rather than two plane waves. To the leading order FSI
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a) b) c)

Figure 4.2: Meson exchange currents: a) contact diagram, b) pion-in-flight diagram,
c) pair diagram.

b)a)

Figure 4.3: Isobar currents: a) coupling to the resonance component of the deuteron
wavefunction, b) excitation of the struck nucleon to an intermediate resonance state.
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can be considered as rescattering of the struck nucleon by the residual nucleus (or

nucleon, in case of the deuteron).

For this experiment relativistic calculations including all these contributions

were performed by H. Arenhövel [37] following formalism developed by him and other

collaborators in [36], [38], [39]. The calculations were carried out over a kinematic

grid representing our experimental acceptance (see Section 6.5.2) for six different

models: PWBA, N + MEC, N + MEC + IC, N + REL, PWBA + REL, N + MEC

+ IC + REL, where PWBA means plane wave Born (or impulse) approximation,

N = PWBA + FSI, and REL means “relativistic effects”.

In Figure 4.4 one can see the sensitivity of the AV
ed to the charge form fac-

tor of the neutron (a) and interaction effects and relativistic corrections (b). The

asymmetry is plotted versus the angle between the n − p relative momentum and

the momentum transfer ~q in the deuteron center-of-mass frame, θcmnp . The case of

θcmnp = 180◦ corresponds to the quasifree kinematics, i.e. the struck neutron emitted

along the direction of the momentum transfer. The vertical lines in the Figure 4.4(b)

roughly correspond to the experimental acceptance.

As one can see, at the quasifree kinematics the vector beam-target asymmetry

is both sensitive to Gn
E and insensitive to many-body currents and relativistic effects,

which makes it ideal for measuring Gn
E. In order to account for the variation of AV

ed

within the kinematical acceptance, it is necessary to perform acceptance averaging

of the theoretical calculations using Monte Carlo simulations (see Section 6.5).
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Figure 4.4: The vector beam-target asymmetry AV
ed versus n − p breakup angle in

the deuteron center-of-mass system θcmnp . The case θcmnp = 180◦ corresponds to the

quasifree kinematics.
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Chapter 5

Experimental setup

The experimental setup of the 2001 run of E93-026 was very similar to that of

the 1998 run, described in references [40] and [41]. The key elements of the setup

were the same: the High Momentum Spectrometer of Hall C, the UVa polarized

target, the custom built neutron detector and data acquisition (DAQ) electronics.

Important hardware changes since 1998 included:

• redesign of the neutron detector (added new scintillators, changed the layout,

added vertical sticks for position calibration)

• minor upgrades of the target

• removal of the chicane magnet BZ2 that was causing high background in 1998

• DAQ system was reconfigured to take data in an open-trigger mode.

In the remainder of this chapter we will briefly review the main ingredients of the

experimental apparatus.
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5.1 Polarized electron beam

In this section we will describe the elements responsible for producing, accelerating

and steering the polarized electron beam as well as basic devices used for measuring

its properties.

5.1.1 Accelerator

The Jefferson Lab accelerator was designed to provide a highly polarized continuous

wave electron beam to three experimental halls simultaneously. Polarized electrons

are produced by photo-emission from a strained gallium arsenide cathode. To ensure

simultaneous delivery of the beam to the three physics halls, the photo-cathode is

illuminated by three separate laser systems. The electrons emitted by the three

lasers operating at 499 MHz pulse frequency are combined in a 1497 MHz beam,

from which beams to individual halls are extracted after acceleration.

The initial acceleration to 45 MeV takes places in the injector area. The

orientation of the electron spin in the injector (“injection angle”) determines the

degree of longitudinality of the electron polarization after spin precession in magnetic

elements of arcs and beamlines of the experimental halls. For each configuration of

polarization and energy in the three halls the injection angle needs to be calculated

separately [42].

From the injector the beam is delivered to the north linac, where it is acceler-
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Figure 5.1: Schematic view of the JLab accelerator (Figure by J. Grames).

ated in radio frequency (RF) cavities by 400 MeV 1. Then the beam goes through

the east recirculation arc to the south linac to be further accelerated by 400 MeV.

Finally, the beam reaches the switchyard, where it can be either extracted to any

of the three experimental halls or steered through the west arc for another pass of

acceleration (up to five passes in total).

The helicity of the beam was pseudo-randomly flipped with the frequency of

30 Hz. The beam current asymmetry (BCA) was minimized with the use of an

asymmetry feedback system. The BCA was typically below 1000 ppm. Other basic

properties of the CEBAF beam delivered to the E93-026 are listed in Table 5.1.

1This is the nominal value. For E93-026 the linac gain was set to 569 MeV.
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Table 5.1: Basic beam properties (for E93-026)

energy 3481 MeV
relative energy spread < 10−4

current 100 nA
polarization 75%
repetition rate 499 MHz/hall
bunch time width 330 fsec
transverse size 100 µm
emittance < 10−9 m rad

5.1.2 Hall C beamline

Superharps

A superharp (a wire scanner) is a device which provides a beam profile measure-

ment with a high precision (∼ 10 µm). It consists of a movable frame, two vertical

wires and one horizontal wire. The signals from the wires in combination with the

position encoder readouts provide sufficient information for determination of the

beam profile. Superharps permit the measurement of the beam energy by using the

relation between the field integral (calculated using the magnetic field map) and the

deflection angle (measured with superharps). The accuracy of this method is 10−4

for relative energy measurements and 10−3 for absolute ones. Detailed information

on Hall C superharps can be found in references [43] and [44].

Beam position monitors

The beam position and incident angle were determined by a series of beam position

monitors (BPMs) located in Hall C arc and beamline. A BPM consists of four

antennas rotated by 45◦ with respect to the vertical direction. When the beam
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Figure 5.2: Hall C beamline elements [40].

passes through the beamline, each of the antennas picks up the beam’s fundamental

frequency. The digitized signals from the antennas are then used to calculate the

center of gravity in the BPM coordinates, from which the relative beam position in

the beamline is calculated. The absolute position of BPMs was calibrated against

survey measurements. Details on BPM operation can be found in [45].

The beam position near the target was determined by a secondary emission

monitor (SEM) [41]. SEM readings were also used to calibrate the beam position

versus the slow raster current. The SEM and the BPMs provided an accuracy of

about 1 mm.

Beam current monitors

Beam current and total charge passing through the target were measured with

the use of beam current monitors (BCMs). Hall C is equipped with two BCMs.

The BCMs are RF cavities positioned coaxially with the beamline. The RF cavities

serve as cylindrical waveguides whose transverse magnetic mode TM10 is excited by
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the beam’s fundamental frequency (1497 MHz). The signal is then downconverted

in frequency and sent to an rms-DC converter whose output is proportional to the

beam current.

During data taking, the performance of BCM1 was unstable, and thus all

calculations involving beam charge were based on readings from BCM2. Both BCMs

read 10−15 nA above zero in the absence of the beam. A software cut on the beam

current was used to prevent overestimation of the charge passing through the target

due to these zero readings (see Section 6.2 for details). The calibration of BCMs was

performed using the injector Faraday cup. The accuracy of the BCMs was estimated

to be 5% [46].

Møller polarimeter

The Hall C Møller polarimeter [47] provided high-precision measurement of the

beam polarization. A schematic view of the polarimeter is shown in Figure 5.3.

system
laser

1.0m 7.85m

solenoid

collimator

Q1

beam

detectors

Q2

3.20m

target

Figure 5.3: Layout of the Hall C Møller polarimeter [47].

The 10µ m iron target was polarized to 8% with a 4 T superconducting solenoid. A

system of movable collimators in combination with a two-quadrupole optical system
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was used to suppress Mott background, providing a signal-to-noise ratio of 1000:1.

Recoil and scattered electrons were detected in two lead-glass counters. A statistical

accuracy of about 1% could be obtained in about 20 minutes of measurement time.

5.1.3 Raster magnets

The electron beam was rastered over a 2.2 cm diameter with the Hall C raster

system. The purpose of beam rastering was to ensure uniform distribution of target

polarization over the target face to improve the accuracy of the NMR measurement.

The raster system consists of the slow raster and the fast raster. Each raster sub-

system consists of two magnets driving the beam in x and y directions, a power

resonance loop and a raster pattern generator. The fast raster smeared the beam

over a spot of dimensions of 1 mm×1 mm while the slow raster generated a pseudo-

spiral pattern with the radius of 1.1 cm (see Figure). The amplitude of slow raster

currents was modulated at 0.95 Hz. To minimize induced experimental asymmetries

the frequency of the modulation was synchronized with the beam helicity flip. The

shape of the amplitude modulation was chosen to approximate the A(t) =
√

R20 − αt

dependence for which the beam charge deposited at raster radius r approximately

constant (see Figure 5.4). The details of the Hall C raster system can be found in

references [40] and [48].

40



(a) (b)

Figure 5.4: Rastered beam: (a) distribution over the target face, (b) radial profile.
The straight line fitted to the radial distribution shows that the latter is approxi-
mately linear, i.e. the beam charge deposited per unit area is roughly constant.

5.1.4 Chicane magnets

The polarized target requires a 5 Tesla magnetic field for its normal operation. This

field bends incident electrons down. To ensure normal incidence of the electron

beam onto the target surface a system of two chicane magnets was used (see Figure

5.5). A detailed description of the chicane system is given in [49]2.

5.2 Hall C High Momentum Spectrometer

The High Momentum Spectrometer (HMS) is a standard piece of equipment of

TJNAF Hall C. The spectrometer can be rotated about the target, providing a wide

2This description includes the BZ2 magnet which was not used in the 2001 run of E93-026.
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Figure 5.5: Chicane magnets. The dimensions and angles shown on the picture are:
l1 = 4.84 m, l2 = 13.87 m, φ0 = 2.3◦, φ1 = 0.8◦, φ2 = 3.1.

range of measurable scattering angles. The basic subsystems of the HMS include

the collimator system, the magneto-optical system and the detector package located

in a shielded hut.

Two different collimators can be installed in the HMS entrance: the octagonal

pion collimator was used for normal data taking, while the sieve slit was used for

spectrometer optics checkout. Three quadrupole magnets and one dipole magnet

comprised the magneto-optical system of the spectrometer. Quadrupole magnets Q1

and Q3 focused rays in the dispersive direction, Q2 focused transverse rays and the

dipole magnet provided a vertical bend of 25◦ into the detector hut. The detector

package consisted of two drift chambers for tracking, two sets of x-y hodoscopes for

timing and forming the primary trigger, a gas Čerenkov detector and a lead glass
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Figure 5.6: Hall C High Momentum Spectrometer: (a) – entire spectrometer, (b) –
contents of the detector hut. Note that the calorimeter is tilted in order to prevent
loss of particles in gaps between the blocks.

shower counter for particle identification. The basic characteristics of the HMS are

listed in Table 5.2.
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Table 5.2: HMS characteristics.

Maximum central momentum 7.4 GeV/c
Momentum resolution 0.04%
Solid angle acceptance 5.9 msr
Scattering angle resolution 0.8 mrad
Out-of-plane angle resolution 1.0 mrad
Extended target acceptance 15 cm
Vertex reconstruction accuracy 5 mm∗
∗ Minimum value. In general momentum dependent.

5.3 Polarized target

The UVa cryogenic polarized target has been used in SLAC experiments E143, E155

and E155x prior to being used in E93-026 and is documented in references [40],

[41], [50], [51]. The target was polarized using the dynamic nuclear polarization

(DNP) mechanism (see Appendix A.1). This technique requires the target material

(15ND3) to be placed at a low temperature (about 1K) in a strong magnetic field

(5 Tesla). To transfer the electron polarization to the nuclei, the material must be

additionally radiated by the microwave power. Further, the target polarization must

be continuously monitored. The main components of the target system are shown

in Figure 5.7.

In the remainder of the section we will describe each of these components.

5.3.1 Magnet

The 5 Tesla superconducting magnet was provided by Oxford Instruments. It con-

sisted of two sets of coils, approximately 50 cm in outer diameter and approximately
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Figure 5.7: Main components of the UVa polarized target.

8 cm apart at the core (Figure 5.8). The shape of magnet was such that its parts

did not interfere with the acceptance of the spectrometer and allowed taking data

in two orientations, perpendicular and parallel to the magnetic field. The magnet

produced a 5 T magnetic field uniform to 1× 10−4 over the target cell volume and

stable to 1× 10−6 per hour.

5.3.2 Refrigerator

The 4He evaporation refrigerator was installed vertically along the center of the

magnet. Liquid helium for refrigerator operation was supplied from the magnet
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Figure 5.8: Target cryostat and magnet.

dewar through a short transfer line into a separator. The function of the separator

was to separate the liquid and the gas phases of helium and feed the liquid into

the target chamber either directly or through a system of heat exchangers. Three

mechanical pumps removed up to 1.5−2 Watts of heat deposited in target by beam

and microwave radiation.
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5.3.3 Insert

The insert carrying targets cells, microwave guides and horns, NMR instrumenta-

tion, anneal heater and temperature sensors was set along the central bore of the

target (see Figure 5.9). The targets were two 15ND3 targets (“top” and “bottom”),

carbon, empty cup and two holes, 8 mm and 10 mm in diameter. A stepper motor

was used to move the insert in the vertical direction so that any target could be

placed in the beam path. Having two 15ND3 targets in the same insert reduced ex-

periment downtime due to restoration of material polarization properties after beam

radiation damage (“target anneal”). The hole targets were used for target align-

ment. Data taken with empty and carbon targets was used to calibrate inclusive

simulations (see Section 6.4).

5.3.4 Microwaves

The microwave system provided photons driving the polarization-enhancing transi-

tions. The microwave power was generated by an Extended Interaction Oscillator

(EIO) tube at frequencies around the electron spin resonance frequency (140 GHz)

and could be tuned in a range of 2 GHz. The exact choice of the frequency was

determined by the desired sign of the polarization of the material. The microwaves

were delivered from the generator to the microwave horn in the target insert through

a waveguide. A horn switch allowed one to choose which of the two ND3 targets to

polarize. A change in the helium boil-off was used to estimate that about 1 Watt of
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Figure 5.9: Target ladder carrying target cells. The targets are (from top to bottom):
top 15ND3 (the purple spot is due to the radiation damage), 10 mm hole, 8 mm
hole (partially obscured by the microwave horn of the bottom 15ND3 cell), bottom
15ND3, carbon and empty.

microwave out of 20 Watts generated reached the target cell.

5.3.5 NMR and data acquisition

The target polarization was continuously measured by the NMR technique (see

Appendix A.2). The NMR system used two copper-nickel coils, one for the bottom

target and one for the top target. The signal from coils was sent through a λ/2 cable

to the Liverpool Q-meter. Calibration constants for the NMR signal were provided
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by a series of thermal equilibrium (TE) measurements. A target data acquisition

computer used Labview interface to display online values of the target polarization as

well as other critical parameters of the target system (temperature, helium pressure,

microwave frequency and power etc.). The online target polarizations served mostly

for data taking guidance (the figure of merit of the experiment dictates a minimum

polarization below which targets should be switched or annealed) and for a quick

online analysis. The actual target polarization numbers used in calculation of the

AV
ed were obtained in a full offline analysis (see Section 7.3 for details).

5.3.6 Target material

As the source of polarized deuterons frozen deuterated ammonia was chosen. This

choice was determined by high maximum polarization (up to 40%) and high radia-

tion damage resistance of this material. Additionally, 15ND3, than the usual 14ND3

ammonia, was used, since in 14N both unpaired nucleon spins contribute to the

experimental asymmetries, whereas in 15N only the proton asymmetry is contami-

nated and needs a correction. The purities of the target material were 98% for the

nitrogen and 99% for the deuterium.

The target material was fabricated by shattering frozen ammonia and sifting

the crystals to obtain the fragments of the desired size (1-3 mm). Free paramag-

netic radicals needed by dynamic nuclear polarization were introduced by means

of irradiation in an electron beam. Of the seven batches of material used during
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Table 5.3: Average polarizations and total radiation doses for various targets.

positive polarization negative polarization
〈Pt〉, % Qtot, C 〈Pt〉, % Qtot, C

stick 3 top +23.7 2.39 · 10−3 -21.3 1.25 · 10−2
stick 3 bottom +21.5 1.73 · 10−2 -19.3 1.94 · 10−2
stick 4 top +28.7 9.77 · 10−3 -24.4 1.90 · 10−2
stick 4 bottom +28.1 1.60 · 10−2 -24.2 1.81 · 10−2

the experiment, two were obtained by in situ cold (1.5 K) irradiation while the re-

maining five were “tempered” (i.e. let warm until disappearance of the purple color

created by irradiation). It was found that the “tempered” loads of the material had

higher average polarization. [52].

Average polarization breakup by cell and material load is given in Table 5.3.

All four material batches given in the table have been prepared by “tempering”.

The overall average was +24.9% for positive polarization and -22.4% for the negative

one. An average radiation dose between anneals was about 200 × 10−14 electrons

(0.32 mC), which corresponds to about 9 hours of the beam time with the nominal

current (100 nA). A typical anneal took about 1 hour and the temperatures were

about 100 K. The details on the target material performance and preparation can

be found in [52] and [53].

5.4 Neutron detector

The neutron detector was assembled from plastic scintillators arranged in vertical

planes. The design of the neutron detector was determined by optimizing the figure-
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of-merit (FOM) within experimental constraints (number of available scintillators

and slots for neutron detector signals). The simulation for optimizing the neutron

detector FOM used detector efficiencies calculated by KSUVAX program and verti-

cal distributions generated by the customized version of MCEEP (see Section 6.5).

The detector layout as determined from these simulations is shown in Figure 5.10

and described below.

5.4.1 Configuration and position

The front two layers consisted of 1 cm thick scintillators (called paddles) for tagging

charged particles. The bulk of the neutron detector was made up by three kinds

of scintillators called bars (see Table 5.5(a)). The placement of bars was dictated

by considerations of rates. Front planes and top counters tend to have higher rate,

therefore they were filled with narrower bars. To improve the detection and iden-

tification of protons, the first paddle plane and the first bar plane were extended

vertically. In addition to paddles and bars, two plastic scintillators (called sticks)

were included in the detector between the third and fourth bar planes for calibrat-

ing the horizontal position. A detailed description of the neutron detector layout is

given in Table 5.5(b).

Each scintillator had a photomultiplier tube (PMT) attached to each end.

The scintillator and the PMTs were connected through BC-800 lightguides. The

mean of the left and right PMT TDC signals provided the time of the hit while
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Figure 5.10: The neutron detector.

the difference was used for estimating the horizontal hit position. The two types of

PMT tubes used were 2 inch Phillips 2262 (paddles and 10 cm bars) and Hamamatsu

R1250 (15 cm bars). The scintillators with the attached PMTs were held by frames

mounted on a movable platform. From the direction of target the neutron detector

was protected from low-energy background by a lead shielding (with total lead

thickness of 25 mm before counters 1-14 in paddle plane 1 and 15 mm before counters

15-27, counting from the bottom). Protection from the background coming from the

beamline was provided by concrete walls built around the neutron detector.
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Table 5.4: Neutron detector scintillators (a) and their layout (b).

type material cross section length phototube qty
paddles BC-408 11 cm× 1 cm 160 cm Phillips 2262 44
10 cm bars BC-408 10 cm× 10 cm 160 cm Phillips 2262 48
15 cm bars BC-408 trapezoid∗ 160 cm Hamamatsu R1250 28
20 cm bars BC-408 trapezoid∗∗ 160 cm Hamamatsu R1250 28
sticks BC-408 2 cm× 2 cm 200 cm Phillips 2262 2

∗Top width 12 cm, bottom width 15.4 cm, height 15 cm.
∗∗Top width 7.2 cm, bottom width 11.4 cm, height 20 cm.

plane type of counters # of counters packing∗ height
1 paddles 27 0.5 cm overlap 61.2 cm
2 paddles 17 0.5 cm overlap 61.2 cm
3 10 cm bars 26 0.6 cm 66.7 cm
4 10 cm bars 16 0.6 cm 67.7 cm
5 20 cm bars 18 0.6 cm 65.7 cm
6 10 cm & 15 cm bars 10+4 0.6 cm∗∗ 73.8 cm
7 15 cm bars 12 0.6 cm 66.6 cm
8 15 cm bars 12 0.6 cm 66.6 cm

∗ Vertical distance between adjacent counters.
∗∗ 1.6 cm between the 15 cm and 20 cm bars.

