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The average asymmetry of the NA (pink) and French (black) octants
vs. time of flight for all 16 detectors. The y scale of the asymmetry
s from -100 to 100 ppm. Asymmetries are corrected for beam polar-
ization, but blinded by the blinding factor (0.8056). The French yield
spectra (violet histograms) are overlaid with scales on the right of the
plots. . . . e e e
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The parallelogram boundary of the allowable background yield Yy(t)
(dashed), and various models of Y,(t): [blue = GOGEANT, red =
1st order polynomual, light green = 2nd order polynomial, pink = 3rd
order polynomial]. The solid black histogram with a peak is the mea-
sured yield spectrum. For the background yield, the best GOGEANT
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The measured asymmetry spectrum in octant 6 detector 13 (black data
points) and the fit to the data (red curve). The fitted quadratic back-
ground asymmetry is overlaid (blue curve). The boundary of the back-
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5.27 An illustration of the procedure to evaluate the global uncertainty in
0(Ay). The 1st, 2nd, and 3rd order polynomial models of the back-
ground yield are considered. The pink histogram is the distribution of
the fractional differences of the elastic asymmetry given by any one
of the three models relative to the average of the three for detectors
1 through 14, with a width wy. The individual distributions of the
fractional differences for the 1st, 2nd, and 3rd order polynomial fits
are displayed as the gray, blue and green histograms, respectively. The
distributions assoctated with the 1st and 3rd order polynomial fits are
separated bY Wporl poi3- - - « « « 0 e e e e e

5.28 An illustration of the procedure to estimate the global uncertainty in
0sys(As). They (z) azis is the fractional difference (as absolute value)
of the values of the elastic asymmetry between the 3rd (1st) and 2nd
order polynimial fits of the background asymmetry. The correlation
coefficient, r, between the y and x is taken as an estimate of the
fractional global systematic uncertainty in o4s(As). . . . .. ... ..

5.29 An illustration of the constant time-of-flight bands for detectors 12
through 16 in the proton (p,8) space, after applying the time shifts in
Table 5.14. See detailed explanations of the (p,6) map in the caption
of Fig. 4.18. . . . . .

5.30 Background yield spectra of detectors 12, 13, 1/ and 16, with shifts
in Table 5.14 applied. Events between 11 and 16 ns are dominated by
pions, and inelastic protons dominate the region at larger ToF.

5.31 Acceptance-corrected background yield spectra, }N/b(i,t), for detectors
12 (pink), 18 (green), 14 (blue), and 16 (black). See text for expla-
nations. The dashed histogram is the measured yield in detector 15.
The gray band represents the systematic uncertainty of the detector
15 background yield, estimated as the half gap between §~/},(14,t) and
Yo(16,8). . o oo

5.32 171,(1, t) for selected values of t, fitted linearly against the detector num-

5.33 Background yield of detector 15, determined using different approaches,
and the +1o0 error band. The approaches and the error band are ez-
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5.34 Fitted background asymmetries of detectors 12, 13, 14 and 16. Fits
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The best fit (green curves) and the +1o error bands (light gray bands)
of the background asymmetries from the interpolation procedure for
all 8 octants. The best fit of the background asymmetry is deter-
mined via the interpolation procedure: Aps(i = 13,t) for octant 4,
and Apges(i = 15,1t) for all other seven octants. See text for expla-
nations. The black data points are the measured asymmetries. Also
overlaid are the interpolated background asymmetries for detectors 14
(pink curves) and 16 (blue curves). The red dashed curves are the
background asymmetry obtained from the two-step fits (by assuming
a 8rd order polynomial functional form). . . . . . ... ...
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curves) for individual octants of detector 15. The three Q* bins are
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The interpolated background asymmetry (green curve), its 1 detector
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ranges: a Gaussian peak with a 5th order polynomial background from
14 to 19 ns, and a Gaussian peak with a linear background from 19 to
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6.1

6.2
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squares) vs. the magnet current from the simulation. The data points
in the figures were read off from the same figure in [Que05]. . . . . .

Calculated R factor defined in Eqn. 5.112 vs. Q? for the first 17 Q?
bins of G°. . . . .

The form factor fits for G&,, G%,, G% and G%; with a range of @Q*
from 0.1 to 1.1 (GeV/c)*. G, Gh, and G%, are put on the same
scale by mormalizing by their corresponding dipole fits. The experi-
mental data in [Kel04] are displayed in (a). Different curves in the
figures represent different form factor parameterizations: [blue solid =
Kelly [Kel04], pink dot-dashed = Arrington [Arr04], and black dashed
= Friedrich-Walcher [FW03]]. The Arrington parameterization is for
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data) with the +10 error bands computed from the Kelly fits.

Aphys and Ayvys vs. Q?. The inner and outer error bars are the sta-
tistical uncertainties, and statistical and point-point systematic uncer-
tainties combined in quadrature. The gray band represents the global
systematic uncertainty of Appys. The solid curve is Anys computed
based on the Kelly form factors. . . . . . . .. . ... ... ... ...