The neutron detector was positioned so that the momentum transfer vector

pointed approximately into its center. That allowed to emphasize quasielastic events

and improve the dilution factor. The front plane of the detector was placed at the

distance of 595 cm from the target to allow a comfortable time-of-flight separation

of 8 nanoseconds between gammas from delta electroproduction and nucleons.
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5.4.2 Gain monitoring

It is possible for the gains of the PMTs to change during the experiment. They may

drift over a long period of time or they may sag due to high rates in the detector.

It is therefore desirable to monitor gains of PMTs. The experiment E93-026 used a

laser pulser for that purpose.

The nitrogen laser was located in a specially designated room in the counting

house. The 337 nm UV light generated by the laser was transformed by the scin-

tillator radiator into visible blue light (λ ∼ 400 nm). This light was transported

by an 80 m long 1 mm diameter silica fiber to the primary distribution box in the

experimental hall, where the signal was split 1:25. Outputs from this box were con-

nected to a 1:64 splitter via a 10 m long 1 mm diameter silica fiber. Outputs from

the splitter were then sent to both ends of the bars. The light output was monitored

by a PIN diode.

By comparing the ADC of the laser signal to its known intensity (300 µJ per

pulse) it is possible to monitor photomultiplier gains and perform energy calibrations

of the neutron detector.

The laser pulser logic for E93-026 is described in the next section. The details

on the design and implementation of the Hall C gain monitoring system can be

found in [54].
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5.4.3 Gain matching

The gains of bar PMTs were matched using cosmics data. A cosmics trigger was

defined as (OR of top detectors) AND (OR of bottom detectors). Additionally, in

the offline analysis the vertical acceptance was restricted by requiring hits in four

consecutive bars. The gain matching procedure consisted of taking cosmics data at

three different high voltage (HV) settings for each PMT and then fitting the cosmics

peak versus HV. The new HV was chosen such that the cosmics peak was observed

in ADC channel 1100± 100.

The paddles were gain matched using the beam. The bottom part of the

detector was calibrated with the target field turned off because otherwise it does

not have enough statistics. The proton peak was placed in ADC channel 1200±100.

The details of the gain matching procedure can be found in [55].

The thresholds were set to 45 mV for bars and 60 mV for paddles. These

values were obtained by examination of ADC spectra (they were chosen so that the

low energy background did not exceed the height of the proton peak).

5.5 Electronics and data acquisition

In this section we will consider the data acquisition system of the experiment. We

will start by overviewing the electronics for various components of the experimental

setup. Then we will describe how the signals from these components are combined
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together to form triggers. The section will be concluded with a brief description of

the event building procedure.

5.5.1 Electronics

HMS electronics

The HMS logic was a standard one (see [56] for a detailed description). The electron

trigger was fired by hodoscopes (a hit in 3 of 4 planes was required for that). There

was no hardware pion rejection. The standard software cut required three or more

Čerenkov photoelectrons. The signal from the shower counter was not used.

Neutron detector electronics

The neutron detector electronics setup is shown in Figure 5.12. The PMT signals

were amplified by ×10 Phillips 776 amplifiers. The amplifiers are 16 channel units

with individual offset adjustments and two outputs. The offsets were set to a neg-

ative value of 1-3 mV. It has been experimentally confirmed that inclusion of these

amplifiers did not degrade the timing resolution.

The linear signals from the amplifiers were sent to the counting house elec-

tronics room where they were split 2/3 and 1/3. The 1/3 signal was sent to ADCs

through a delay unit while the 1/3 signal was fed to LeCroy leading edge discrim-

inators. One of the two outputs of the discriminator went to a custom built logic

delay unit and then further to scalers and TDCs. The other output of the discrim-
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Figure 5.11: HMS trigger electronics. SCIN and STOF are elementary electron
triggers formed by hodoscope signals. ELLO, ELHI and ELREAL are advanced
electron triggers formed from SCIN, STOF, pion rejection and calorimeter signals.
In E93-026 only SCIN electron trigger was used.

inator was sent to a LeCroy 4516 logic unit where coincidence between PMT pairs

was formed. The OR output of the LeCroy 4516 module was fired whenever there

was a coincidence in one (or more) out of 16 pairs of PMTs. The signal from the

OR output supplied as input to a JLab custom built coincidence module to form a

coincidence with the HMS PRETRIG (see the next section for data acquisition and
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Figure 5.12: Neutron detector electronics. “PP” means “Patch Panel”, “S” stands
for “splitter”. Multiple identical elements on the drawing are denoted with a tilted
bar with a number of elements below.

trigger details).

The cosmics triggers were formed by signals from the top and bottom detectors

of each plane. The signals were OR’d separately for top and bottom detectors. A

Level 1 cosmics trigger was formed by an OR between these two signals, while an

AND resulted in a Level 2 cosmics trigger.
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Laser electronics

The laser trigger was formed by a coincidence between a photo diode and a photo-

tube (see Figure 5.13).

LIN
FAN S

M11

N11

ADC

21,1,4(1) DISC TDC

DISC

21,1,11(3) 2/2

PIN diode

DISC
Laser PM

S: Splitter
21,1,6(4)

LASER
(to 8LM)

Figure 5.13: Laser trigger

Scalers

There were three different scaler types used in this experiment: asynchronous scaler,

helicity scaler and event scaler.

Asynchronous scalers were mostly used for counting single rates of the de-

tectors. They were read out every two seconds and were not synchronized to the

helicity flip frequency (thus the name asynchronous). The singles rates from the

scalers were displayed online using the scaler server and a Tcl graphic user interface

(GUI), which allowed one to detect phototube problems in a timely manner.

There were three helicity gated scalers: h+ for positive helicity, h- for negative

helicity and hboth for both helicity states (for consistency check). These scalers
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Figure 5.14: Helicity scaler electronics. SclStr is the scaler clock signal issued by
the helicity circuit during the PHT.

were generated during each period of helicity transition (PHT) by a signal from

the helicity electronics. Helicity gated scalers kept track of charge and dead time

separately for the two different helicity states for a proper normalization of the event

counts.

The event by event scaler was read out each event (except for scaler events)

and counted only clock and charge.

5.5.2 Triggers and events

In the 2001 run of E93-026 the data was taken in an open trigger mode. The

neutron detector signals were read out and digitized for each HMS trigger, and all

coincidences were made in software. Hardware coincidence electronics only served

as a backup in case of failure of the data acquisition system to run in a buffered

mode (which was necessary for open-trigger running). Since the buffered mode

running was successful, the hardware coincidence triggers were never used during

the experiment.

For a typical beam current of 100 nA the HMS pretrigger rate was about 400 Hz

60



with a computer dead-time of 4.5 %. The electronics dead-time was negligible (see

Subsection 7.7.3).

Trigger logic

Pretriggers3 and triggers were formed by two Octal Logic Matrix elements (see

Figure 5.15) based on signals from experimental subsystems (HMS and neutron

detector electronics) and DAQ signals generated by the Trigger Supervisor (TS).

The DAQ signals are GO (indicates active DAQ system), EN1 (physics triggers

enabled after taking pedestals) and BUSY (DAQ is processing a trigger and is not

open to any other triggers).

In addition to the two physics triggers used in this experiment (hms and cos-

mics), there was a number of auxiliary triggers generated by DAQ, e.g. pedestal

triggers generated in the beginning of each runs to determine ADC pedestals. 4

A pretrigger was fired by a signal from electronics of the relevant subsystem

if the following conditions were fulfilled:

1. DAQ was active (GO signal high)

2. pedestals have already been taken (EN1 signal high)5

3. helicity transition is not occurring (PHT signal low).

3The difference between pretriggers and triggers is due to the busy status of DAQ only. A
pretrigger makes a trigger if the BUSY signal is not present

4Other trigger types, such as laser, sos, coin (coincidence between SOS and HMS) or e*B
(coincidence between HMS and the neutron detector) were not used in the experiment and will
not be discussed here.

5For a pedestal pretrigger the case must be exactly the opposite, i.e. EN1 has to be low.
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Table 5.5: Outputs of 8LM #1 and #2.

8LM #1 output Signal Logic
Q0 HMS-pretrigger HMS&EN1&GO&(!PHT)
Q1 SOS-pretrigger SOS&EN1&GO&(!PHT)
Q2 COIN-pretrigger HMS&SOS&EN1&GO&(!PHT)
Q3 PED-pretrigger PED&GO&(!EN1)
Q4 HMS-trigger HMS&EN1&GO&(!PHT)&(!BUSY)
Q5 SOS-trigger SOS&EN1&GO&(!PHT)&(!BUSY)
Q6 COIN-trigger HMS&SOS&EN1&GO&(!PHT)&(!BUSY )
Q7 PED-trigger PED&GO&(!EN1)&(!BUSY)

8LM output #2 Signal Logic
Q0 e?B-pretrigger e?B&EN1&GO&(!PHT)
Q1 LASER-pretrigger LASER&EN1&GO&(!PHT)
Q2 COSMICS-pretrigger COSMICS&EN1&GO&(!PHT)
Q3 e?B-trigger e?B&EN1&GO&(!PHT)&(!BUSY)
Q4 LASER-trigger LASER&EN1&GO&(!PHT)&(!BUSY)
Q5 COSMICS-trigger COSMICS&EN1&GO&(!PHT)&(!BUSY)
Q6 SCALER-trigger SCALER&EN1&GO&(PHT)&
Q7 — —
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Figure 5.15: Trigger setup.

Forming a trigger required fulfilling the same conditions plus DAQ not being busy

processing the previous signal (BUSY signal low).

The outputs of the 8LM modules were fed to the TS. The TS was used to

determine the trigger configuration (enabled triggers and prescale factors) depending

on the run type (main, cosmics, hms only or scalers). Trigger configurations for this

experiment are shown in Table 5.6.

Table 5.6: TS input and configuration. Enabled triggers are indicated with checks.

TS input Trigger main cosmics hms scalers
1 HMS

√ √ √
2 SOS
3 COIN
4 e?B

√
5 LASER

√ √
6 COSMICS

√
7 —
8 PED

√ √ √
9-12 —
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EPICS

The important experimental quantities (magnet currents, target polarization etc.)

were monitored by the EPICS (for Experimental Physics and Industrial Control

Systems) system. The DAQ queried the EPICS database for these values, formed

an EPICS event and injected the event into the data stream. This occurred on two

time scales depending on expected stability of queried variables: each 2 seconds for

“fast” EPICS variables and each 30 seconds for “slow” EPICS variables.

Event formation

The DAQ system was controlled by CODA software [57]. When TS accepted a

trigger, it sent a signal to read-out controllers (ROCs) which caused readout of ADCs

and TDCs. The ADC and TDC data were collected by ROCs and stored in a buffer,

from where they later forwarded to the Event Builder (EB). The EB assembled the

event fragments together and synchronized them by checking their numbers. In case

of a mismatch an error flag was inserted into the data stream, which allowed the

analysis software to skip bad synchronization events (see Section 6.2). Finally, the

event was written to a hard drive. A background process copied completed runs to

a tape.
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Chapter 6

Analysis software

This chapter describes software tools used in data analysis. It starts with an

overview of the software components and their interaction with each other. The next

section contains a description of the data-stream preprocessor (syncfilter). Then we

give an overview of the event analyzer1, focusing mainly on HMS and neutron de-

tector event reconstruction. The chapter is concluded with two sections devoted to

inclusive and coincidence simulation packages.

6.1 Overview

The interaction of the software analysis tools with each other is shown in Figure 6.1.

The CODA data files are analyzed with the event analyzer. In order to remove

synchronization errors from the data, the CODA file is piped through the syncfilter.

Additionally, syncfilter reports provide dead-time corrected charge for both helici-

ties. The event analyzer writes reconstructed events into a PAW-compatible ntuple

1Terms event analyzer (or simply analyzer) and analysis engine (or simply engine) refer to the
same code.
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file. The experimental asymmetries are calculated by the cut processor, whose func-

tion is to count quasi-elastic neutron events for both helicities from the ntuples,

calculate run-by-run asymmetries and then asymmetry averages (by target mate-

rial, beam and target polarization sign etc.). Calculating asymmetries requires the

knowledge of the dilution factor, which is supplied by the coincidence Monte Carlo.

The packing fraction for the dilution factor calculation is obtained using inclusive

simulations.

6.2 Syncfilter

Historically, a need for a data stream preprocessor came about due to the FastBus

synchronization problem (hence the name syncfilter). Later, a number of other

issues, such as non-zero BCM readings, analysis crashes due to missing end-of-run

events, and computer dead-time correction, have come up, and syncfilter proved to

be the most convenient tool for solving them. Let us review different aspects of

syncfilter usage in more detail.

Synchronization errors During E-93026 the DAQ system used several autonomous

crates for data processing, each of them having an independent internal event

counter. Matching of different counters was checked every time a synchronization

event was generated (about every two seconds). In case of a mismatch an error

event was generated, which indicated that all data during the last synchronization
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interval would have to be discarded. The error event followed the questionable piece

of data in the data stream. However, the analyzer does not have event memory, and

therefore cannot make use of an error warning issued post-factum. This problem

was solved using a data stream preprocessor, which accumulated input data in a

buffer, and inverted the relative order of the error event and the data to which it

referred. In practice, synchronization errors occurred only in a few runs, and even

there the fraction of bad sync events did not exceed one percent.

Missing end-of-run events In case of a ROC crash during a run, the end-of-

run event is normally not inserted into the raw data file, which in its turn made

replay engine crash without producing any meaningful results. To prevent the loss

of these data (which are in most cases perfectly usable), syncfilter was used to insert

fictitious end-of-run events when encountering an unexpected end of the input data.

Low beam current The beam current was not always stable. Low beam current

often correlated with low beam quality. Additionally, the beam current monitors

exhibit significant non-linearity for IBEAM < 50 nA. Therefore, it has been decided

to discard the low current (IBEAM < 50 nA) data with the use of the syncfilter.

Computer dead-time Once the DAQ receives an event, it becomes unable to

process another one for a short period of time (normally, a few nanoseconds). Since

scalers accumulate beam charge regardless to whether or not the DAQ was ready for

taking data, event rates (and therefore measured asymmetries) require a dead-time
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correction. In E93-026 we used syncfilter to take care of this issue by ignoring the

beam charge accumulated during the busy status of the DAQ.

A detailed description of the syncfilter can be found in [58].

6.3 Hall C replay engine

The event analyzer for E93-026 was based on standard CSOFT package of Hall C.

This software package includes a number of C libraries for processing CODA files

and Fortran utilities for event reconstruction in Hall C spectrometers, HMS and

SOS. Hall C replay engine has a run-time programming mechanism called CEBAF

Test Package (CTP) [59] to dynamically (i.e. without making changes to the source

code) modify:

• parameters used by engine, such as detector configuration, particle masses etc.

• cuts on both raw and analyzed events

• output histograms (conditioned by cuts)

• format of output scaler files

The source code of the analysis engine can be broken down as follows:

Initialization section resets the counters, registers CTP variables, reads the

configuration file, reads in detector decoding map, parameters database and TBPM
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thresholds from corresponding files and opens the input data stream from a raw

CODA file either directly or piped through the syncfilter.

Non-physics events processing section extracts information stored in control

events, including spectrometer settings, target number, detector high voltages, run

start time etc., and checks synchronization status for sync events.

Physics events analysis section does most of the actual analysis job. It begins

with calculating beam-related quantities (so called “beam reconstruction”) and then

depending on the event type does or skips HMS, neutron detector and coincidence

reconstructions.

Shut-down section saves epics, scaler, statistics and other output files, closes

ntuples, writes out pedestal values, calculates new TDC offset from laser pulser

events and writes the final summary.

6.3.1 HMS event reconstruction

HMS event reconstruction involved two steps: focal plane reconstruction and target

quantities reconstruction. Focal plane reconstruction determines the coordinates

and slopes of the particle track in the spectrometer focal plane and passes them

to the target reconstruction routine, which calculates target track quantities such
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as vertex coordinates, track slopes at the target and the relative deviation of the

particle momentum from the central momentum of the spectrometer, δHMS.

Focal plane reconstruction

Focal plane reconstruction decodes detector hits and calculates focal plane track

coordinates and slopes. All procedures involved in this step are standard ones and

did not undergo any customization during E93-026 (an outline of standard HMS

reconstruction as well as further references can be found at [40]). If a valid focal

plane track was found, then the algorithm proceeds to the next step:

Target quantities reconstruction

Since HMS optics is very well known, a standard reconstruction (i.e. no target field,

no beam rastering) can be done by simply applying a non-linear matrix transforma-

tion to the four focal plane quantities (coordinates x, y and slopes x′, y′) [60]. For

our experiment, however, the situation is more complicated because of curvature of

charged particle tracks by the target field and a large vertical beam offset due to

beam rastering. To correctly account for these, a doubly nested iterative approach

was adopted.

Reconstruction with a beam offset but without the target field can be done

through the following steps:

1. Do the standard reconstruction assuming no vertical offset (X = 0) to get a
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first guess of the target quantities.

2. Apply forward transport transformation to the target quantities assuming

X = 0. Repeat the forward transport transformation with the actual vertical

beam offset X = XBEAM and calculate the change in focal planes quantities

due to the beam offset.

3. Apply the focal plane corrections calculated in the previous step and repeat

the backward reconstruction to get the next iteration values of the target

coordinates.

4. Repeat steps 2-4 until difference between two consecutive iterations in δHMS

is less than a pre-defined value.

With the use of this procedure it is now possible to correct for the effect of

the magnetic field as follows:

1. Apply the reconstruction procedure described above to the measured focal

plane quantities to obtain a first guess estimate of the virtual target coordi-

nates2.

2. Drift the electron to a field-free region, then track it back3 into the magnetic

field to the intersection point with the incident beam. That gives the first

guess of the real target coordinates.

2Virtual target coordinates are defined as a set of target coordinate that would result in the
same focal plane quantities as the measured ones if there were no magnetic field present.

3Tracking through the target field was done by solving the differential equations of motion in a
magnetic field using Runge-Kutta method.
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3. Calculate the correction for the virtual beam offset and apply it.

4. Apply the beam-offset reconstruction procedure to the corrected focal plane

quantities to get a better estimate for the virtual target coordinates

5. Drift the electron to the field-free region, then track it back to the intersection

point with the incident beam to get a better estimate for the real target

coordinates.

6. Repeat steps 3-5 until the reconstructed vertical position in the beam plane is

equal to the actual one within a predetermined error.

Normally, the algorithm converged within 5 iterations. The events where conver-

gence is not achieved (which happened in less than 0.1% of cases) were discarded.

6.3.2 Neutron detector event reconstruction

The neutron detector reconstruction can be structured as follows:

1. Single hit analysis

2. Tracking

3. Particle identification.

All code pertaining to the neutron detector side analysis was combined into one

subroutine named n reconstruction. The subroutine begins with clearing all old

event data by calling n reset event. Then it finds all hits with acceptable TDC
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values and calculates raw TDC differences. After that, the event type is checked

and in case of a laser pulser event the control is passed to special subroutines

(n analyze pindiode and n analyze laser event). If the event is a physics one,

the algorithm proceeds to procedure n time correct. This procedures applies tim-

ing corrections, including event-to event path length, velocity difference and pulse

height (walk) corrections. Having thus concluded analyzing single hits, the subrou-

tine then calculates quantities needed by coincidence reconstruction (layer averages,

coincidence time, and electron momentum transfer in neutron detector coordinates)

and finally does the tracking (ndet tracking) and particle identification (ndet pid)

as described below.

Tracking

The neutron detector tracking routine ndet tracking combines single hits into

one or several tracks. In order to be assigned to the same track single hits need to

have similar meantimes (within ±10 ns) and match the kinematic acceptance.

The main part of the routine consists of two nested loops: the outer one loops

over all bars in all planes, looking for an unused hit to start a track with. The

inner loop checks unused hits in subsequent layers; if a hit falls within the meantime

window and the line connecting the tested hit with the last one on the track falls

within the kinematic acceptance, the hit is added to the track and labeled as used.

After hits have been sorted into tracks, line regression routines are called to fit the

tracks to straight line. Finally, the routine calculates track slopes and checks for a
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Figure 6.2: A proton event in the neutron detector

fired paddle on the track with energy deposited above minimum. Paddle hits play

a key role in the particle identification process outlined in the next paragraph.

Individual track PID

The neutron detector tracking subroutine ndet tracking starts by testing minimum

track energy and track coincidence time requirements. If both tests are passed, the

routine determines the individual track PID by looking at paddle hits and at the
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Table 6.1: Event PID

PID code description frequency(%)
No track or bad track(s)

0 no track 7.9
-1 single bad track 0.2
-2 one proton and one neutron track, neither used 5.4
-3 multiple tracks, all bad/non-proton 0.0

Good proton
1 one proton track – also used for individual tracks 11.9
2 only reasonable track is proton 0.02
3 better of 2 proton tracks – based on θnq probability 1.9
4 better of 2 proton tracks – other has bad χ2 0.02
5 better of 2 proton tracks – other has bad time 0
8 best track of several is proton – θnq probability 0

Paddle track
9 paddle track 57.7

Good neutron
11 one neutron 12.8
12 only reasonable track is neutron 0.1
13 better of 2 neutron tracks – based on θnq probability 1.5
14 better of 2 neutron tracks – other has bad χ2 0.1
15 better of 2 neutron tracks – other has bad time 0

initial hit of the track (the one in the plane closest to the target). The scheme

of the PID algorithm is given in in Table 6.2. Most events are identified by ab-

sence (neutron) or presence (proton) of a paddle hit, but there are two important

exceptions:

• tracks started at the 1st bar plane4 at counter 17 or above are always labeled

as protons;

• tracks started at bar planes 3-6 are always labeled as neutrons.

4i.e. 3rd detector plane (first two planes are paddles)
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Table 6.2: Individual track PID

Track started at PID if
plane counter paddle hit no paddle hit

1 17-27 proton proton
1 1-16 proton neutron
2 any proton neutron
3-7 any neutron neutron

Track selection and PID flags

For two-track events, the better track is found according to the algorithm described

below:

• check track PIDs; if same nucleons, proceed, otherwise, discard both tracks;

• check track χ2 (if exactly one track fails the χ2 check, pick the remaining track;

otherwise, proceed with other checks)

• check track time (in the same fashion as above)

• if still have two contenders, pick the track with greater θpq probability.

Multiple (3 or more) track events with heterogeneous nucleons or multi-neutron

tracks were discarded. For multi-proton events, the track with the best θpq proba-

bility was chosen.

A case when a track consisted of paddle hits only (so-called paddle track) was

labeled with a special PID code. Although a significant part of paddle tracks are
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protons, their contamination by electronics noise makes paddle events essentially

unusable.

The PID codes are summarized in the table 6.1.

6.3.3 Kinematic calculations

Once the tracking has been done, the engine calculates kinematic quantities. There

are two subroutines responsible for this task, h physics (electron arm kinematics)

and c physics (coincidence kinematics).

These calculations use two coordinate systems: the spectrometer (or transport)

one and the beam one. The x axis in both coordinate systems is pointing vertically

down, z is given by the beam momentum for the beam system and the spectrometer

for the spectrometer system, and ~y = ~z × ~x.

Electron arm

The momentum of the incident electron in the beam coordinate system is simply

given by

~k = (0, 0, Evx), (6.1)

where Evx = E −Eloss is the vertex electron energy which differs from the nominal

beam energy E by pre-scattering energy loss Eloss. In the spectrometer coordinate
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system the scattered electron momentum is given by

Pvx
√

1 + (x′)2 + (y′)2
(x′, y′, 1), Pvx =

√

E2vx −me
2 (6.2)

where x′ and y′ are the electron track slopes, P is the measured electron momentum,

me is the electron mass, Evx = E−∆Eloss and Pvx are vertex energy and momentum

correspondingly, and ∆Eloss is the post-scattering energy loss. The momentum

components in the beam coordinate system are easily obtained by a rotation to the

spectrometer angle θsp:

~k′ =
E ′

√

1 + (x′)2 + (y′)2
(x′, y′ cos θsp − sin θsp, y

′ sin θsp + cos θsp). (6.3)

The analysis code uses the components of this vector to calculate the scattering

angle θe and the out-of-plane angle φe:

θe = arccos
k′z

|~k′|
(6.4)

φe = arctan
k′y
k′x
. (6.5)

The four-momentum transfer squared Q2 and the invariant mass W are readily

obtained from the four-momenta kµ and k′µ:

Q2 = −qµqµ (6.6)
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W =
√

(qµ + T µ)(qµ + Tµ), (6.7)

where qµ = kµ− k′µ is the four-momentum transfer and Tµ is the four-momentum of

the struck nucleon in the lab frame, Tµ = (M, 0, 0, 0).

Nucleon arm

The subroutine c physics calculates θnq, the angle between the momentum trans-

fer ~q and the track of the nucleon, and θcmnp , the angle between the relative n-p

momentum with respect to the momentum transfer in the n-p center of mass sys-

tem.

The first step in the calculation is forming the unit vector in the direction of

the momentum transfer, q̂ = ~q/|~q|, and then transforming it to the neutron detector

frame, q̂ → q̂′

~q′ = (qx, qy cos θnDet − qz sin θnDet, qy sin θnDet + qz cos θnDet). (6.8)

The direction of the nucleon track is characterized by vector ∆~n = (∆ x, ∆ y, 1),

where ∆ x and ∆ y are slopes of the nucleon track determined by the tracking

subroutine. Then θnq is simply the angle between ∆~n and ~q′. For convenient can-

cellations, ~q′ is replaced with a collinear vector ∆ q = ~q′/q′z:

cos θnq =
∆~n ·∆~q
|∆~n| · |∆~q| =

(∆~n)2 + (∆~q)2 − (∆~n−∆~q)2

2|∆~n| · |∆~q| . (6.9)
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A Lorentz boost to the center of mass system gives then θcmnp [40]:

θcmnp = π − arctan

[

sin θnq

(

ν +MD

Ecm
tot

cos θnq −
qEn

Ecm
totPn

)−1
]

, (6.10)

where ν and q are energy and momentum transfer, MD is the mass of the deuteron,

En and Pn are the energy and the nucleon momentum of the knocked out nucleon as

determined from the time of flight, and Ecm
tot =

√

(ν +MD)2 − q2 is the total energy

in the center of mass system.

6.4 Inclusive simulations

Inclusive simulation software was designed for calculating packing fraction of the

polarized target (see Section 7.5). The basic components of the software package

include the quasi-free scattering cross-section model, radiative corrections and ac-

ceptance simulation. The simulation was run separately for each target materials.

Contributions from each target material were added with proper weights to represent

kinematic spectra of actual composite targets.

6.4.1 Cross-section model

Inclusive electron scattering cross-sections were simulated using the QFS code by

J. W. Lightbody and J. S. O’Connel [61]. The model assumed incoherent scattering

through following reaction mechanisms:
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• quasielastic scattering off a bound nucleon

• two-nucleon emission

• ∆-resonance electroproduction

• two higher resonances (W = 1.5 GeV and W = 1.7 GeV)

• deep inelastic scattering (in the x-scaling regime)

The N(e, e′) scattering cross section was calculated from the Rosenbluth for-

mula (see Eq.(2.10)). A standard dipole parametrization GD = (1+Q2/0.71)−2 was

used for GE
p , G

M
p and GM

n . The charge form-factor of the neutron was approximated

by Galster parametrization GGalster =
µτ
1+bτ

GD with b = 5.6.

The sum of elementary quasielastic cross sections was multiplied by a Gaussian

in electron energy loss, centered at Q2/(2M) − εs, and with a width proportional

to qkF/M , where εs is the mean separation energy and kF is the Fermi momentum

of the target nucleus. This Gaussian smearing accounted for the Fermi motion of

nucleons inside the nucleus.

The two-nucleon emission process, expected to be of significance in the dip

region between the quasifree and delta production peaks, was calculated as:

σ(Q2, ν, θ) = σMott(θ)

[

Q2

2q2
+ tan2(

θ

2
)

]

R2N(Q
2, ν), (6.11)
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where θ and ν are electron scattering angle and energy loss, correspondingly. The

response function R2N(Q
2, ν) was parametrized as follows:

R2N(Q
2, ν) = K2N(NZ/A)q

2GD(Q
2,Λ2N)

(

Γ22NW 2

(W−Wcm)2+Γ22NW 2

)

×

×
[

1− exp
(

− (ν−νthr)
Γthr

)]

, (6.12)

where N = A − Z, Z and A are the number of neutrons, protons, and all nu-

cleons in the nucleus, correspondingly, K2N is the two-nucleon knockout strength,

GD(Q
2,Λ2N ) = (1 +Q2/Λ22N)

−2
is the dipole form, W is the invariant mass, Wcm =

(M+M∆)/2, νthr = Q2/4M is the threshold energy loss, Γ2N and Γthr are the width

and the threshold scale of the Lorentzian, both determined from the data.

The resonance contributions to the total cross sections, both for ∆ and the

higher resonances, also had Lorentzian shape as in Equation (6.13):

σ∆ = K∆Aq
2GD(Q

2,Λ∆)
(

Γ2∆W 2

(W−Wcm)2+Γ2∆W 2

)

×

×
[

1− exp
(

− (ν−νthr)
Γthr

)]

, (6.13)

with the width

Γ =
√

Γ2R + Γ2Q + Γ2A (6.14)

determined by the three components: natural resonance width ΓR, Fermi broadening

component ΓQ and nuclear medium effects component ΓA.

83



Finally, the deep inelastic scattering cross section was approximated with the

following expression:

σ = Γvσγ(ν)(1 + εRx)F
2
x (Q

2), (6.15)

where Γv is the virtual photon flux,

Γv =
α

2π2
E ′κ

EQ2
1

1− ε , κ = ν − Q2

2M
, (6.16)

ε is the virtual photon polarization, Fx(Q
2) is a form factor, Rx is the ratio of

longitudinal to transverse cross sections, and σγ(ν) is the real photon cross section.

Parametrization of ingredients of the deep inelastic scattering cross section is given

below:

Rx = 0.56× 106(MeV/c)2/(Q2 +M2
N), (6.17)

σγ(ν) =

(

σ0 +
σ1

ν − νπ

)[

1− exp

(

−(ν − νπ)2
2Γ2x

)]

, (6.18)

F 2x (Q
2) = a1 exp(−a2Q2) + b1 exp(−b2Q2) + c1 exp(−c2(Q− c3)2), (6.19)

where the parameters ai, bi and ci are defined in the Table 6.3.

Table 6.3: Deep inelastic scattering form factor parameters
a1 a2 b1 b2 c1 c2 c3
0.55 2 · 10−5 0.45 0.45 · 10−6 0 0.1 · 10−12 4 · 10−6
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A kf (MeV) εs(MeV )
4 180 20
9 200 20
12 221 20
15 240 20
27 250 25
59 260 35
64 260 35

Table 6.4: Fermi momenta and separation energies of nuclei used in simulation.

6.4.2 QFS parameters

The Fermi momentum and the separation energy of the nucleus were looked up in

a special table. The lookup code and the table itself (see Table 6.4) were added to

QFS by C. Harris [41]. He also updated some internal parameters of QFS regulat-

ing widths and strengths of various resonance contributions. A summary of these

changes is given in Table 6.5.

6.4.3 Deuterium cross sections

The nucleus of deuterium, the deuteron, consists of one neutron and one proton.

The QFS model of quasielastic scattering cross section is based on the Fermi gas

model, i.e. is largely statistical. Therefore, it is not surprising that this model

breaks down for a system consisting of just two constituents.

In order to overcome this difficulty, a special subroutine for electron-deuteron

scattering was designed by C. Harris. In this subroutine, the total cross-section was

calculated as a sum of a quasielastic part based on y-scaling model and the deep

85



Table 6.5: Updated internal parameters of QFS

physics name name in QFS original value modified value description

Γx GAM0 650 MeV 610 MeV width parameter for
the real photon cross-
section

Λ2N AR 570 MeV 550 MeV dipole form param-
eter for the two-
nucleon knockout

Λ∆ AD linear in A 774 MeV dipole form parame-
ter for the ∆ electro-
production for 1 <
A < 4

Γπ
thr GAMPI 5 MeV 50 MeV threshold scale for ∆

electroproduction
γR GAMR 120 MeV 100 MeV scale factor for Fermi

broadening contribu-
tion to ∆-resonance
width

86



inelastic part. The latter was obtained from a fit to the resonance region data.

The quasielastic contribution to the cross section was calculated using the

Krautschneider momentum distribution [62]:

n(k) = A

[

C +

(

1

k2 + κ1
− 1

k2 + κ2

)2
]

, (6.20)

where A, κ1 and κ2 are empirical constants and C is the term responsible for rescat-

tering. In our simulation the rescattered term was assumed to be zero.

The results of the simulations for deuterium compared to experimental data

can be found in Fig. 6.3. The agreement is better than 10% except far from the

quasielastic peak, which is adequate for the needs of the experiment.

6.4.4 Radiative effects

The code for calculating both internal and external radiative corrections was pro-

vided by J. Arrington [56]. Unradiated cross-sections were taken as input from QFS.

The calculations were based on a peaking approximation formula derived by Stein

[64] for the particular case of quasi-elastic scattering from a more general formula

by Mo and Tsai [65]:

σ = σsoft + σpre + σpost,
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Figure 6.3: QFS versus NE4 data for transverse scattering [63].
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σsoft =

(

R∆E

E ′

)b(tb+ta)(∆E

E ′

)b(tb+ta) [

1− ξ/∆E

1− b(ta + tb + 2tr)

]

σ̄(E,E ′)

σpre =

∫ E−R∆E

Emin(E′)

σ̄(ε, E ′)

(

E − ε
E ′R

)b(ta+tr)(E − ε
E

)b(tb+tr)

[

b(tb + ta)

E − ε φ

(

E − ε
E

)

+
ξ

2(E − ε)2
]

dε

σpost =

∫ E′

max

E′+∆E

σ̄(E, ε′)

(

ε′ − E ′

ε′

)b(ta+tr) [(ε′ − E ′)R

E

]b(tb+tr)

[

b(tb + ta)

ε′ − E ′ φ

(

ε′ − E ′

ε′

)

+
ξ

2(ε′ − E ′)2

]

dε′. (6.21)

Here σsoft, σpre and σpost are soft photon, hard photon pre- and post-radiation

contributions to the total radiated cross section correspondingly,

R =
MT + 2E sin2 θ

2

MT − 2E ′ sin2 θ
2

is a kinematic factor, MT is the target nucleus mass, tb and ta are the target thick-

nesses before and after the interaction point,

tr =
α

π

[

log

(

Q2

m2
e

)

− 1

]

is the equivalent radiator thickness accounting for internal bremsstrahlung. Other

ingredients of Eq. 6.21 are:
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b =
4

3

[

1 +
1

9

Z + 1

Z + η
log−1(183Z−1/3)

]

,

η = log(1440Z−2/3)/ log(183Z−1/3),

σ̄(E,E ′) = F̃ (Q2)σ(E,E ′),

F̃ (Q2) = 1 + 0.5772× b(ta + tb) +
2α

π
(−14

9
+

13

12
log

Q2

m2
)−

− α

2π
log2

E

E ′ +
α

π

[

1

6
π2 − Φ(cos2 θ/2)

]

,

ξ =
πm

2α

ta + tb
(Z + η) log(183/Z1/3)

,

and finally, ∆E is the energy cutoff (determined by detector resolution or other

experimental considerations) and

Φ(x) =

∫ x

0

− log |1− y|
y

dy

is the Spence function.

The numerical integration was performed using the Romberg technique. The

results were checked by comparing to the cross-section data from the SLAC experi-

ment NE3 (see Fig. 6.4). The agreement is excellent for both radiatively corrected

and uncorrected data.
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Figure 6.4: Comparison between SLAC NE3 [66] data and simulations. Carbon
target. Thickness (including equivalent radiator) t = 3.26% of the radiation length.
Beam energy is 3595 MeV, the scattering angle is 16◦.
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6.4.5 Acceptance effects

The HMS efficiency is momentum dependent. Therefore, when comparing results of

simulations to experimental data one needs to account for acceptance effects.

For E93-026 the HMS momentum acceptance was calculated from data taken

with the same beam energy E = 2.06 GeV and spectrometer angle θHMS = 18.5◦,

but two different central momenta, P 1HMS = 2.060 GeV and P 2HMS = 1.963 GeV.

In the E ′ region where the momentum acceptance is flat for both data sets the

difference in shape of their E ′ spectra is entirely due to acceptance effects (since the

kinematics are the same). This allows one to deconvolute the cross-section and the

acceptance function using the procedure described below [67]. 5

1. add together 6 E ′ spectra of the two data sets, C1(E
′) and C2(E

′), as the first

guess for the cross-section,

σ0(E
′) =

w1C1(E
′) + w2C2(E

′)

w1 + w2

2. divide out the cross-section from the E ′ spectra, change variables from E ′ to

δ, and add the results, resulting in an estimate for the acceptance function ηi:

ηi1 =
C1(E

′)

σi(E ′)
ηi1 =

C1(E
′)

σi(E ′)
ηi(δ) =

w1η1[P
1
HMS(1 + δ)] + w2η2[P

2
HMS(1 + δ)]

w1 + w2

5For a correct understanding of the procedure it is important to realize that the momentum
acceptance is a function of the relative momentum δ = ∆P

P
= E′

−PHMS

PHMS
, whereas cross-sections

are functions of E′. Therefore, if we express the acceptance function in terms of E ′, its horizontal
scale will depend on the central momentum of the spectrometer PHMS .

6If statistics are limited, proper statistical weights w1,2 are necessary
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Figure 6.5: HMS momentum acceptance.

(a) Raw spectra (b) Acceptance-unfolded spectra

Figure 6.6: HMS acceptance effects: E ′ spectra for carbon runs 40466 and 40655
(PHMS = 2.06 GeV and PHMS = 1.9627 GeV) before (a) and after (b) unfolding
acceptance effects.
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3. divide out the acceptance function obtained in the previous step from the

last iteration of the cross-section and add the results together, resulting in an

improved result for the cross-section:

σi
1 =

C1(E
′)

ηi[P 1HMS(1 + δ)]
σi
1 =

C1(E
′)

ηi[P 1HMS(1 + δ)]
σi =

w1σ
i
1 + w1σ

i
1

w1 + w2

4. repeat steps 2-3 until cross-sections extracted from the two data sets agree

within a pre-defined range.

The acceptance function as obtained in the above procedure is shown in Figure 6.5.

The asymmetry in the shape of the acceptance function is due to the target field

and finite extension of the target along the beam direction.

Figure 6.6 shows the results of the unfolding procedure for two runs taken

with different HMS central momenta, PHMS = 2.06 GeV and PHMS = 1.9627.

Good agreement between the unfolded spectra for the two runs shows that unfolding

procedure has been done correctly.

6.4.6 Composite target models

In experiment E93-026 in addition to normal production data taken with the po-

larized 15ND3 target, some data were also taken with carbon and empty targets.

Empty and carbon data can be taken with target nose filled with helium (“wet”

runs) or empty (“dry” runs), which gives four combination of fixed-thickness tar-
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Table 6.6: Target material thicknesses

wet carbon dry carbon wet empty dry empty 15ND3
∗

η/t∗∗

Al 1.5 mm 1.5 mm 1.5 mm 1.5 mm 1.5 mm 10.0
C 6.9 mm 6.9 mm – – – 18.83
He 31 mm – 40 mm – 25 mm 3.63
N – – – – 15 mm 5.07
D – – – – 15 mm 15.0

rad. length 6.1% 5.2% 2.6% 1.7% 5.8% –
∗ Assuming 50% packing fraction
∗∗ Luminosity per unit length (nA g

cm3
)

gets7. Each target has a different radiation length and therefore the simulation for

the same target material used in different targets has to be done separately. The

cross-sections for each target material were weighted with luminosities and then

added together. The luminosities were calculated based on the table of material

thicknesses in electron’s path compiled by C. Harris [41].

6.4.7 Comparison of simulation results to experimental data

The results of simulations are shown in comparison with our experimental data in

Figure 6.7. The comparison is given for three types of fixed-thickness targets: dry

carbon target, carbon target with helium in the nose, and helium target. The results

of the simulation agree with our experimental data to 10%. This level of agreement

is sufficient for the goals of the experiment.

7The packing fraction, i.e. effective thickness for 15ND3 material, was not known a priori. See
Section 7.5 for details.
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Figure 6.7: Comparison between single-arm data and simulation results.

6.5 Coincidence Monte Carlo simulations

Coincidence Monte Carlo simulations played an important role in the data analysis

of experiment E93-026. It was used for such major tasks as cut optimization (see

Section 7.2), dilution factor calculation (see Section 7.6), radiative corrections on

AV
ed (see Section 7.7.1), and a number of minor tasks. The simulation software

was based on program MCEEP by Paul Ulmer. The original code was augmented

to adequately treat the effects of the target magnetic field. In addition, the code

was extended with interpolations of Arenhövel’s calculations of cross-sections and

asymmetries.
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6.5.1 Basics of MCEEP

The program allows a user to choose one of the three options: elastic scattering,

bound final state or unrestricted continuum. For the bound state case the ejectile

momentum is calculated from the bound state missing mass specified in the input

file, whereas for the continuum case it is randomly sampled and the missing mass is

calculated on an event-by-event basis.