G% + nGS; vs. Q? measured in the G° forward experiment. The
central values of the data points are calculated using the Kelly form
factors. The inner and outer error bars are the statistical uncertain-
ties, and statistical and point-point systematic uncertainties combined
in quadrature. The lower green and upper gray bands represent the
model and experimental global systematic uncertainties, respectively.
The two curves in the figure represent the differences between the
Kelly and Arrington (pink dot-dashed), and the Kelly and Friedrich-
Walcher (black dashed) form factor parameterizations. The figure
here is slightly different from the one in [Arm05] in two aspects. Flirst,
the model uncertainty band in [Arm05] is slightly wider than shown
here due to the double-counting of Q? uncertainty of Ayvs. Sec-
ond, there was a numerical error in the Friedrich-Walcher zero-line
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The x? distribution (solid black histogram) for the Monte Carlo data
generated according to the random and correlated uncertainties of the
G° data (Eqn. 6.15), with the hypothesis of G5 + nG5; = 0. The red
line is the x? of G° data relative to the zero-line, and the blue dashed
histogram is the distribution of the x? if the correlated uncertainties
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The interpolation of the G° data around Q* =0.1, 0.28 and 0.477 (GeV/c)?.

The G° data are shown as the blue data points, with the error bars
being statistical and point-point systematic combined. Interpolations

Aphys
are made on G% + 0G5, (Q*=0.1 (GeV/c)?) and 5—’? (Q*=0.23

and 0.477(GeV/c)?), with linear and constant fits (dashed lines). The
adopted centroids and overall uncertainties of the interpolated values
are shown as the red solid (a) and pink solid (b and c) data points.
The model uncertainty of this interpolation is estimated to be half of
the difference between the linear and constant fits. See text for details.

The world data of G +nG5, at Q* = 0.1 (GeV/c)?. The form factors
of Kelly are used. Different bands in the plot represent: HAPPEz-H-
II [Ani05] (light blue), HAPPEz-He [Ani05b] (blue), PVA4-II [Maa05]
(light green), SAMPLE [Spa04] (red) and G° [Arm05] (pink). The
inner dashed lines and the outer solid lines represent the statisti-
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spectively. The yellow and gray blue (dark) ellipses are the 1o and
20 error ellipses for the point of maximum likelthood of all experi-
ments at (G5, = —0.004,G5, = 0.55). The black point represents
GL=Gy =0, . e

The world data of G +nG5; at Q* = 0.23 and 0.477 (GeV/c)*. The
Kelly form factors are used in both plots. The dashed and solid lines
represent the statistical and total experimental errors for individual
measurements. The pink, light green and light blue bands are the
results from G° [Arm05], PVA4-I [Maa04] and HAPPEz-I [Ani04],
respectively. The black point in (a) is the best fit of (G35, G5,) at Q?
=0.23 (GeV/c)?. (0,0) are indicated in both figures. . . . .. .. ..

GO backward angle setup. FElectrons and negative pions are selected
by the magnetic field. One segment of the spectrometer is shown. Ad-
ditional cryostat exit scintillation detectors (green), in combination
with the focal plane detectors (brown) allow the separation of elas-
tic and inelastic electrons. The w— background is vetoed by aerogel
Cerenkov counters (blue). . . . . . . ... ... ... ... ......

Ezpected uncertainties of G5, (left) and G%; (right) at Q* =0.63 and
0.23 (GeV/c)* by combining the forward and backward G° measure-
ments. Both form factors have been multiplied by a factor of 1/3 to
reflect their contribution to the nucleon electromagnetic form factors.
To indicate the scale, the corresponding proton form factors are di-
vided by 10 and overlaid in the plots (blue curves). Figure taken from
[GOBkw2]. . . . ..
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6.10 Same as Fig. 6.9 but for GZ(TZI). The two existing SAMPLE mea-
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surements [Bei05] (square), and a theoretical calculation at zero mo-
mentum transfer [Zhu00] (triangle) are also shown. Figure taken from
[GOBRWEL. o oo

(a): an example of the measured (black) and leakage (light blue) ToF
spectra. The y azis is in log scale. (b): a cartoon to illustrate the
origin of the false asymmetry arising from the leakage (see text).

Measured leakage ToF spectra with the G° spectrometer. (a): leakage
ToF spectra due to the A (black solid) and B (red dash) lasers; (b):
leakage ToF spectra due to the G° laser itself when putting the main
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detasls. . . . . .o
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age current Iy, gireet- See text for details. . . . .. .. ...

The deduced leakage charge asymmetry Ar, 4 4...q VS that from the
direct measurement, Ar, ... The uncertainty of the slope (0.17) is
purely statistical. See text for details. . . . . . . .. . ... ... ..