Sampled quantities

The program samples the experimental acceptance uniformly, using calculated cross-

sections as weighting factors when simulating realistic physical spectra. In a most

general case (continuum scattering) an event is generated by “throwing” seven ran-

dom quantities: the in-plane and out-of plane angles and momenta for the electron

and the hadron, and the energy of the bremsstrahlung photon, radiated either before

or after the main interaction depending on the “coin toss”.

For the bound final state, the hadron momentum is calculated from other

quantities. For elastic scattering, only electron angles are sampled, and all other

quantities are calculated.

HMS spectrometer model

Simulation of event detection in the HMS consisted of two major parts: forward

tracking of the incident particle through the target magnetic field and HMS magnets
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and reconstruction of the successful event. To account for the effect of the beam

rastering, the vertex coordinates were randomly sampled within the raster spot.

The standard (i.e. without the target field and beam raster corrections) part

of the algorithm consisted of the following basic steps:

1) projecting a particle to the magnet aperture, assuming motion along a

straight line;

2) checking the coordinates of the particle versus the aperture of the magnet;

if they fall outside the actual dimensions of the magnet aperture then the particle

is labeled as stopped, and the algorithm proceeds to the next iteration;

3) tracking the particle forward in the magnetic field of the spectrometer mag-

net using COSY Infinity coefficients.

These steps are repeated for each of the 4 HMS magnets. Finally, if the

particle does not stop in one of the magnets, the same approach is used to find

which detectors (assumed to be 100% efficient) are fired in the HMS detector hut,

and the 4 focal plane quantities are determined.

The reconstruction algorithm essentially repeats that of the data analysis code

(see Subsection 6.3.1).

Cross sections

The cross sections are calculated assuming plane wave impulse approximation (PWIA),

i.e. the virtual photon is absorbed by one off-shell nucleon which (as well as the
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incident electron) can be described by a plane wave. Under these conditions the

(e, e′N) cross section can be factorized as follows [2]:

dσ

dεfdΩedεNdΩN

= KσeNS(Em, ~pm), (6.22)

where K is a kinematic factor, σeN is the elementary off-shell electron-nucleon scat-

tering cross-section and S(Em, ~pm) is the spectral function which represents the

probability of finding a nucleon with initial momentum ~pm and binding energy Em

within the nucleus. The elementary cross-section σeN is calculated using the “cc1”

prescription of de Forest [68]:

σeN = σMott

[

Q4

q4
WC + (tan2 θ/2− Q2

q2
)WT−

−Q
2

q2

(

tan2 θ/2− Q2

q2

)1/2

WI cosφ+

(

tan2 θ/2− Q2

q2 cos2 φ

)

WS

]

(6.23)

WC =
1

4ĒE ′

[

(Ē + E ′)2
(

F 21 +
q̄2µ

4M2
κ2F 22

)

− q2(F1 + κF 2)2
]

(6.24)

WT =
q̄µ
2

2ĒE ′ (F1 + κF2)
2 (6.25)

WS =
p′2 sin2 γ

ĒE ′

(

F 21 +
q̄2µ

4M2
κ2F 22

)

(6.26)

WI = −
p′2 sin2 γ

ĒE ′ (Ē − E ′)

(

F 21 +
q̄2µ

4M2
κ2F 22

)

, (6.27)
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where Ē and E ′ are the initial (off-shell) and final energies of the struck nucleon, p′

is the momentum of the struck nucleon, γ is the angle between ~p′ and ~q, q̄µ is the

four-momentum transfer corrected for off-shell effects, and F1 and F2 are Dirac and

Pauli form factors.

Spectral functions

The MCEEP has many built-in spectral functions. Additionally, the modular struc-

ture of MCEEP allows various spectral functions representing different models of

the nuclei to be easily incorporated into the program through external files.

The simulations for 4He used a parametrization for t+p breakup channel using

Urbana potential [69] (MCEEP option 32). The nitrogen spectral function was

approximated by that of 16O for 1p1/2, 1p3/2 and 1s1/2 shells (MCEEP options 40,

41 and 42). The spectral function for aluminum was a custom parametrization based

on quasielastic data. Finally, copper and nickel were approximated by the carbon

spectral function provided by I. Sick.

Radiative effects

The MCEEP has options for simulating internal and external radiation and ioniza-

tion energy loss. Radiative effects are only taken into account for electrons 8 by

sampling bremsstrahlung photon energy. The peaking approximation is used, i.e.

the photon is emitted either along the incident electron momentum or along the

8Those of hadrons are negligible due to their high mass.

100



scattered electron momentum. The details of the implementation of the radiative

effects can be found in [70].

6.5.2 Customization of MCEEP

Normalization factors

In order to account for physical mechanisms beyond PWIA, the PWIA cross sections

were corrected by normalization factors given by a product of nuclear transparency

and the nucleon correlation factor (see Table 6.7). Details on normalization factors

can be found in [40].

Table 6.7: Nuclear normalization factors

2H 4He 15N Al Cu Ni
1.0 0.85 0.55 0.50 0.50 0.50

Target magnetic field. The original code of MCEEP was modified in order to

account for the curvature of the charged particle tracks by the target magnetic field.

The electron arm reconstruction branch of the Monte Carlo used the same Fortran

code as the HMS reconstruction in event analyzer. Transporting protons through

the magnetic field is in all respects analogous. Obviously, neutrons, being uncharged

particles, do not need any special treatment.

Neutron detector. The neutron detector was modeled in MCEEP as a set of

detector layers, each layer characterized by its own efficiency. These efficiencies
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were calculated following the procedure by Madey et al. [71]. The probability of

firing the n-th plane of the neutron detector was calculated based on individual

plane efficiencies (see Table 6.8).

Table 6.8: Modeled neutron detection efficiencies by detector plane

1 2 3 4 5 6
0.095 0.095 0.154 0.143 0.116 0.116

The finite timing resolution for the neutron detector was simulated by Gaus-

sian smearing of the hit position.

Arenhövel’s calculations. Even though MCEEP is capable of calculating po-

larization observables, for a precision measurement of Gn
E one needs to use full cal-

culations including the effects of the meson exchange currents, isobar configurations

and other relevant physical processes. Additionally, it is desirable to have accurate

calculations for the deuteron scattering cross section as well to minimize the uncer-

tainty in the dilution factors. Such calculations were provided by H. Arenhövel on a

kinematical grid 9 shown in Table 6.9. The values of cross sections and asymmetries

between the grid points were obtained by spline interpolation.

The D(e, e′N) scattering cross-section was radiated by multiplying by a radia-

tive correction factor calculated from other materials. The AV
ed was calculated for

each event and written out to the output ntuple, thus simplifying the procedure of

experimental acceptance averaging.

9Note that the grid in θcm
np has two step sizes. The step size is 2.5◦ in the quasi-elastic region

(0◦ − 30◦ and 150◦ − 180◦) and 5◦ elsewhere.
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Table 6.9: Kinematical grid for D(e, e′n) cross section

variable range step size
E ′ (MeV) 2660− 3140 15

θe 16◦ − 20◦ 0.4◦

θcmnp 0◦ − 360◦ 2.5◦ − 5◦

Pion production contamination In order to study the contamination of the

measured asymmetry by pion production events (γ∗ + p→ n+ π+ and γ∗ + n→ n+ π0)

a simulation program EPIPROD was embedded into MCEEP through an interface sub-

routine qf pion production

The program EPIPROD was originally designed by T.M. Payerle based on an

earlier program by R.W. Lourie and then was rewritten and extended by J.J. Kelly.

It can calculate various quantities for the electroproduction of pseudoscalar mesons

for both recoil polarization and polarized target reactions. The cross sections and

other observables are calculated from helicity amplitudes, which in their turn can

be calculated using one of the following options:

1. a semi-realistic isobar plus Born model

2. SAID model

3. interpolation of external multipole amplitudes.

The pion events were sampled according to the PWIA cross-sections. The

momentum distributions of the struck nuclei was the same as for the quasifree case.

The size of the pion-production contamination of the quasifree yield was found to
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be small (less than 0.5%).

6.5.3 Output and results

MCEEP can output its results both in histogram files and ntuples, which can be

converted into a PAW-compatible [72] format. The contents of the output ntuple

are described in the Table 6.10

Table 6.10: MCEEP’s output ntuple

variable name description

PF E I scattered electron energy E ′

PF P I in-plane angle of the knocked out hadron

TSCAT scattering angle

N coin neutron detector flag (neutron detector fired if 1, not fired

otherwise)

H coin HMS flag

thetanpcm angle between the nucleons in the center-of-mass frame,
θcmnp

thetapqs angle between the nucleon momentum and the momen-
tum transfer, θpq

AedV f observed asymmetry AV
ed

aedv vtx vertex AV
ed

radflag radiation flag: 0 – no radiation, 1 – pre-radiation, 2 –
post-radiation

A review of Monte Carlo spectra in 4 kinematic variables in comparison with

data is given on the Fig. 6.8. The agreement for W and E ′ is excellent. For the θnq

spectrum there is a disagreement in the tail region. This is exactly what one should

expect based on MCEEP’s PWIA calculations, since large θnq corresponds to large
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transverse missing momentum, i.e. strong final state interactions and many-body

current effects. The simulated and measured spectra for θcmnp agree reasonably well.

Figure 6.8: Coincidence Monte Carlo (red) compared to data (black). The events
are subject to standard neutron cuts (see Section 7.2).
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Chapter 7

Data analysis

This chapter deals with the details of the experimental data analysis. The chapter

starts with a description of the data replay process. Then we discuss cuts and inputs

(target and beam polarizations) used in asymmetry calculation. Then we proceed

to packing fraction and dilution factor calculations. The last two sections of the

chapter discuss various corrections applied to the calculated asymmetry and the

Gn
E extraction procedure.

7.1 Data replay

Data replay reconstructs particle tracks and event kinematics from TDC and ADC

signals stored in the CODA format. This task is handled by the event analyzer

described in the previous chapter. Since the entire experimental data set consists of

hundreds of runs, the replay was done in parallel on an autonomous computer system

called Batch Farm. The submission and control of analysis jobs was conducted by

a Tcl/Tk script package “BatchMan” (for “Batch Manager”).
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The initial stage of data replay involves two steps: selection of runs to be

analyzed and preparation of input for the event analyzer (detector calibrations).

7.1.1 Runs selection

Along with data taken under normal running conditions with the polarized target,

other data were taken in the experiment for different purposes (tests of experimental

hardware, calibration data, beam polarization measurements etc.). Also, some of

the production data were damaged because of various problems experienced during

the data taking. These runs must be excluded from the analysis process. A more

detailed list of excluded runs is given below:

• non-15ND3 targets (carbon, empty, hole)

• Møller runs

• checkup runs

• DAQ crash during the run

• serious hardware problems (magnet quenches, persistent HV trips etc.)

• unstable helium level in the target nose

• sudden loss of target polarization

• wrong position of the HMS collimator.
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7.1.2 Detector calibrations

Raw data files contain information about particle tracks in the form of ADC and

TDC signals of detector hits. In order to reconstruct the tracks and calculate phys-

ical quantities of interest, one needs to match the timing of individual detectors,

supply conversion constants between ADCs and energy deposited in a detector etc.,

i.e. to perform detector calibrations.

HMS calibrations

HMS calibrations consist of timing calibrations of hodoscopes, generating time-to-

distance maps for the drift chambers, and determining gains of each block of the

lead glass calorimeter. Since the HMS is a standard piece of equipment of TJNAF

Hall C, these calibrations are a well-established procedure, the details of which can

be found elsewhere [56].

Neutron detector timing calibrations

Signals from PMT of detector scintillators arrive at the counting room with a

delay of a few tens or even hundreds of nanoseconds. Due to unequal cable lengths,

intrinsic transit times and high voltages, these delays generally differ between right

and left PMTs. For a precise calculation of hit positions and meantime associated

with a track it is necessary to apply time offset corrections to the meantime and

TDC difference of a hit. These offsets are calculated by fitting the corresponding

spectra of individual detectors. The offset is then given by the peak position. After
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the calibration is completed, offset parameters are written to text files which are

later read in by the analyzer. The quality of the calibration can be checked by

plotting TDC difference and meantime spectra for individual detectors and making

sure that they are centered around zero.

Neutron detector energy calibration

Energy calibrations of the neutron detector were performed using cosmic data.

Cosmic rays are dominated by high energy muons, for which the energy deposited

in a given amount of material is well known [40] (e.g 22 MeV for 10 cm scintilla-

tors). Thus the position of the cosmic peak provides the desired conversion constant

between the ADC channels and energy.

7.1.3 Replay procedure

The replay of large amounts of data was performed using the Jefferson Lab comput-

ing facility (Batch Farm). The Batch Farm consists of 175 Linux CPUs. A user can

submit a job to the Batch Farm by means of a command file which contains basic

information about the command to be executed, input files and relevant parameters.

An interface between the Batch Farm and a user was provided by a Tcl/Tk

package “BatchMan” , custom designed for experiment E93-026. It allows a user

to observe the status of submitted jobs, kill undesired jobs, restart failed jobs and

submit new jobs.

When a list of runs is submitted for analysis, BatchMan creates a command
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file for each run and submits it to the Batch Farm. The command file contains a

reference to the batch job script which copies analysis setup and the first segment

of the raw data 1 to the local Batch Farm computer and launches the analysis job.

While a data segment is being analyzed, the next one is copied to the local disk

drive in a background process. Upon completion of the analysis job the batch job

script copies the results to BatchMan output directories.

7.2 Cut optimization

For the purpose of Gn
E extraction we only need quasielastic ~d(~e, e′n) events. Co-

incidence ntuples produced by the event analyzer contain all events that fired an

HMS trigger and were successfully processed by DAQ (including inelastic, acciden-

tal background and proton events). Therefore, one needs to select desired events

by applying cuts. One cut is obvious: if we are interested in neutron events, we

need to look at events with the neutron PID (PID codes 11, 12, 13, 14 and 15).

The other cuts are determined by figure-of-merit considerations and the quality of

Monte-Carlo model in a given kinematic region.

The figure-of-merit is affected by kinematic cuts through the dilution factor:

cuts emphasizing the quasielastic region improve the dilution factor and thus reduce

the error magnification factor. At the same time, these cuts inevitably reduce the

number of good events, too, and thus increase the statistical error itself. The op-

1Due to size limitations on the tape servers raw data files are split into 2 Gb segments. The
number of segment files per run varied from 1 to 4 for E93-026.
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timum can be determined with the use of Monte Carlo simulations. The results of

simulations are shown in Figure 7.1. The figure shows figure of merit as a function

of kinematic variables for several distinct sets of cuts. The figure of merit can be

defined as the experimental time required for achieving given accuracy, and for fixed

PB and PT it is proportional to f
√
R, where f is the dilution factor and R is the

event rate.
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Figure 7.1: Figure of merit for different kinematic cuts. Note that W (MeV) here is
not the invariant mass, but rather W0, the width of the cut on the invariant mass:
|W − 939| < W0.
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Table 7.1: ~d(~e, e′n) cuts. Here ypos is the horizontal position of the neutron track at
the reference plane (plane 3 of the neutron detector), Etrack is the energy deposited
in the neutron detector, ∆t is coincidence time, ZBEAM is the coordinate of the
vertex along the beam direction (zero corresponds to the center of the target cell)
and MN = 939 MeV is the nucleon mass.

cut suppressed events
Nphotoelectrons > 2 pions in the HMS
|W −MN | < 70 MeV inelastics (∆ electroproduction)

E ′ > 2829 MeV same as above
|ypos| < 40 cm heavy nuclei (broad Fermi distribution)
θpq < 0.08 rad high missing momentum
−3 < ∆t < 5 ns accidentals
Etrack > 12 MeV low-energy noise in the neutron detector
|ZBEAM | < 3.2 cm events reconstructed outside the target cell
θe > 0.26 rad events reconstructed outside spectrometer acceptance

As one can see, the figure-of-merit (FOM) generally favors wide-open cuts

rather than tight ones: it increases monotonically with the width of the W cut, the

widest ypos cuts also give highest FOM, and finally, the three wide θnq cuts all lie

higher than the tight θnq cuts. However, in all cases the dependence is fairly flat

which allows us a certain freedom of choice. This freedom was used to pick cuts

emphasizing the kinematic region where Monte Carlo works best. Some events do

not have an adequate model in Monte Carlo (e.g. pions in HMS, background etc.).

The cuts for reduction of these events were developed using qualitative reasoning

and a trial-and-error approach. A complete set of cuts used in the analysis is given

in Table 7.1.
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7.3 Target polarization

The target DAQ permits online monitoring of the target polarization. The prompt

availability of the results comes at the expense of the accuracy of the measurement.

The quality of online target polarizations is sufficient for data-taking purposes, but

the actual physical calculations are more demanding.

Therefore, upon the completion of the experiment a full offline analysis of

NMR signals was performed, including reevaluation of baselines, refitting the NMR

signals and reanalysis of TE measurements.

7.3.1 Baseline subtraction

A baseline is the response of the NMR circuit in the absence of target polariza-

tion. Baseline measurements (normally taken after each anneal) were performed by

changing the target magnetic field such that the NMR signal of the deuteron was

pushed outside the frequency sweep range. Baselines and NMR signals were stored

separately in Labview binary files so that in case of a noisy or corrupt baseline a

different one could be associated with a given set of NMR signals.

The presence of the polarization signal introduces a slight distortion of the

NMR circuit response. Additionally, temperature fluctuations and beam distur-

bance can also affect the shape of the NMR signal. Therefore, baseline subtraction

is followed by a fit of the quadratic polynomial to the “wings” of the subtracted
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signal with subsequent subtraction2. The analyzed NMR signal on different stages

of the offline analysis is shown in Figure 7.2. Note that the second and the third

plots are almost identical, which is due to the fact that the wings are normally very

small and the constant pedestal subtraction suffices in most cases.

Figure 7.2: NMR signal on different stages of the offline analysis.

114



Figure 7.3: TE calibration constants for various groups. The ±σ for the groups
are shown with horizontal solid lines. The symbols are: plus – stick 1 top, asterisk
– stick 1 bottom, circle – stick 2 top, x – stick 2 bottom, triangle – stick 3 top,
diamond – stick 3 bottom, puff – stick 4 top, cross-hair – stick 4 bottom.

7.3.2 TE constants

If a material is allowed to thermalize, the spin temperature becomes equal to the

actual (“lattice”) temperature. Under these conditions the target polarization is

completely determined by the magnetic field, temperature and the magnetic moment

of the deuteron and can be calculated analytically (See Eq. A.2). The area under

2In practice, this is done in two steps: first a constant pedestal is subtracted from the signal and
then one fits the residual wings with a quadratic polynomial. This approach permits to improve
the quality of the fit.
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Table 7.2: Target polarization uncertainties.
stick 3 top 3.30%
stick 3 bottom 4.61%
stick 4 top 4.90%
stick 4 bottom 5.24%

the NMR signal measured in thermal equilibrium (a TE constant) thus provides the

calibration constant for the NMR measurement.

Since the target polarization in thermal equilibrium is hundreds of times

smaller than the typical polarization during production running, performing TE

calibrations is a challenging task. All 110 TE measurements taken during E-93026

were carefully examined. Excluding unacceptable measurements (noisy signals, non-

thermalized material, etc.) resulted in the total of 2095 good signals with from 12

to 36 signals in one TE measurement. Good signals were averaged for each material.

These group averages were used in the actual target polarization calculations.

The uncertainty on target polarization was estimated by scatter of TE con-

stants (see Table 7.2). The TE constants normalized to group averages are shown

in Figure 7.3.

7.4 Beam polarization

The beam polarization was measured in a series of Møller runs. Individual measure-

ments were combined into groups defined by changes in the half-wave plate positions.

It has been assumed that the variation of the beam polarization values with time
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was linear, and thus the values of beam polarization for runs between Møller mea-

surements were obtained by linear fits. The details of individual measurements are

given in Appendix A.2

7.4.1 Hall A current leakage

The Jefferson Lab accelerator provides the electron beam with (generally) different

energies and/or polarizations to three experimental Halls. This is achieved either

by using one laser for all three Halls or using one laser per each Hall. For the

Q2 = 1.0 (GeV/c)2 data, the latter was the case.

When running on three different lasers, it is possible for the current of other

halls to leak into Hall C slits. Since Hall B was run in a high-polarization, low-

current mode, the leakage from that Hall was of no concern. The case was the

opposite with the Hall A (high current, low polarization), resulting in a sizable

admixture of low-polarized Hall A beam in the Hall C beam.

The leakage was measured in a procedure that involved measuring the beam

current with:

A. C slit open, C laser off, A laser on

B. C slit closed

C. C slit open, both A and C lasers on.
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The HMS scaler was used as a luminosity monitor. The leakage is given by

Ileakage =
A−B
C −B ,

where A, B, C is the HMS scaler rate for each of the three steps.

The Hall A current leakage was normally measured every shift (i.e. every 8

hours). After a short bad period (with leakages up to 9%) the leakage was kept

within 2%. Since the Hall A polarization is of the same sign and about half size of

that of the Hall C, the resulting correction is less then 1%. Taking into consideration

other dominant errors and the statistical accuracy of the experiment, it has been

decided to neglect this correction. Instead, a 1% uncertainty was added to the beam

polarization error.

7.4.2 Results

The results of the Møller measurements and their parameterizations using straight

line fits is given in Figure 7.4. The global average of the beam polarization was

found to be 71.8± 2.4%

A breakdown of the total beam polarization error by source is given in Ta-

ble 7.3. The error is dominated by scatter in beam polarization values.
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Figure 7.4: Results of Møller measurements and their parameterizations.

Table 7.3: Beam polarization error.

Source Relative error(%)
Møller statistics 1.20
Monte Carlo statistics 0.70
Systematics 0.47
Hall A current leakage 1.00
Scatter of measurements 2.82
Total 3.33
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7.5 Packing fraction

The packing fraction of the polarized target is the ratio of the volumes (or thick-

nesses, if the distribution of materials over the target face is uniform) of polarized

material and cryogenic helium inside the target cup as seen by the beam. This quan-

tity determines dilution of the measured asymmetry by unpolarized helium inside

the target, which together with contributions from other material determines the

overall dilution factor f .

7.5.1 Method of determination

Unlike other target materials, the thickness of internal helium cannot be measured

directly, since the frozen ammonia has the form of small beads and does not fill up

the volume of the target cell uniformly. Further, the packing fraction of a target

changes during the data acquisition due to material leakage, target anneals, changes

in the beam-target alignment etc. Therefore, one obtains the packing fraction using

the observed event rates. One can simulate inclusive event rates for targets with

different packing fractions with the inclusive simulation program described in the

previous chapter, and then extract the actual packing fraction by comparing the

results of the simulations with the measured rates.

The inclusive event rate from a target material is essentially the product of

the cross section and luminosity integrated over the experimental acceptance. The

total rate is the sum of rates from all target layers. Since for each layer the rate is
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approximately proportional to the thickness of the layer 3, the relation between the

total inclusive rate and the packing fraction is approximately linear:

p.f. = offset + rate× slope. (7.1)

Hence, one needs to perform simulations for two values of packing fraction in

order to determine the offset and slope of Equation 7.1. It is convenient to choose

the two reference values of the packing fraction to be 40% and 60%. Additionally,

to avoid a systematic uncertainty related to absolute normalization we normalize

ND3 rate by carbon rate. The packing fraction is obtained by linear interpolation:

p.f. =
(r − r40)40 + (r60 − r)60

r60 − r40
%, (7.2)

where r is the ratio of the 15ND3 rate to carbon rate as measured in data, and r40

and r60 are model ratios assuming packing fraction of 40% and 60%, correspondingly.

7.5.2 Event selection

The data were cut on the number of Čerenkov photoelectrons (hcer npe > 2) for

pion rejection. Both Monte Carlo and data were also cut on the scattered electron

energy (2880 < E ′ < 3100 MeV) to emphasize the quasielastic kinematics. The

stick 3 data were additionally cut on the horizontal raster position (beamx > 0) to

3There are nonlinear effects due to thickness-dependent radiative energy losses. However, they
are of the order of 1% and can be neglected here.
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eliminate the contribution from the side wall (see Section 7.6.3 for details).

7.5.3 Procedure and results

The calculation of the packing fraction was performed separately for two different

target inserts with different material loads (“stick 3” and “stick 4”). For each insert,

the entire set of 15ND3 and carbon data was replayed in the single-arm mode

of the analyzer (with the neutron detector side ignored). Then a cut processor

counted events that survived the imposed cuts 4. The inclusive event rate was

normalized by dead-time corrected charge (provided by syncfilter output), HMS

trigger efficiency, and the tracking efficiency. Finally, the 15ND3/carbon rate ratio

was formed.

The data ratio was compared to simulated 5 ratios with packing fraction of

40% and 60%. The ratios are shown in Figure 7.5(a). As one can see, the shapes

of the E ′-dependences for different packing fractions are practically identical, which

confirms that nonlinear effects due to radiation are small.

The packing fraction was extracted from these ratios using Equation 7.2. The

scatter of the packing fraction values over E ′ characterizes systematic and statistical

accuracy of the measurement. The statistically weighted average over all E ′ bins

was taken as the final result for the packing fraction. The systematic error contained

two contributions (added in quadrature): scatter in E ′ bins (3.2% for both sticks)

4The events were counted in 32 uniform E ′ bins, covering range from 2660 MeV to 3140 MeV,
to study the systematic errors.

5see Section 6.4 for a description of the simulation package
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and scatter in inclusive rates over time (0.85% for stick 3 and 2.6% for stick 4). The

final results are: 51.2± 3.3% for stick 3 and 46.7± 4.1% for stick 4.

7.6 Dilution factor

Since the target material is not pure deuterium, in addition to deuteron events one

has contributions from unpolarized scattering on ammonia’s nitrogen, liquid helium

in the target cell, NMR coils, target windows etc. As a result, the asymmetry is

“washed out” or “diluted”. The asymmetry for scattering from all materials (εall)

is:

εall =
N+

all −N−
all

N−
all +N+

all

, (7.3)

The total rate Nall is the sum of rates of polarized and unpolarized contributions,

Np and Nu. If we take into account that the unpolarized rates does not depend on

the electron helicity, the expression (7.3) can be transformed to:

εall =
N+

p +N+
u −N−

p −N−
u

N+
p +N−

u +N−
p +N+

u

=
N+

p −N−
p

N+
p +N−

p +N+
u +N−

u

=
N+

p −N−
p

N+
p +N−

p

·
N+

p +N−
p

N+
p +N−

p +N+
u +N−

u

= ε
Np

Nall

= εf, (7.4)

where ε is the asymmetry of scattering from the pure material and the dilution

factor f is the ratio of the polarized yield to the total yield.
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For the purposes of our experiment it is convenient to express polarized and

unpolarized yields of the Equation 7.4 via rates of specific target materials. The

only polarized material in the target is the deuterium6 and thus Np = Nd. The

unpolarized yield can be broken into contributions from the ammonia nitrogen NN ,

helium inside the target cell N int
He , helium outside the target cell N ext

He and target walls

NW . Since the relative ratio of ammonia and internal helium yields is determined

by the packing fraction, we can rewrite (7.4) as:

f =
Nd p.f.

N ext
He +Nd p.f.+NNp.f.+N int

He(1− p.f.)
, (7.5)

where the yields for materials inside the target cell are calculated assuming that

they fill up its entire volume.

Since yields are determined by kinematic-dependent scattering cross sections,

the dilution factor is also a function of kinematic variables. The coincidence event

rate measured in the experiment cannot be separated into contributions from specific

materials. Therefore, for a proper determination of the experimental dilution factor

one needs to run Monte Carlo simulations.

The simulations were performed using the customized version of MCEEP (see

Section 6.5). The simulation was run separately for sticks 3 and 4 because of their

different material thicknesses (due to different packing fractions and different orien-

tation with respect to the beam).

6In reality, the nitrogen also carries some polarization, but it does not contribute to the neutron
asymmetry. See page 49.
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7.6.1 Pion contamination

In electron-nucleon scattering the virtual photon may excite the nucleon to a res-

onant state which then decays into a nucleon with an emission of a pion. Such

reaction mechanism is known as pion electroproduction. For a coincidence electron-

neutron measurement only two such reactions are of interest: γ∗ + p→ n+ π+ and

γ∗ + n→ n+ π0.

Most of events coming from these reaction are suppressed by kinematic cuts,

in particular by the cut on the invariant mass, |W − MN | < 70 MeV, where

MN = 939 MeV is the nucleon mass. However, some of pion events because of Fermi

broadening may have kinematics similar to that of the quasielastic scattering and

thus contaminate the measured asymmetry. It has been experimentally verified that

these events do not carry any statistically significant asymmetry. Therefore, their

contribution (found to be 0.44%) can be included into the dilution factor calculation.

7.6.2 Misorientation of the 4K shield

In the beginning of the data analysis it has been found that the distribution of the

events along the beam direction has strange shoulders outside the target cup (see

Figure 7.6) at |ZBEAM | > 3 cm . It has been established that these shoulders were

due to a misorientation of the 4K shield (which surrounds the tailpiece with the

target insert) such that for some raster positions the beam was coming not through

the thin window in the shield, but rather through the shield itself, thus transversing
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an order of magnitude larger amount of material than expected (see Figure 7.7).

A Geant 4 simulation (see below for details) showed that the effective thickness of

the 4K shield was 1.822 mm for stick 3 and 1.874 mm for stick 4. The majority of

these events were eliminated by the standard analysis cut |ZBEAM < 3.2 cm|. The

residual contribution from the 4K shield events was estimated by fitting a sum of

three asymmetric Gaussians to the ZBEAM spectrum (see Figure 7.6) and was found

to be 0.23%± 0.05%. This correction was applied to the dilution factor.

7.6.3 Stick 3 rotation

When stick 3 was extracted, we found that the radiation damage pattern on the

material was consistent with an anomalous counter-clockwise rotation of the insert

about the vertical axis. Obviously, such a rotation affects the thicknesses of the

material transversed by the beam and therefore the dilution factor. In order to

account for this effect, a C++ program was written based on Geant 4 libraries [52].

The program calculates average thickness of each target material in the beam’s

path and incorporates horizontal and vertical displacement and a rotation about

the vertical axis of the target insert.

The angle of the stick rotation was determined by the 4 mm horizontal dis-

placement of the hole target to be 15.8◦. However, since the raster calibrations are

only accurate to about 1 mm, there is a 3.8◦ uncertainty in the rotation angle.

The mutual arrangement of the beam and the rotated stick is shown in Fig-
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Figure 7.6: The ZBEAM distribution (black) decomposed into contributions from the
target cup contents (red) and upstream and downstream 4K shield windows (green).
The boundaries of the standard analysis cut is shown with dash-dotted lines. See
text for details.
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Figure 7.7: A top view of the cup (yellow) inside the 4K shield (red). The rastered
beam is shown in green. The beam is entering the target on the top.

ures 7.7 and 7.8. As one can see, apart from a change in the effective thicknesses for

target materials inside the cup, the stick rotation gives rise to a contribution from

the cup side walls.

The simulations were run with rotation angles of 11.94◦, 15.82◦ and 19.70◦.

The target thicknesses obtained are summarized in Table 7.4.
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Figure 7.8: Target insert rotation.
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Table 7.4: Effective thicknesses (mm) for various target materials.

Material Stick and rotation
s3(0◦) s4(11.94◦) s4(15.82◦) s4(19.70◦)

4K Shield 1.822 1.874 1.874 1.874
Drift Space 49.927 52.860 52.860 52.860
Tail Window 0.208 0.213 0.213 0.213
LHe 11.535 10.931 11.010 11.035
Cup Window 0.051 0.048 0.047 0.046
Cup Wall 0 0.573 0.637 0.687
Cup Contents 29.201 28.384 28.243 28.159

7.6.4 Results

Material thicknesses in Table 7.4 together with packing fractions (51.2% for stick 3

and 46.7% for stick 4) provide the necessary input for the MCEEP simulations. Simu-

lation results for the nominal rotation (15.8◦) of stick 3 are summarized in Table 7.5.

Table 7.5: Simulated (e,e’n) rates from various target materials for dilution factor
calculation (stick 3).

Target Thickness Normalization Radiation Luminosity Rate
(cm) factor∗ length (%) (µA · g/cm2) (per 100 nC)

2H 1.581 1.0 0.38 0.04775 0.739
He 2.419 0.85 0.37 0.02058 0.215
15N 1.581 0.55 2.93 0.11937 0.183
Al 0.014 0.50 0.157 0.00754 0.009
Cu 0.01 0.50 0.70 0.00896 0.017
Ni 0.0043 0.50 0.30 0.00383 0.007
inelastics – – – – 0.005
total – – 5.96∗∗ – 1.175
∗ See Section 6.5.2 for definition.
∗∗ Includes materials not seen by HMS (and therefore not included into the table).

Using Table 7.4 it is straightforward to obtain rates for stick 4 and for alternate
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rotations of stick 3. The dilution factor of the stick 3 is 62.7% for the nominal angle

and 62.8% for 11.94◦, i.e. the uncertainty in the rotation angle is about 0.1% relative.

For stick 4 the result is 62.6%. The uncertainty in the dilution factor was estimated

by comparing the measured rates with Monte Carlo predictions and was found to be

2.6% relative. With this, for the statistically weighted dilution factor for the entire

data set one has 62.6± 1.6%.

7.7 Corrections

Before the experimental asymmetry can be used for extraction of the Gn
E, it needs

to be corrected for dilution and/or contamination from unwanted background (ac-

cidental coincidences, multi-step reactions, misidentified protons), loss of events in

electronics (electronics deadtime) and bias of reaction kinematics due to electron

energy loss by radiation.

7.7.1 Radiative corrections

In the analysis of the experimental data we deal with measured values of the reaction

kinematics. These, however, in general may differ from the actual, or vertex kine-

matic quantities. The main mechanism responsible for this difference is radiative

energy loss by both incident and scattered electron.

Since the bremsstrahlung photons are not observed, one needs again to re-

sort to simulations to estimate the effect of these energy losses and correct for
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it. The MCEEP imitates the effects of internal and external radiation by sampling

bremsstrahlung photons according to the bremsstrahlung spectrum. The photons

are emitted along the direction of either the incident or the outgoing electron (peak-

ing approximation). Radiative effects can be turned off by disabling the corre-

sponding option in the input file. The value of the acceptance averaged Monte

Carlo asymmetry with the radiation off is then compared with the nominal value

(radiation on) and the ratio between these two gives the desired radiative correction.

This procedure was done separately for internal and external radiative effects

and yielded a 0.55 ± 0.50% correction for the internal radiation. The correction

due to the external radiation was found small due to the statistical Monte Carlo

uncertainty of 0.50%

7.7.2 Paddle inefficiency

The particle identification algorithm was based on the hit in one of the paddle

planes. The probability for a proton to produce a hit in a paddle plane (i.e. paddle

efficiency) is very high, but still below 100%. A proton that did not fire a paddle

was likely to be identified as a neutron. As the protons have the asymmetry of

the opposite sign (compared to that of the neutrons) and have a larger quasielastic

scattering cross section, even a small paddle inefficiency can result in a sizeable

contamination of the neutron asymmetry.

The contribution of misidentified protons to the total measured neutron asym-
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metry A can be found as:

A =
N+

n −N−
n +N+

p −N−
p

Nn +Np

=

=
NnAn +NpAp

Nn +Np

≈ An +
Np

Nn

Ap, (7.6)

where N
+(−)
n(p) is neutron (proton) yield for positive (negative) beam helicity, An(p) is

the “clean” (uncontaminated) asymmetry of neutrons (protons), and we used the

fact that Np ¿ Nn.

Expressing the combined inefficiency of paddle planes ε through individual

plane efficiencies ε1,2 we obtain the following formula for the asymmetry contami-

nation ∆A:

∆A = (1− ε1)(1− ε2)
Np

Nn

Ap. (7.7)

The paddle plane efficiencies were calculated using 2-out-of-3 (one paddle +

one bar) events in the first three detector planes and were found to be 96.0% and

98.3% for planes 1 and 2, correspondingly. The Np/Nn ratio was extracted from

our experimental data. It was found that initial proton-to-neutron ratio of 6:1 was

reduced by the θnq < 0.08 cut to 1:2. Finally, the proton asymmetry Ap was also

taken from our experimental data to be −15.2%. Plugging these numbers into the

Equation 7.7 we obtained the proton contamination correction of order 50 ppm,

i.e. about 1% of the size of the statistical error of the measured asymmetry, and
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therefore negligible.

7.7.3 Electronics deadtime

When the counting rates in detectors are high, the data acquisition system may

start losing events. This is known as deadtime. The experimental deadtime can

be divided into computer deadtime (loss of events due to the BUSY status of the

DAQ) and electronics deadtime. The computer deadtime is taken care of by the

data stream preprocessor (see Section 6.2) and thus we only need to correct for the

electronics deadtime.

The loss of events in electronics occurs due to overlap of signals that have a

finite time width. Since the principal trigger in the experiment was the HMS trigger,

the neutron detector electronics did not contribute to the deadtime.

The HMS electronics generated HMS gates of 4 different widths: 30 ns, 60 ns,

90 ns and 120 ns. By observing the dependence of the event rate on the gate width

and extrapolating it to 0 ns one can find the “ideal” HMS rate. The deadtime is

then the difference between the 30 ns gate rate and this 0 ns extrapolated value.

Three randomly chosen runs were studied. Typical results are shown in Fig-

ure 7.9. The values of the correction is of the order of 15-30 ppm and thus is

negligible given the statistical accuracy of the experiment.
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Figure 7.9: The number of HMS events as a function of the gate width (run 43021).

7.7.4 Accidental background subtraction

Although most of the unwanted background is eliminated from the analyzed data

by the coincidence timing cut (−5 ns < ∆t < 3 ns), some of it survives this and

other cuts. As the asymmetry associated with the background may (and most likely

will) differ from the neutron asymmetry, it is desirable to estimate the level of the

background and correct for its effects.

It is straightforward to calculate the fraction of accidental hits under the co-

incidence peak. This can be done by examination of the hit meantime spectra (see

Figure 7.10). Determination of the number of accidental tracks within the coinci-

dence window requires more sophistication, because the relation between hits and

tracks is very non-trivial. There are generally three possibilities. An accidental hit
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can:

• form a new track

• combine with an existing track

• destroy an existing track by pushing its averages outside the cut windows.

Figure 7.10: Hits meantime distribution. Note that the tail of delayed events after
the coincidence peak.

It is hard to estimate the relative contributions of these mechanisms on an-

alytic grounds. Instead, a simpler approach was adopted. It was assumed, that
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the relationship between the total number of tracks and the number of accidental

hits is approximately linear (for reasonably low background). Then the number of

“pure” tracks (no accidentals) can be obtained by extrapolating the dependence of

the track number on the level of background hits to zero background. The number

of background hits was controlled by adding extra coincidence windows.

Two such windows were used, “early 1” (−21.5 ns < ∆t < −11.0 ns) and

“early 2” (−32.0 ns < ∆t < −21.5 ns), both having the same width as the nominal

coincidence window (−3 ns < ∆t < 7.5 ns). The results are shown in Figure 7.11. A

straight line fit to the data points shows that our assumption of a linear relationship

between the number of background hits and the number of resulting tracks is valid.

The relative background (defined as the ratio of background to “clean” coinci-

dence tracks) is slightly different from the relative excess (ratio of background tracks

to all tracks) plotted in Figure 7.11. The relative background averages over the entire

sample of analyzed data (16 runs) are given in the Table 7.6. The global average was

calculated from background in windows early1, early2 and early12 using weighting

factors of 30%, 30% and 40% respectively, and was found to be 0.51± 0.23%.

Table 7.6: Background study results. ”Early12” refers to tracks with both early1
and early2 windows open. The numbers are relative backgrounds (%), as defined in
the text.

counts early 1 early 2 early12 average error
44583 0.62 0.43 0.49 0.51 0.23
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Figure 7.11: Relative track excess (i.e. relative change in the number of tracks due to
additional background) versus the background level. The three points correspond to
normal data (coincidence window only), one extra “early” window, and both “early”
windows.

7.7.5 Multi-step reactions contamination

The vast majority of neutrons detected in the neutron detector come from quasielas-

tic ~d(~e, e′n) scattering in the target material. However, a small fraction of neutron

events are brought up by charge exchange reactions in the lead curtain and the

target material. Additionally, decay of pions generated in the lead produces pho-

tons that cannot be distinguished from neutrons. Contributions from these reaction

mechanisms carry proton asymmetry, which has the opposite sign compared to the

neutron one, and therefore it is important to correct for these effects.

In the analysis of E93-026 the following multi-step reactions were investigated:
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• in the lead shielding

– d(e, e′p) followed by 208Pb(p, n)

– d(e, e′p) followed by 208Pb(p, π0) and π0 → γγ

• in the target material

– d(e, e′p) followed by 15N(p, n)

Charge exchange in the deuteron itself is included in the theoretical calcula-

tions as a part of final state interactions and does not require a correction. Charge

exchange in other target materials does contribute to the scattering asymmetry, but

is negligible compared to the nitrogen.

Charge exchange in the lead

The size of the contribution of the charge exchange in the lead was estimated using

Monte Carlo simulations. For proton kinematics, actual distributions from experi-

mental data were used. The proton energy was corrected for the energy loss suffered

in the lead. The emitted neutron was generated using 208Pb(p, n) cross section from

the charge exchange studies of the Basel Gn
M experiment [73]. Since the angular

dependence of the 208Pb(p, n) cross section is not known, two extreme cases were

considered:

• same angular dependence as free p− n scattering

• no angular dependence
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The straight average of the results for the two cases was used in the simulation.

The difference between the two answers (26.7%) was included in the systematic

uncertainty.

For simplicity, the neutron detector in the simulations was replaced with a

cube of dimensions given by the enclosure of all bar planes except the extended

top of plane 3. Neutron detection efficiency ε was calculated as a function of the

pathlength x, ε = exp(−αx). The constant α was calculated using the KSUVAX

program [71] and was found to be independent of neutron energy (within 10%) above

the threshold energy of 55 MeV.

As we noted earlier, the neutrons generated by charge exchange carry the pro-

ton asymmetry, therefore the simulation used actual proton asymmetries measured

in E93-026 as functions of various kinematic variables.

The resulting correction is −3.15% ± 3.01%. The error is dominated by the

uncertainty in the charge exchange cross-section [74].

7.8 Results

7.8.1 Extraction of Gn
E

The Gn
E extraction procedure is very straightforward. First, one calculates run by

run asymmetries (see Figure 7.13) and their statistically weighted average. Then

all relevant corrections are applied (accidental background, radiative effects, charge
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exchange etc.). In parallel, one averages the theoretical asymmetry over the detector

acceptance for different values of Gn
E Finally, the Gn

E is found as the solution of

the equation Aexp = Atheor(G
n
E) (see Figure 7.12).

The time evolution of neutron asymmetries is shown in Figure 7.13(a). In

order to improve the statistical resolution, group averages (rather than run-by-run

asymmetries) are plotted there, where the groups are defined by changes in beam

and target polarizations. The scatter of individual points is purely statistical, as

confirmed by Figure 7.13(b) where a χ2 distribution for run-by-run asymmetries is

plotted in comparison with the theoretical curve.

The asymmetry was also calculated for proton events. Since proton form

factors are better known at our kinematics, proton asymmetries can be compared

to the theoretical predictions, thus providing a check of experimental systematics.

Also, we have much (roughly by a factor of six) more proton events thatn neutron

ones, and they carry a larger asymmetry, so the statistical resolution is much better

for protons. The results of the proton asymmetry study are shown in Figure 7.14.

The agreement between the theoretical calculations and experimentally measured

proton asymmetries is excellent.

The global average for the neutron asymmetry (corrected for beam and target

polarizations only) was found to be 4.031±0.471%. After applying the dilution factor

and other corrections it becomes 6.641±0.776%. The linear interpolation 7 between

the AV
ed values for Gn

E = 1.1 GGalster and Gn
E = 1.3 GGalster gives 0.0423 ± 0.00506

7Higher order effects are smaller than 0.05% (relative) and thus need not be considered.
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Figure 7.12: The Gn
E extraction plot. The charge form factor of the neutron is

plotted as the function of the measured asymmetry. The solid line is the fit to
the sampled points (black) points. The red point is the corrected experimental
asymmetry (6.64± 0.78%).
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Figure 7.13: Statistical properties of neutron asymmetries: (a)
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global statistically weighted average), (b) distribution of χ2i = [(εi−〈ε〉)/∆εi]2 com-
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Figure 7.14: Proton asymmetries: Monte Carlo (solid line) compared to data (open
circles).

for the Gn
E (1.172 GGalster ). When calculating the theoretical asymmetries, the

dipole parametrization for the magnetic form factor of the neutron was assumed.

However, recent measurement indicate that the true value of Gn
M deviates from the

dipole parametrization: Gn
M/GD = 1.072±0.014 [75]. Monte Carlo simulations with

different values of Gn
M showed that its effect on the Gn

E is linear. With this, the

final value for the Gn
E becomes:

Gn
E = 0.0454± 0.0054, (7.8)

where the uncertainty is statistical. Systematic uncertainties will be considered in

the remainder of the section.
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7.8.2 Kinematic uncertainties

The leading kinematic uncertainty is due to the horizontal position of the neutron

detector. The initial comparison between ypos (i.e. horizontal position of the nucleon

track at the 3rd plane) spectra of the data and the Monte Carlo revealed a 4 cm

discrepancy which was attributed to a bias in the survey measurement of the neutron

detector angle. In order to determine the impact of this uncertainty, the data

analysis was repeated with a shifted neutron detector position.

This showed that a 5 mrad shift in the neutron detector angle changes the AV
ed

(and therefore, Gn
E ) by 2.4%. Since a 4 cm shift in ypos corresponds to a 6.4 mrad

shift in the angle, the uncertainty due to the neutron detector position is 3.22%.

The next largest kinematic uncertainty is the one due to the field angle. This

quantity was measured by surveyors to the accuracy of 0.1◦, which propagates to

0.99% uncertainty in AV
ed, as found by Monte Carlo simulation with a shifted target

field orientation. Other kinematic uncertainties were also studied using Monte Carlo

simulations and were found to have a small impact (see Table 7.7).

7.8.3 Other experimental uncertainties

The combined kinematic uncertainty together with other sources of the systematic

error are given the Table 7.8. The largest uncertainty is the one related to the target

polarization (4.6%). Other important contributions include the combined kinematic

uncertainty, beam polarization error and the charge exchange uncertainty.
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Table 7.7: Kinematic uncertainties.

quantity original error propagated error
beam energy 1.7 MeV 0.29%
spectrometer momentum 2.8 MeV 0.36%
spectrometer angle 1 mrad 0.6%
target field 0.1◦ 0.99%
vertical position of the nDet 4.8 mrad 0.58%
horizontal position of the nDet 6.4 mrad 3.22%
total — 3.47%

Table 7.8: Systematic uncertainties.

quantity relative error
target polarization 4.60%
beam polarization 3.30%
dilution factor 2.63%
charge exchange 3.01%
magnetic form factor 2.29%
total kinematic uncertainty 3.47%
radiative correction 0.50%
accidental background 0.23%
total 8.10%
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Since the asymmetry depends not only on the charge form factor of the neu-

tron, but also on the magnetic one, which is known with a limited accuracy, the

Gn
M uncertainty of 2.29% must also be included. The overall error is obtained by

combining all partial errors in quadrature and is found to be 8.10%. With this, the

final result of the experiment becomes:

Gn
E(Q

2 = 1.0) = 0.0454± 0.0054(stat)± 0.0037(sys). (7.9)

7.8.4 Reaction mechanism dependence

In order to investigate the effects of various aspects of the reaction mechanism on the

extracted value of Gn
E the extraction procedure was repeated with the values of the

theoretical asymmetries calculated in two simplified models: PWIA+RC (relativis-

tic impulse approximation) and FSI+RC (the former plus final state interactions).

Since we are only interested in the relative size of various nuclear corrections and

since the relation between the extracted Gn
E and the model value of Gn

M is linear,

the dipole parametrization was used for Gn
M for all three models.

The results of this study are presented in Table 7.9. The effects of the meson

exchange currents and isobar configurations are thus small (of order of 2%), whereas

the effect of the final state interactions is somewhat bigger (∼ 5%).

These numbers compare very favorably to analogous estimates for the un-

polarized measurements, where the effects of nuclear corrections of 10 − 30% are
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typical. Also, comparison with calculations for Q2 = 0.5 (10.5% difference from the

full calculation for PWBA+RC and 2.4% for FSI+RC) show that these corrections

become relatively less important at higher Q2.

The impact of the choice of the N − N potential on the AV
ed is negligible for

quasifree kinematics [36].

Table 7.9: Reaction mechanism dependence of Gn
E All calculations assume dipole

parametrization for Gn
M .
model Gn

E impact(%)
Full 0.0423 –
PWBA + RC 0.0397 6.1
FSI + RC 0.0415 1.9

7.8.5 Parametrization of Gn
E

Traditionally, Gn
E is parametrized using the so-called Galster parametrization

GGalster = −
aµnτ

1 + bτ
GD, (7.10)

with a = 1, b = 5.6, GD = (1+Q2/Λ2)−2 and Λ = 0.71 (GeV/c)2. This parametriza-

tion, based on low-Q2 data from early 1970’s [16], continues to work well even for

higher Q2 data. However, the improved precision data from this experiment and the

results of a recent recoil polarimetry measurement in JLab Hall C [27] now reveal a

sizeable deviation from the conventional Galster fit.

We performed a fit to the world Gn
E database using the traditional Galster

form (7.10). The fitting procedure yielded a = 0.86 ± 0.04 and b = 3.06 ± 0.46
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with the χ2 per degree of freedom of 0.71. The charge radius measurement [10]

was included into the fitted database to constrain the slope of Gn
E at low Q2. The

comparison of the fit with the experimental data can be seen in Figure 7.15.
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Figure 7.15: Results of the 2001 run of E93-026 (2001 run – red stars, 1998 run –
cyan triangle) compared with other experimental data (see Figure 8.7 for description
of the markers). The solid line is the improved Galster fit of Section 7.8.5.
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Chapter 8

Theoretical predictions of Gn
E

8.1 Asymptotic behavior

Modern physics sees the nucleon as three valence quarks dressed with a sea of quark-

antiquark pairs, interacting by means of gluon exchange. The ultimate description

of the nucleon is to be given by quantum chromodynamics (QCD). At the low and

intermediate momentum transfers the QCD calculations are not feasible (due to ex-

treme nonlinearity of the interaction). At the high momentum transfers, however,

the quarks behave as free particles (this feature of QCD is known as asymptotic

freedom). Therefore, for large Q2 the running coupling constant of the strong inter-

action αs(Q
2) becomes small and perturbative techniques can be applied.

8.1.1 Dimensional scaling laws

Certain conclusions about the asymptotic behavior of the form factors can be made

without performing the actual perturbative QCD (pQCD) calculations. Consider
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high energy e − N scattering. In order for the nucleon to keep its identity and

remain in the ground state after the interaction (i.e. for the scattering to occur

elastically), it is necessary that all the quarks continue to move collinearly after the

virtual photon is absorbed. Therefore, the struck quark must share its momentum

with the other constituents by means of gluon exchange. In the most general case

of n constituents, this involves n − 1 gluon exchanges. As each gluon propagator

brings in a factor of 1/Q2, this means that the scattering amplitude would go like

1/(Q2)n−1. Hence the Fock states involving gluons and sea quarks are suppressed

compared to the leading order contribution from two gluon exchange between the

three valence quarks (Figure 8.1).

Figure 8.1: Elastic e−N scattering amplitude at high Q2.

Since a nucleon helicity flip requires a flip of helicity of a nearly massless quark,

the spin-flip amplitude (described by the Pauli form factor F2) is suppressed relative

to the non-flip one (described by the Dirac form factor F1). Analyticity suggests that

the suppression factor depends rather on Q2 than on Q, and a natural assumption

(but not a rigorous prediction) is 1/Q2. With this, the asymptotic behavior for the
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Dirac and Pauli form factors becomes [76]

F1 ∼ 1/Q4, (8.1)

F2 ∼ F1/Q
2. (8.2)

The equations 8.1 and 8.2 are known as dimensional scaling laws.

If one expresses F1 and F2 in terms of Sachs form factors, one arrives at the

1/Q4 asymptotic dependence for both GE and GM .

8.1.2 Perturbative QCD calculations.

Magnetic form factors

The dimensional scaling laws only give the leading power asymptotic behavior for

Q2 → ∞. More information (normalizations, logarithmic corrections, etc.) can be

obtained by performing the actual pQCD calculations.

The perturbative approach is based on QCD factorization theorems, which

allow scale separation between the short-distance and long-distance motion of the

partons. The short-distance (high momentum) motion corresponds to hard (per-

turbative) physics, while long-distance (low momentum) motion corresponds to soft

(non-perturbative) physics.
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For the helicity conserving form factor of the nucleon1 one has in pQCD :

F1(Q
2) =

∫ 1

0

[dxi]

∫ 1

0

[dyi]φ
†(xi, Q)TH(xi, yi, Q)φ(yi, Q), (8.3)

where TH(xi, yi, Q) is the hard scattering amplitude, φ(xi, Q) is the minimum Fock-

state wave function integrated over transverse momenta, xi is the longitudinal mo-

mentum fraction carried by the i-th valence quark, and [dxi] = dx1dx2dx3δ(1−
∑

i xi).

It is straightforward to express TH in terms of momentum fractions xi. The situa-

tion is more complicated with the soft wavefunction φ(yi, Q). By using QCD sum

rules, one can extract the moments of this wavefunction from the experimental data.

Since only a finite number of moments is known, such parameterizations are model-

dependent. If one is only interested in the logarithmic corrections, one can use an

expansion of φ(xi, Q) in a series of eigensolutions of the evolution equation [77].

φ(xi, Q) = x1x2x3

∞
∑

n=0

anφn(xi)

(

ln
Q2

Λ2

)−γn

, (8.4)

where Λ is the QCD scale parameter, and an and γn are some constants. Calculations

performed with the soft wavefunction (8.4) give for the form factor F1:

F1(Q
2) =

32π2

9

α2s(Q
2)

Q4

∑

n,m

bn,m

(

ln
Q2

Λ2

)−γn−γm

[1 +O(αs(Q
2),m/Q)]. (8.5)

Since the helicity-flip amplitude (associated with the Pauli form factor F2) is sup-

1Or more generally, any baryon.
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pressed for high Q2, for the leading term of the left-hand side of the Equation 8.5

can be replaced with GM :

GM(Q2)→ 32π2

9
C2

α2s(Q
2)

Q4

(

ln
Q2

Λ2

)−4/3β
(e|| − e−||), (8.6)

where e|| (e−||) is the mean charge of quarks with helicity parallel (antiparallel)

to the baryon’s helicity (for nucleons ep|| = 1, ep−|| = 0, en|| = −1
3
and en−|| =

1
3
),

β = 11− (2/3)nflavor.

Electric form factors

The contribution of the Pauli form factor F2 to the electric form factor GE is am-

plified by a factor of Q2 and therefore cannot be neglected in the limit of Q2 →∞.

As we have already mentioned earlier, F2 is related to the helicity-flip amplitude.

There are two mechanisms of a hadron helicity flip: quark masses and quark orbital

angular momentum. Since the quark masses are small, it is generally believed that

the latter mechanism is dominant.

Therefore, calculating the Pauli form factor F2 requires augmentation of the

standard formalism with the parton orbital momentum. This technology has been

recently developed by Burkardt, Ji and Yuan [78]. Based on it, Belitsky, Ji and

Yuan have performed the calculations [79]. By using so called collinear expansion

(expansion of the hard part of the diagram in k2i /Q
2, where ki are quark transverse
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Figure 8.2: A two-gluon exchange hard scattering diagram for F p
2 . Permutations

and mirror images need to be added.

momenta), they express F p
2 in terms of twist-3 and 4 amplitudes Φ3, Φ4 and Ψ4 as

F p
2 (Q

2) =

∫

[dx][dy] {x3Φ4(x1, x2, x3)TΦ({x}, {y})

+x1Ψ4(x2, x1, x3)TΨ({x}, {y})Φ3(y1, y2, y3)} , (8.7)

where {x} = (x1, x2, x3), the square brackets have the same meaning as in (8.3), and

TΨ,Φ are hard scattering diagrams (Figure 8.2 and its permutations and reflections).

The exact solutions for the wavefunctions Φ3, Φ4 and Ψ4 can only be obtained by

solving QCD non-perturbatively. However, their asymptotic form for large Q2 is

known [80]:

Φ3 ∼ x1x2x3,Φ4 ∼ x1x2,Ψ4 ∼ x1x3. (8.8)

When trying to calculate (8.7) with wavefunctions (8.8) one ends up with diver-
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gent (due to end-point singularities) integrals. The authors argue that higher-order

pQCD resummation (the Sudakov form factor) provides an effective cut-off for the

integrals at small x ∼ Λ2/Q2, where Λ is a soft scale parameter related to the size

of the nucleon. As a result, the Pauli form factor receives an additional logarith-

mic correction compared to the Dirac form factor, and the high-Q2 prediction (8.2)

modifies to:

Q2F2(Q
2)/F1(Q

2) ∼ ln2+8/(9β)Q2/Λ2. (8.9)

where for practical purposes the 8/(9β) term can be neglected.

8.1.3 Comparison with experiment

At the moment, accurate high-Q2 data is available only for Gp
M . Gn

M and Gp
E have

only been measured at moderate Q2 (up to 4 and 6 (GeV/c)2 correspondingly),

while Gn
E is yet to be explored at Q2 > 1.5 (GeV/c)2.

The Figure 8.3 shows the magnetic form factor of the proton (for convenience

plotted as Q4Gp
M). The asymptotic behavior appears to set in at approximately

5 (GeV/c)2 (the slow variations observable at high Q2 can be ascribed to log cor-

rections).

Whether or not this means that pQCD is valid at the Q2 of a few (GeV/c)2,

is still an open question. Skeptics believe that the agreement between the Gp
M

behavior and the pQCD predictions is mere luck. It has even been claimed that no

reasonable wavefunction can reproduce the correct normalization of the form factors

157



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30

G
p M

(Q
2 )Q

4

Q2 [(GeV/c)2]

ANDIVAHIS94
WALKER94

SILL93
BOSTED92
BOSTED90
WALKER89

Figure 8.3: Asymptotic behavior of the proton magnetic form factor. The data are:
red horizontal bars [81], green x’s [82], blue asterisks [83], magenta squares [84],
cyan squares [85] and yellow circles [86].

[87]. Carlson and Gross have shown that such a wavefunction does exist, although

our present level of knowledge is not sufficient to tell whether this wavefunction

realistically describes the actual distribution of the parton momentum fractions in

the nucleon [88].

This discussion was further stimulated by recent results on the form factor ratio

of the proton, Gp
E/µpG

p
M [89], [90], [91], which exhibit a linear decline2 of the ratio

from 1 at 0 down to 0.27 at 5.5 (GeV/c)2. This corresponds to Q2F2/F1 continuing

to climb up, rather than setting in accordance with the näıve pQCD expectation

2It is probably worth mentioning here that these new results badly disagree with the older ones,
obtained with the Rosenbluth separation (see [92] for a review) where this ratio stays roughly
constant up to Q2 = 6 (GeV/c)2. A number of theorists suggested that the disagreement is due
to the 2γ exchange [93], [94].
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Figure 8.4: Recent data on the proton form factor ratio (F p
2 /F

p
1 ) compared with

the traditional pQCD scaling ∼ 1/Q2 and helicity non-conserving scaling ∼ 1/Q.
The data points are: open squares [89], asterisks [90], filled squares [91]. The solid
line shows Ji’s scaling Q2F p

2 /F
p
1 ∼ logQ2/Λ2 [79] with the QCD scale parameter

Λ = 0.3 GeV/c.
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Q2F2/F1 ∼ 1 (see Figure 8.4). One possible explanation is that the truly asymptotic

regime does not occur until much higher Q2 (of at least 10 (GeV/c)2), and the early

scaling of Gp
M is accidental.

As an alternative explanation, some theorists have pointed to the violation

of hadron helicity conservation (HHC) rule [95]. The HHC rule is a natural conse-

quence of the pQCD factorization scheme. The hard scattering kernel is azimuthally

symmetric to the leading order. The dependence on the azimuthal angle comes from

the quark transverse momenta, k± = (kx ± iky) = |~k⊥| exp(±iφ), which are small

compared to the large momentum transfer, |~k⊥| ∼ ΛQCD ¿ Q [96]. If the quark

orbital angular momentum in the initial and the final states differs by ∆m units, the

integrand in the pQCD factorization integral will receive a factor of exp(i∆mφ). In

order to survive the integration by dφ this factor needs to be cancelled by a corre-

sponding term from the expansion of the hard kernel in the transverse momentum.

As a result, the contribution from the quark orbital angular momentum (OAM)

becomes suppressed by (k±⊥/Q)∆m ∼ (ΛQCD/Q)∆m. Since quark current masses are

small and cannot flip the hadron helicity, suppression of the contribution from the

quark OAM leads to the conservation of the helicity of the hadron, i.e. the HHC

rule.

Critics of the HHC stress that despite the theoretical attraction of the HHC

rule, there are many experimental situations in which helicity conservation is not

observed [97]. Further, it is argued that by making some simple assumptions (which
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are not in conflict with the pQCD itself, but rather with the specific “asymptotic

short distance” approach used in HHC derivation) one arrives at the scaling law of

QF2/F1 ∼ const, (8.10)

which fits the observed data quite well [95], [98].

However, the result of the direct pQCD calculation by Belitsky, Ji and Yuan

described in the previous section, is also in an excellent agreement with the JLab

data. Thus, the behavior of the F2/F1 ratio for the proton can be interpreted as

a consequence of the QCD logarithmic corrections (as earlier suggested by Brod-

sky [77]) rather than an evidence in favor of the HHC violation. It should be noted

though, that the authors do not insist that the observed scaling of the JLab data

with (8.9) is a truly asymptotic behavior. They remark that their calculation of

Q6F p
2 (Q

2) with asymptotic wavefunctions of [99] recovers only 1/3 of the JLab ex-

perimental value at Q2 = 5 (GeV/c)2. From that they conclude that higher-order

corrections and higher-twist effects are still important at this kinematics, and sug-

gest that the scaling may be a precocious one which owes its existence to some subtle

cancellations in the ratio.
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8.2 Dispersion relations

In the theory of functions of a complex variable, the analyticity of a function re-

quires its real and imaginary parts to be related to each other by means of so called

dispersion relations (DR). If one defines the four momentum transfer on the complex

plane and imposes some constraints due to the properties of the scattering matrix

and the analytic behavior of the scattering amplitudes (so called unitarity and su-

perconvergence requirements), then one arrives to a set of integral equations relating

elastic form factors F1,2 to the absorptive ones F1,2 [4]:

F1,2(Q
2) = F1,2(0)−

Q2

π

∫ ∞

4m2π

dz
F1,2(z)

z(z +Q2 − iε) . (8.11)

The relations (8.11) are also known as spectral mass representations, and the

absorptive form factors are called spectral functions. The spectral functions charac-

terize the nucleon structure as probed by a timelike (i.e. Q2 < 0) virtual photon and

contain contributions from all states coupled to the NN̄ state that can be produced

electromagnetically. Thus it is difficult to calculate the right-hand side (8.11) on

purely analytical grounds. Therefore, in order to use the dispersion relations formal-

ism for calculation of the elastic form factors, one needs to make further assumptions

about the form of the spectral functions.

The simplest way to address the dispersion relations (8.11) is by assuming

complete dominance of its right-hand side by low-lying resonances. This approach
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(known as vector meson dominance) will be discussed in the next subsection.

A recent DR analysis of the elastic form factors of the nucleon by Mergell et

al. [100] employs a more sophisticated model, which uses the extended unitarity

relation of Frazer and Fulco [101] to express the absorptive isovector form factors in

terms of the πN P-wave partial wave amplitude and the pion form factor corrected

for ρ−ω mixing. In addition to the two-pion contribution, three heavier excitations

ρ′, ρ′′ and ρ′′′ were added to the model and were found to have a significant impact.

The low-Q2 behavior of the form factor was fixed by the experimental data on

nucleon charge radii, whereas the asymptotic behavior at high-Q2 was determined

by built-in constraints from the perturbative QCD.

8.3 Vector Meson Dominance

The concept of the vector meson dominance (VMD) was introduced by Sakurai [102].

The basic idea is that the interaction of a (virtual) photon with a nucleon is dom-

inated by quark-antiquark pairs which overlap with vector meson states. In the

language of dispersion relations this means that the mass spectral functions can

be well approximated by a set of delta functions corresponding to sharp meson

resonances:

FV,S
1 (Q2) =

∑

i

Aiδ(Q
2 +m2

i ), (8.12)
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where the superscripts V, S refer to isovector (V) and isoscalar (S) form factors,

i = ρ, ω, φ... is the mesonic index, mi is the mass of the meson, and Ai are constants

depending on photon-meson and meson-nucleon coupling strengths. It is straight-

forward to see from Equation 8.11 that each delta function will result in a pole-like

term

Ai/(1 +Q2/m2). (8.13)

The pole-like form factors of VMD were very successful in describing the early (low

Q2) form factor data. In fact, the prediction of existence of the ρ meson by Nambu

in 1957 was inspired by the experimental results on the proton and neutron form

factors [103]. However, the asymptotic behavior of the monopole form factors (8.13)

is at odds with the dimensional scaling laws (8.1) and (8.2). Therefore, modern VMD

models are forced to have a correct asymptotic behavior by either using “intrinsic”

form factors or adding phenomenological terms.

The first work to include the pQCD asymptotics into a VMD model was that

of Gari and Krümpelmann [104]. They used the extended version of VMD (EVMD)

where the photon-nucleon interaction has a purely photonic part in additional to

the traditional meson poles. A complete decoupling of the φ meson from the nu-

cleon with accordance to the OZI rule3 [105] was assumed. Thus, the isovector and

3The OZI (Okubo-Zweig Iizuka) rule states that the disconnected (“hairpin”) diagrams are sup-
pressed with respect to the continuous quark line graphs. According to this rule, non-strangeness
of the nucleon means that coupling with the strange mesons (φ, K) is small [105], [106], [107],
[108].
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isoscalar form factors were determined by the ρ and ω mesons correspondingly:

F IV
1 (Q2) =

[

m2
ρ

m2
ρ +Q2

gρ
fρ

+

(

1− gρ
fρ

)]

F1(Q
2) (8.14)

κV F
IV
2 (Q2) =

[

m2
ρ

m2
ρ +Q2

κρgρ
fρ

+

(

κV −
κρgρ
fρ

)]

F2(Q
2) (8.15)

F IS
1 (Q2) =

[

m2
ω

m2
ω +Q2

gω
fω

+

(

1− gω
fω

)]

F1(Q
2) (8.16)

κV F
IS
2 (Q2) =

[

m2
ω

m2
ω +Q2

κωgω
fω

+

(

κS −
κωgω
fω

)]

F2(Q
2). (8.17)

The intrinsic Dirac and Pauli form factors were taken in a form providing the pQCD

high-Q2 behavior:

F1(Q
2) =

Λ21

Λ21 + Q̂2
Λ22

Λ22 + Q̂2
(8.18)

F2(Q
2) =

Λ21

Λ21 + Q̂2

[

Λ22

Λ22 + Q̂2

]2

, (8.19)

where Q̂2 = Q2 log
(

Λ22+Q2

Λ2QCD

)

/ log
(

Λ22
Λ2QCD

)

. A simultaneous fit to available at that

moment cross-section data yielded an excellent χ2 per degree of freedom of 0.43 and

the values of free fit parameters were found to be close to the SU(3) expectations

(or experimental values).

In a later work [109] Gari and Krümpelmann upgraded their model to include

the effects of the strangeness content of the nucleon and introduced a helicity-flip

scale. By that time (1992), more experimental data on the nucleon form factors

have become available, including SLAC measurements of the Gp
E/G

p
M ratio with

the Rosenbluth method. It was demonstrated that the increase of the Gp
E over the
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dipole value GD could be achieved by setting the helicity-flip scale to the meson

scale, whereas the traditional model with the helicity-flip scale equal to the QCD

scale ΛQCD results in a decline of Gp
E with respect to the GD. Another interesting

result of this work is that the Gn
E is sensitive to the contribution from the φ meson

at moderate Q2, and therefore can serve as a probe of the strange content of the

neutron.

The work in this direction was continued by Lomon [110]. He studied two

families of models: three models based on the original Gari-Krümpelmann approach

(“GK models”) and four models with the ρ-meson pole replaced by a ρ′(1450)-meson

pole plus an approximation for the ρ-meson term in the dispersion-relations integral

from [100] (“DR-GK” models). The members of a model family differ between

themselves only by details of cut-off and normalization parameters. It was found

that the GK-DR model generally give a better agreement with the data than the

GK fits. The relatively high χ2 of the fits (about twice the number of degrees of

freedom) was explained by inconsistencies between different experimental data sets.

8.4 Quark models

8.4.1 Nonrelativistic quark models

The picture of a nucleon4 as consisting of three quarks in a confining potential

started to emerge in early 1960-s in pioneering works of Zweig [106], Gell-Mann [111]

4More generally, any baryon.
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and many others. Despite its simplicity, the model had remarkable successes in

explaining hadronic mass spectra and radiative transition amplitudes, and is still

widely used nowadays.

The key element of the model is the SU(6) spin-flavor symmetry5 which allows

to make two important predictions about the form factors without even making

any specific assumptions about the quark-quark interaction potential. Namely, the

ratios of the form factors for finite Q2 remain same as for the static case (Q2 = 0),

i.e. Gn
M/G

p
M = −2/3, Gn

E/G
p
E = 0 [112].

One example of a non-relativistic quark model is the model of Isgur, Karl and

Sprung [113] built on the analogy between QCD and QED. The confining poten-

tial is just the harmonic oscillator potential. The potential responsible for lifting

the degeneracy of the mass multiplets of hadrons is analogous to magnetic-dipole-

magnetic-dipole interactions of electromagnetism. Their results for the proton and

neutron charge form factors

Gn
E(Q

2) =
1

6
〈r2〉nQ2e−Q2/6α2 , (8.20)

Gp
E(Q

2) = e−Q2/6α2 . (8.21)

are in a qualitative agreement with the experiment for low Q2. However, the model

is only valid for Q up to the constituent quark mass (i.e. a few hundred MeV/c2).

5This symmetry is only approximate (unlike e.g. exact SU(3) color symmetry).
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8.4.2 Relativistic constituent quark models

The näıve picture of the nucleon sketched in the previous section is obviously an

oversimplification. In reality the u and d quarks are about two orders of magnitude

lighter than the hadrons they make up, and in addition to the three valence quarks

there are gluons and quark-antiquark pairs (sea quarks). The success of the simple

quark model suggests that sea and glue degrees of freedom are frozen, while their

effects are hidden in the constituent (as opposed to physical, or current quarks)

quark masses. However, one problem still remains: quark momenta are much higher

than their masses, i.e. the quarks are highly relativistic. There have been a number

of attempts to add relativity to the constituent quark model.

In the relativistic case there exists three distinct forms of the Hamiltonian

dynamics, differing by what generators of the Poincaré group6 are kinematical (i.e.

interaction-free): instant form, point form and light-cone form [114]. In the point

form (PF) and light-cone (LC) representations boosts are kinematic, and therefore

they are particularly suitable for studying the form factors (it is easy to transform

results obtained in one frame into any other frame).

Light-cone

The light-cone dynamics is formulated in so-called light front variables, x1, x2, x−

and x+, rather than ordinary world-point coordinates x1, x2, x3 and x4. As was first

6Poincaré group is also known as the inhomogeneous Lorentz group. It is an extension of the
traditional Lorentz group of Lorentz boosts and spatial rotations by space-time translations.
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demonstrated by Berestetskiy and Terentiev [115], this substitution leads to signif-

icant simplifications in form factor calculations. Consider the relativistic energy-

momentum relation:

pµpµ +m2 = 0. (8.22)

In terms of the light-cone variables p+, p− and ~p⊥ = (p1, p2) this becomes:

2p+p− − (p⊥)
2 +m2 = 0. (8.23)

On the LC, the plus component of the momentum has the meaning of the Hamil-

tonian, H = −p+. If we introduce notation µ = p− we put Equation 8.23 into a

familiar form:

H = (p2⊥ +m2)/2µ, (8.24)

which is nothing else than the nonrelativistic Schrödinger equation for a particle

of mass µ on a two-dimensional plane. This analogy with the non-relativistic case

is very helpful, since it implies impossibility of creating virtual pairs with finite

energies due to conservation of µ = p− [115].

Chung and Coester [116], inspired by these advantages, performed an ex-

ploratory computation of nucleonic form factors using exactly Poincaré-covariant

wavefunction, Gaussian in the quark momenta, from [117]:

φ(M0) =
N(mq/ΛQCD)

Λ2QCD

exp(−M 2
0 /2Λ

2
QCD), (8.25)
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where M 2
0 =

(

∑

i

√

m2
i + ~q2i

)2

,mi = mq are quark masses (assumed to be equal),

qi are the quark relative momenta, N is the normalization factor and ΛQCD is the

familiar confinement scale. They found that the data can be satisfactorily described

by the model if one uses small quark masses (0.24 GeV as opposed to the traditional

value of 0.33 GeV) and a somewhat large QCD scale parameter (0.635 GeV). The

quark form factors did not have any Q2 dependence.

The most recent studies within the framework of the light-cone dynamics were

carried out by Cardarelli and Simula [1], [118], [119]. In [118] the authors consider

Isgur’s cancellation mechanism and confirm the result of [11] to show that Gn
E can

indeed be interpreted as a measure of the charge distribution in the neutron. They

establish that retaining the leading order in the relativistic expansion of [11] corre-

sponds to neglecting the transverse motion of quarks in the Melosh rotations of the

initial state, and show that in this approximation (which they call the zitterbewe-

gung approximation) the non-relativistic SU(6) result Gn
E = 0 still holds. Further,

they use an example of a harmonic oscillator wavefunction of [113] to show that

full Melosh rotations break SU(6) symmetry and generate non-zero Gn
E on a level

that qualitatively explains the existing experimental data (although only 40% of the

neutron charge radius could be reproduced).

In [1] Cardarelli and Simula further improved their model by including dynam-

ical SU(6) symmetry breaking via spin-dependent quark-quark interactions and by

using the y-component of the electromagnetic current (rather than the plus compo-
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nent)7 for the magnetic form factors. They show that although both non-relativistic

and zitterbewegung approximations fail to describe the experimental data even with

the dynamic SU(6)-breaking effects included, full light-cone calculations with the

wavefunction of the one-gluon exchange model [120] agree with the experimen-

tal data on the EMFFN (including the JLab results on Gp
E/G

p
M [91]) fairly well.

However, the neutron charge form factor is still underestimated (only 65% of the

experimental value was reproduced).

A better agreement with the experiment can be achieved by using constituent

quark form factors, as done by Simula in [119]. There he uses the low-Q2 experimen-

tal data (up to 1 GeV/c) to fix the parameters of the constituent quark form factors,

so the higher Q2 predictions can be considered to be in a sense parameter-free.

Point-form

In the point-form representation all interaction is contained in the four-momentum

operators, which commute among themselves and thus can be simultaneously diag-

onalized. As with the light-cone dynamics, boost operators are interaction-free.

The point-form dynamics formalism was recently applied to the studies of the

nucleon form factors by Wagenbrunn et al. [121]. The nucleon is considered through

the prism of spontaneous breaking of chiral symmetry SU(3)L × SU(3)R down to

SU(3)V vector symmetry associated with Goldstone bosons. The quark-quark in-

7For the full current the situation is rotationally covariant, i.e. it does not matter which
component is used in the calculation. However, that is not necessarily the case when only one-
body currents are included (i.e. an impulse approximation is made) as in [1].
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teraction potential consists of two parts: phenomenological linear confinement po-

tential and instantaneous one-boson-exchange potential. The model has been very

successful in describing the excitation spectra of light and strange baryons.

The Hamiltonian is diagonalized using the stochastic variational method [122],

yielding eigenstates in the center-of-momentum frame. The form factors are then

expressed in terms of the standard single-particle current operator for the quarks

evaluated between the eigenstates, and several Wigner rotations. The authors em-

phasize that their model allows to obtain a satisfactory agreement with the exper-

imental data without any adjustments (like constituent quark form factors, pionic

cloud, etc.).

8.5 Diquark model

The diquark model was originally put forward in order to explain the experimental

results on deep inelastic lepton-nucleon scattering, which suggested that only the

struck parton participates in the interaction, while the rest of the nucleon behaves

as a spectator quasiparticle (see [123] and references therein). It also provided an

explanation for missing resonances in the baryonic mass spectrum by reducing the

number of available degrees of freedom via coupling of two quarks into a bound state

(a diquark).

With respect to exclusive reactions (including nucleon form factors), the di-

quark approach is tempting because it allows to extend the applicability of pQCD
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factorization scheme8 to lower Q2 by introducing an additional subasymptotic scale

associated with the diquark. In the diquark picture, the nucleon is viewed as a

bound state of a diquark and a quark at intermediate Q2, whereas at high Q2 (when

the individual quarks within the diquark are resolved by the virtual photon) the di-

quark models turns into the traditional pQCD, thus guaranteeing correct asymptotic

behavior of the form factors.

This approach was adopted by Anselmino et al. [123]. They constructed the

photon-diquark Feynman rules in a complete analogy with the standard Björken-

Drell prescription [124], which was then generalized for the case of the gluon-diquark

vertex:

−iGSλ
α/2(q1 + q2)

µ

for the scalar (S = 0) diquark and

−iλα/2[G1(q1 + q2)
µgκν −G2(qκ2gµν + qµ1 g

µκ) +G3(q1 + q2)
µqν1q

κ
2 ]

for the vector (S = 1) diquark. The form factorsG1, G2, G3 andGS are parametrized

in the form: G3 = 0, GS = gSFS(Q
2) and G1 = G2 = gSFV (Q

2), where gS is related

to the strong coupling constant αS by gS =
√
4παS. Finally, the form factors FV

and FS are parametrized by pQCD considerations in the following form:FS(Q
2) =

αS(Q
2)Q20

Q20+Q2
, and FV (Q

2) =
αS(Q

2)Q21
Q21+Q2

for zero helicity vertices with F̃V (Q
2) =

Q22
Q22+Q2

FV (Q
2)

8Also known as Brodsky-Farrar-Lepage factorization scheme.

173



otherwise.

With this, the pQCD factorization procedure (with appropriate modifications)

for the form factors yields

Gp
M =

8πCF

3Q2

{

∫

dxdy φ∗S(y)
αS(Q̂

2)FS(Q̂
2)

(1− x)(1− y)φS(x)

− Q2

8m2
FV (Q

2)

∫

dxdy φ∗V (y)
αS(Q̃

2)(1− x)(1− y)FV (Q̃
2)

xy
φV (x)

}

, (8.26)

F p
2 (Q

2) = −2πCF

Q2κ
FV (Q

2)

∫

dxdy φ∗V (y)
αS(Q̃

2)FV (Q̃
2)

xy
φV (x), (8.27)

Gn
M =

4πCF

3Q2

{

∫

dxdy φ∗S(y)
αS(Q̂

2)FS(Q̂
2)

(1− x)(1− y)φS(x)

− Q2

12m2
FV (Q

2)

∫

dxdy φ∗V (y)
αS(Q̃

2)(1− x)(1− y)FV (Q̃
2)

xy
φV (x)

}

. (8.28)

A study along these lines was conducted by Kroll, Schürmann and Schweiger

[125]. They used distribution amplitudes of the form

φS(x1) = φV (x1) = Ax1x
3
2 exp

[

−b2
(

m2
q

x1
+
m2

D

x2

)]

(8.29)

where quark and diquark masses are taken to bemq = 330 MeV andmD = 580 MeV,

and x1,2 are usual light-cone momentum fractions. The dependence of the full wave-

function on the transverse momentum kT is assumed to be of the form

∼ exp

[

−b2 k2T
x1x2

]

, (8.30)
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where b is a harmonic oscillator scale parameter, fixed in such a manner that

√

〈k2T 〉 = 600 MeV. The results for the Gp
M compare quite favorably with the

experimental database available at that moment (1991) which has not changed sig-

nificantly since then. The authors did not make a direct comparison with the low-Q2

data available for the other three nucleonic form factors because of the perturbative

nature of their calculations.

In a recent work by Ma, Qing and Schmidt [126] the diquark model is formu-

lated on the light cone. The authors use a general form of the proton wavefunction

Ψ↑↓
p (qD) = sin θφV |qV 〉↑↓ + cos θφS|qS〉↑↓, (8.31)

|qV 〉↑↓ = ±1

3
[V 0(ud)u↑↓ −

√
2V ±1(ud)u↓↑ (8.32)

−
√
2V 0(uu)d↑↓ + 2V ±1(uu)d↓↑] (8.33)

|qS〉↑↓ = S(ud)u↑↓, (8.34)

where θ is the mixing angle that breaks the SU(6) symmetry (if θ 6= π/4), and

V SZ and SSZ are vector and scalar diquark instant form Fock states. However, in

the actual calculations only the SU(6)-symmetric case φ = π/4 is studied. The

momentum wavefunction used in the model is of the harmonic oscillator type

φD(x,~k⊥) = AD exp

{

− 1

8b2

[

m2
q +

~k2⊥
x

+
m2

D + ~k2⊥
1− x

]}

, (8.35)

while the spin part of the wavefunction is obtained by transforming instant states
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into light-cone states via standard spin-1/2 Melosh rotations for the quark and via

prescription of Ahluvalia and Sawicki for Melosh rotation of the vector diquark

[127] (for the scalar diquark there is obviously no Melosh transform, since there is

no spin).

As usual in the light-cone formalism, the form factors are expressed in terms

of the helicity-flip and helicity-nonflip matrix elements of the plus component of the

electromagnetic current:

〈↑ |J
+(0)

2P+
| ↑〉 = FN

1 (Q2), (8.36)

〈↑ |J
+(0)

2P+
| ↓〉 = −(q1 − iq2)

FN
2 (Q2)

2M
. (8.37)

With the choice of the proton wavefunction given by Equation 8.35 the results for

the proton form factors9

F p
1 (Q

2) = 3

∫

d2k⊥dx

16π3
2

3
cos2 θw′

qwq[(k
′+ +mq)(k

+ +mq) + k′L⊥ k
R
⊥]

φS(x, ~k′⊥)φS(x,~k⊥). (8.38)

F p
2 =

6M

−qL
∫

d2k⊥dx

16π3
2

3
cos2 θw′

qwq[(k
′+ +mq)k

L
⊥ − (k+q +mq)k

′L
⊥ ]

φS(x, ~k′⊥)φS(x,~k⊥), (8.39)

where kR,L = k1± k2 (and similarly for q), and ~k′⊥i =
~k⊥i +(1−xi)~q⊥ for the struck

9The results for the neutron form factors are more cumbersome. The interested reader should
refer to the appendix of the discussed article.
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quark and ~k′⊥i =
~k⊥i − xi~q⊥ for each spectator.

8.6 Soliton model

Solitons (solitary nonlinear waves) were first observed in XIX century in hydrody-

namics. With the rapid development of the numerical methods (due to advent of

computers) in the second half of the XX century, studies of solitons in application

to various branches of physics and other sciences have gained a wide popularity.

Two distinctive features, localization in space and preservation of identity through

collisions, made solitons interesting for particle physicists.

Long before QCD, in 1960 Skyrme has suggested a field theory with classical

soliton solutions and an SU(2)⊗ SU(2) symmetry spontaneously broken to SU(2)

as the theory of strong interactions [128]. The traveling waves in this model were

interpreted as pions, and the solitons were identified with baryons. The interest

to this model was reignited when it was shown that a theory of this kind arises

in the 1/Nc expansion for QCD. The theory was relatively successful in describing

static nucleon properties [129], however, first studies with the nucleon form factors

[130] have shown that the bare Skyrme model is not sufficient for explaining the

experimental data and inclusion of vector meson effects is necessary.

Recently, Holzwarth conducted a study of the chiral soliton model [131], where

he has investigated two models representing two distinct ways of including vector
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meson effects into the form factors into the standard pionic Skyrme Lagrangian:

L(π) = L(2) + L(4) (8.40)

L(2) =
f 2π
4

∫

(

−TrLµL
µ +m2

πTr(U + U † − 2)
)

d3x, (8.41)

L(4) =
1

32e2

∫

Tr[Lµ, Lν ]
2d3x, (8.42)

where Lµ denotes the chiral gradient Lµ = U †∂µU , mπ = 138 MeV is the pion mass,

is the pion decay constant fπ = 93 MeV and e = 4.25 is the Skyrme parameter.

In Model A the vector meson effects were accounted for by multiplying the

form factors by

ΛI(Q
2) = λI

(

m2
I

m2
I +Q2

)

, (8.43)

where the label I refers to the isospin (and m0 and m1 are masses of the isoscalar ρ

and isovector ω mesons, correspondingly).

In Model B vectors mesons terms are explicitly included into the Lagrangian:

L = L(π) + L(ρ) + L(ω), (8.44)

L(ρ) =
∫

(

−1

8
Trρµνρ

µν +
m2

ρ

4
Tr(ρµ −

i

2gρ
(lµ − rµ))2

)

d3x, (8.45)

L(ω) =
∫

(

−1

4
ωµνω

µν +
m2

ω

2
ωµω

µ + 3gωωµB
µ

)

d3x, (8.46)

with the topological baryon current Bµ = 1
24π2

εµνρσTrL
νLρLσ, and lµ = ξ†∂µξ,
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rµ = ∂µξξ
†, where ξ2 = U .

Both models give a satisfactory description of charge and magnetization radii

and magnetic moments of the neutron and proton.

8.7 Overview

In this section we shall compare the predictions of various nucleon models to existing

experimental data on nucleon form factors. For each model described in the previous

sections of the chapter we chose the most successful fit10.

Not surprisingly, the best agreement with the experimental data is obtained

by Lomon’s fits [110]. This is due to the semi-phenomenological nature of the

model (i.e. built-in pQCD behavior) and the large number of free parameters of

the model. Other models may provide better physical insight, but none of them

provides an adequate description of all nucleon form factors for the entire range of

the momentum transfer.

Let us consider the magnetic form factors first (as the experimental data is

less ambiguous here). Figure 8.5 shows the results for the magnetic form factors

presented in the traditional form (with the dipole form factor GD = (1+Q2/ΛD)
−2

divided out). Only Simula’s light-cone calculation based on one-gluon exchange

wavefunction [119] describes both magnetic form factors well (although the results

of the calculation are only available up to 10 (GeV/c)2). The soliton model [131]

10The results of the dispersion relations analysis of Mergell et al. [100] are not included into this
overview since they are essentially contained in the later study of Lomon [110].
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does a very good job for the Gp
M , but the prediction for Gn

M starts deviating from the

data at about 1 (GeV/c)2. The case is the opposite for the point-form Goldstone-

boson-exchange model of [121]. Finally, the predictions of the light-cone diquark

model [126] fall short of the data for the both form factors.

The experimental data on the GE/GM ratio of the proton is not helpful in eval-

uating performance of different models before the controversy between Rosenbluth

[81], [133], [134], [139] and polarized [90], [140] measurements is resolved.

Finally, let us consider the charge form factor of the neutron (the discussion

of results of the present experiment is postponed until later). None of the models

provides an accurate description of the data within the entire measured Q2 range.

Recent recoil polarized measurements at the JLab [27] (which provide the most

accurate high Q2 data at the moment) seem to favor the Simula’s prediction; the

prediction of the diquark model also is not far off. The soliton model, although

successful for describing Gn
E data at low-Q2, tends to underpredict the data starting

at 1 (GeV/c)2.
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Figure 8.5: Magnetic form factors of the nucleon. The models shown are: soliton
B1 [131] (solid), point-form spectator approximation [121](dashed), light-cone one-
gluon exchange [119](dotted), light-cone diquark [126](dash-dotted) and the DR-
VMD fit [110](bold-dotted). The experimental data are from [81], [82], [83], [132],
[133], [134], (for the proton) and [13], [135], [136], [137], [138], [75] (for the neutron).
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Figure 8.6: The GE/GM ratio for the proton. Open symbols are Rosenbluth data
[81], [133], [134], [139], filled symbols are polarized data [90], [140] . Models are the
same as in Figure 8.5.
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Figure 8.7: The electric form factor of the neutron. The E93-026 2001 run results
are shown with red stars. Other data are: open squares – analysis of the deuteron
quadrupole form factor [22], filled circles – recoil polarization [25], [141], [27], filled

squares – ~He
3
target [31], [33], filled triangles – ~d target [35], [34]. Models are the

same as in Figure 8.5.
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Chapter 9

Discussion

As we have seen in the previous two sections, the results of the present experi-

ment, as well as those of other recent experiments, can be described by a simple

parametrization (7.10). This gives us confidence that the formalism employed by

the experimental methods is adequate (at least in this kinematic regime) and the

measurements are free of major problems.

This consistency is especially important in light of the recent controversy for

the charge form factor of the proton, where the disagreement between the Rosen-

bluth and polarization measurements is interpreted by many theorists as an evidence

of the two-photon exchange. If the importance of the two-photon exchange contri-

bution is confirmed, the entire formalism of the electron-nucleon scattering will be

challenged (for example, it will be longer possible to represent the electromagnetic

structure of the nucleon in terms of just two form factors [94]).

Unfortunately, the accurate Gn
E data is only available up to the region where

the Rosenbluth and polarized results for the proton begin to diverge. More accurate
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data taken with several approaches is needed at Q2 ≥ 2GeV/c2.

The Galster parametrization (7.10) has been traditionally considered as having

no fundamental physical significance. Recently, Kaskulov [142] has shown that

under some approximations Gn
E can be obtained as:

Gn
E(Q

2) =
〈r2〉n
6

Q2Fπ(Q
2)GD(Q

2), (9.1)

where Fπ(Q
2) is the form factor of the pion, which has monopole Q2-dependence.

The parametrization (9.1) is of the same form as the Galster fit (7.10). Therefore,

the success of the Galster form at low Q2 can be considered as a manifestation of

the chiral content of the nucleon. For higher Q2, exchange currents are expected to

become important.

A careful examination of Figure 7.15 shows that the Galster parameterization

is less successful at Q2 < 0.4 GeV/c2 than elsewhere. The fact that it is hard to keep

the nuclear corrections under control for lower Q2, and the large error bars at this

kinematics, preclude any definitive conclusions. However, if one believes that the

grouping of these data above the Galster line is neither coincidental nor due to some

common flaw in the data analysis, then one can see that the Gn
E database can be

better fitted with a superposition of a broad Galster-like fit and a low-Q2 “bump”.

Such an ansatz was made by Friedrich and Walcher [143]. They convincingly argue

that the “bump” can be identified with the pion cloud, which reaches as far out as

2 fm, whereas the broader part corresponds to the constituent quark dynamics. The
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authors stress the need for accurate data at moderate Q2 to test their hypothesis.

Even though none of the QCD-inspired models considered in the previous

chapter provides a complete description for all four electromagnetic form factors

within the entire experimental range, it should be noted that all of them successfully

reproduce the most essential features of the data: the dipole behavior of the magnetic

form factors at modest Q2 and positive non-zero Gn
E. Non-relativistic SU(6) models

could not recover these features, and thus one can conclude that both relativistic

effects and dynamical SU(6) breaking via spin-dependent quark-quark interaction

are important for understanding the electromagnetic structure of the nucleon.

The results of the presented experiment and another recent JLab experiment

[27] had an appreciable impact on the extracted charge density of the neutron [5]

(see Figure 9.1). One distinctive new feature of the updated densities is a positive

bump at about 1-1.5 fm, which is not consistent with the traditional interpretation

of the charge distribution neutron in terms of a positive core and a negative pion

cloud. The author states that this is a stable and model-independent feature of the

analysis which cannot be eliminated without damaging the quality of the form factor

fits at Q2 ∼ 1 GeV/c2. As suggested by the author, such oscillatory behavior of

the charge density may be a signature of the d-state component of the wavefunction

which is probably broader spatially than that of the s-state.

Recent accurate measurements of Gn
E with the polarized target had a pro-

nounced positive impact on our understanding of the electromagnetic structure of
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the nucleon. It could be of interest to apply this experimental method to the proton

form factors. Measuring Gp
E/G

p
M with a polarized target could not only help to

resolve the controversy between Rosenbluth and polarized data, but also provide

useful information for quantitative studies of the effects two gamma exchange if the

latter are found to be of significance. In that case, extraction of the three form

factors (traditional GE,M and the one associated with the two photon exchange)

will require measurements with two or more independent experimental methods.
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Figure 9.1: Charge and magnetization densities of the neutron. Top panel: GE
n data

used in the extraction. Recent JLab data points (the present experiment and [27])
are shown in red. Bottom panel: extracted charge densities before (blue hatches)
and after (grey hatches) the recent JLab measurements.
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Chapter 10

Summary and outlook

In the experiment described here (JLab E93-026) the charge form factor of the

neutron was measured at Q2 = 0.5 and 1.0 (GeV/c)2. The data analysis for Q2 = 1.0

was discussed. The result is:

Gn
E(Q

2 = 1.0) = 0.0454± 0.0054(stat)± 0.0037(sys). (10.1)

This data point is the highest Q2 datum measured with a polarized target. To-

gether with another recently published JLab experiment (E93-038), this experiment

provides the only accurate direct measurements of Gn
E at Q2 > 1.0 (GeV/c)2.

The theoretical calculations used in the extraction of Gn
E included the rela-

tivistic effects as well as contributions from meson exchange currents, isobar config-

urations and final state interactions. Studies of the reaction mechanism dependence

confirm the prediction of the Arenhövel’s model [36] that the sensitivity of this

method of measurement to meson exchange currents and the final state interactions

is small (2% and 5% respectively) and decreases with the increase of Q2.
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Based on our and other experimental results, an improved Galster parametriza-

tion was suggested:

Gn
E =

0.86µnτ

1 + 3.06τ
(1 +Q2/0.71)−2, (10.2)

where as usual τ = Q2/4m2 and the units of Q2 are assumed to be (GeV/c)2.

Our experimental results are consistent with the recoil polarimetry measure-

ment by Madey et al. and the deuteron quadrupole form factor analysis by Sick and

Schiavilla.

The experiment E93-026 has been a part of massive experimental program at

the JLab and other nuclear facilities (NIKHEF, MAMI, MIT-Bates) aiming at im-

provement of our knowledge of the electromagnetic structure of the neutron. Thanks

to this ongoing effort by many experimentalists, the typical uncertainties in Gn
E have

been reduced from 30 − 40% ten years ago to 10%. The situation will be further

improved upon completion of two other experiments. The JLab experiment E02-013

will extend our knowledge of Gn
E to higher Q2, whereas the BLAST experiment at

MIT-Bates will improve the accuracy of the world Gn
E database at low and interme-

diate Q2.
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Appendix A

Principles of operation of the
E93026 polarized target

A.1 Dynamic nuclear polarization

Unpaired nuclear spins align with the direction of the external magnetic field. There-

fore, the simplest method of polarizing a material is by placing it into a strong mag-

netic field. Statistical physics gives the relation between the polarization and spin

J of the nucleus as follows [50]:

P =
2J + 1

2J
coth

(

2J + 1

2J

µB

kT
−
)

− 1

2J
coth

(

1

2J

µB

kT

)

, (A.1)

where µ is the magnetic moment of the nucleus, B is the magnetic field, T is the

spin temperature 1 and k is the Boltzmann’s constant.

For the particular case of a spin-1 system this expression simplifies to:

1In thermal equilibrium the spin temperature is equivalent to the temperature of the system.
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P =
4 tanh(µB/2kT )

3 + tanh2(µB/3kT ).
(A.2)

For realistic experimental values of B and T the nuclear polarization is low.

For example, for the values of this experiment, B = 5 Tesla and T = 1 K, the

deuteron thermal polarization is only 0.14%. However, the electron polarization

is very high (99.8%), and this high polarization can be transferred to nuclei using

mechanism which bears name of dynamic nuclear polarization (DNP).

Let us consider how DNP works in NH3 targets
2. When the material is placed

in a magnetic field, degeneration in m, the quantum number for projection of spin

onto the field direction, is lifted due to Zeeman terms of the Hamiltonian. The

energy eigenstates are pure spin states.

If then the material is doped with paramagnetic radicals, providing free elec-

trons, the spin-spin interaction with unpaired electron spins makes nucleon energy

eigenstates mixed spin states (Figure A.1):

|e ↓ N ↑〉 → |1〉 = |e ↓ N ↑〉+ ε1|e ↓ N ↓〉 (A.3)

|e ↓ N ↓〉 → |2〉 = |e ↓ N ↓〉+ ε?1|e ↓ N ↑〉 (A.4)

|e ↑ N ↑〉 → |3〉 = |e ↑ N ↑〉+ ε2|e ↑ N ↓〉 (A.5)

2ND3 is more complicated due to quadrupole moment and higher spin of deuteron, but all
essential features are the same.

191



|e ↑ N ↓〉 → |4〉 = |e ↑ N ↓〉+ ε?2|e ↑ N ↑〉, (A.6)

where mixing coefficients ε1,2 are small (|ε1,2| ¿ 1).

The double-flip transitions, forbidden in the absence of the spin-spin inter-

action due to dipole selection rules, are now allowed. By bombarding the material

with photons of frequency (µe+µN)B/h it is possible to cause transitions from state

|2〉 (nucleon spin anti-aligned) to state |3〉. Since electron relaxation time is small

(a few orders of magnitudes larger than that of nucleons), this transition is almost

immediately followed by a decay of the |3〉 to a |1〉. As a result, the positive polar-

ization of the material is increased. In exactly the same way a negative polarization

of material can be achieved by using photons of frequency (µe + µNB)/h.

The polarization is further enhanced by a mechanism, known as spin diffu-

sion. In this process the nuclear polarization is transferred to neighboring nuclei via

dipole-dipole coupling.

A.2 NMR polarization measurement

NMR system

The target polarization was measured using NMR technique [144]. The idea of the

method is based on the fact that the polarization of a material placed in a varying

magnetic field of frequency ω is related to the absorptive part of the magnetic

susceptibility of the material [144]:
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|e ↓ N ↑〉

|4〉 ≈ |e ↑ N ↑〉

|e ↑ N ↑〉

|e ↓ N ↓〉

|1 >≈ |e ↓ N ↑〉

|3〉 ≈ |e ↑ N ↓〉

s-s interaction OFF s-s interaction ON

|e ↑ N ↓〉

|2 >≈ |e ↓ N ↓〉

Figure A.1: The effect of spin-spin interaction on levels and states of an electron-
nucleon system in an external magnetic field. On the left: pure spin levels in
absence of spin-spin interaction. On the right: spin-spin interaction shifts the energy
levels and mixes pure spin states, making previously forbidden double-flip transitions
allowed.

P =
2

µ0π~γ2NJ

∫ ∞

0

χ′′(ω)dω, (A.7)
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|1〉

|2〉

|3〉

|4〉

Figure A.2: Positive (solid line) and negative (dashed line) polarization enhance-
ment. Notations for energy levels are explained in Figure A.1.

where γ is the nuclear gyromagnetic ration, J is the spin of the species being mea-

sured, and N is the spin density of the material. To measure the absorption signal

one places an inductor (NMR coil) into the target material. Due to the interaction

with the target material the inductance of the coil changes and becomes

L(ω) = L0 [1 + 4πηχ(ω)] , (A.8)

where L0 is the inductance of the coil with unpolarized material and η is the fill-

ing factor, describing the coupling between the material and the NMR coil. The
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impedance of the coil is in its turn measured by including the coil into a resonant

LCR circuit tuned to the Larmor frequency of the deuteron.
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Appendix B

Measuring beam polarization with
the Hall C Møller polarimeter

Møller measurements employ polarized electron-electron scattering for determina-

tion of the beam polarization. Since Møller scattering is a pure QED process, the

analyzing power can be calculated to a very high accuracy, thus makes possible very

accurate polarization measurements.

For the longitudinal polarization of both beam (Pb) and target (Pt) spins the

scattering cross-section in the center-of-mass quantities is [47]:

dσ

dΩ
=

(

dσ

dΩ

)

0

]1 + PtPbAzz(θ)], (B.1)

where ( dσ
dΩ
)0 = (α(3+cos2 θ)/(2E sin2 θ))2 is the unpolarized scattering cross section,

α is the fine structure constant, E and θ are the incident electron energy and the

scattering angle in the center-of-mass frame, and Azz(θ) = − sin2 θ(8− sin2 θ)/(4−

sin2 θ)2 is the analyzing power. The analyzing power reaches a maximum of − 7
9
at

90◦. Therefore, the detectors are arranged such that to emphasize this kinematic
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region. The Azz needs to be corrected for the Levchuk effect [145] which takes into

account the initial motion of the atomic electrons.

The Equation B.2 gives the expression for the beam-target asymmetry:

ε =
N+ −N−
N+ +N−

= AzzPbPt, (B.2)

which can be rewritten for the beam polarization as follows:

Pb =
ε

AzzPt

. (B.3)

Here Azz is the acceptance averaged analyzing power. From the Equation B.3 one

can see that the error on the beam polarization has statistical contributions from

the Møller counts and Monte Carlo statistics, and a systematic contribution (Monte

Carlo systematics and the target polarization).

The systematic error is dominated by the Levchuk effect, which is 10% rela-

tive with the size of the effect about 3%, i.e. the contribution is 0.3%. The spin

polarization in iron is known to 0.25%. Other systematic uncertainties (multiple

scattering, beam position and direction, target field value and orientation etc.) are

small (≤ 0.15%). The overall systematic error was found to be 0.47% [47].
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