The leakage current and asymmetry vs. the run number during the
entire experiment. Data are grouped according to the state of the in-
sertable halfwave plate: [blue open squares = “IN”, red solid circles =
“OUT?”]. The leakage asymmetries shown on the plot are not corrected
for the beam polarization (0.737) nor the blinding factor (0.8056). .

The raw (a) and leakage corrected (b) asymmetries of the proton cut
(averaged over all FPDs) vs. the run number. Each data point is an
average value over a consecutive set of runs with a given state of the
insertable halfwave plate: [blue open squares = “IN”, red solid circles
= “OUT”]. Asymmetries are not corrected for the beam polarization
(0.737), nor the blinding factor (0.8056). . . . . .. ... ... ...

Same as Fig. A.6 but for cut3. Asymmetries are not corrected for the
beam polarization (0.737), nor the blinding factor (0.8056). . . . . .
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its subsequent weak decay. . . . . . . . .. ... ...
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Chapter 1
Physics Motivation

1.1 Introduction

“Strangeness” was introduced in the 1950’s by Gell-Mann and Nishijima as a
new quantum number besides isospin that describes the strong interaction [Gel55,
Nis53]. A larger symmetry, SU(3), was postulated between nucleons and hyperons,
as well as between mesons. As a by-product, the naive quark model was devel-
oped [Gel64]. In this model, there are three flavors of quarks, u, d and s, which
form an SU(3) symmetric flavor space. All baryons and mesons are made up from
these constituents. Nucleons are among those “strangeless” particles in the sense
that their net strangeness quantum numbers are zero. Deep inelastic scattering
(DIS) experiments at SLAC in the late 60s and early 70s provided strong experi-
mental evidence that there exist point-like Dirac particles (partons or quarks) inside
the nucleons. Quantum Chromodynamics (QCD) was developed soon after to de-
scribe the interaction between quarks, which introduces a gauge color force between
quarks carried by gluons. The theory turned out to be a great success. By now QCD
has become the only non-trivial theory for the strong interaction, and it is a part
of the “Standard Model” (SM) for elementary particle physics. In the SM, quarks
have six different flavors: u (up), d (down), s (strange), ¢ (charm), b (beauty) and ¢
(top), in order of increasing mass. For low energy hadron properties, only u, d and
s quarks are relevant.

From the perspective of QCD, nucleons are made up of “valence quarks” (u
and d as in the naive quark picture) and the so-called QCD vacuum, which is formed
by “sea quarks” (uu, dd, 5s,...) and gluons. Generally, it is difficult to distinguish
the sea u and d quark contributions from their valence counterparts. On the other
hand, the s quarks in the nucleon are completely from the sea. Although the net

strangeness of nucleons is zero, it could have a non-uniform space-time distribution,



just as the charge distribution inside the neutron.

The significance of the QCD vacuum can be appreciated by noting the anal-
ogous (perturbative) vacuum phenomena in the quantum electrodynamics (QED),
such as the anomalous magnetic momentum of electron or muon (g — 2), and the
“Lamb shift” in the hydrogen atom [HM84], which played crucial roles in the devel-
opment of QED. For the nucleon strangeness, the QED analogy would be a photon
fluctuating into a p*p~ pair in the hydrogen atom, of which the contribution would
be further suppressed compared to the already tiny Lamb shift. However, due to
the non-perturbative nature of the color force, such vacuum fluctuations in QCD
could be significant, and they remain challenging to be calculated reliably, despite

decades of efforts from the theoreticians.

1.2 Different Aspects of the Strangeness Content of Nucleons

Experimental evidence for the contribution of strange quarks to nucleon’ struc-
ture will be briefly reviewed in this section. Despite the difficulty and model de-
pendence in interpreting these experimental results, the latter have triggered great

theoretical and experimental interest in the field.

1.2.1 Strangeness Contribution to the Nucleon’s Longitudinal Mo-

mentum

The existence of s quark flavor in the nucleon can be established via deep
inelastic neutrino-nucleon scattering. The idea is that the charged current weak
interaction between muon neutrinos v, and quarks are predominantly sensitive to the
s quarks. The experimental observables are defined in terms of quark distribution
functions. In the so-called infinite momentum frame (in which time dilation has

slowed down the interaction between quarks so that they would scatter incoherently),

t Although we discuss the structure of nucleons in general, most of the observations that have
been made are limited to protons only, since a free neutron target does not exist in nature. Charge
symmetry is assumed so the strangeness content of the neutron is the same as that of the proton
(see Eqn. 2.26).



the (unpolarized) quark distribution function ¢;(z) is defined as the number density
of finding quark flavor i carrying a fraction of z of the nucleon momentum . From
the measurements of the NuTeV experiment at the Fermi Lab, the ratio of the total
fraction of the momentum of the nucleon carried by strange sea quarks (s and 3) to

that by the “non-strange” sea was extracted to be [Ada99]

dz
= 0420.07 40,06, (1.1)

at Q? = 16 (GeV/c)?. It was also found that s(z)(5(z)) is significant at = < 0.1,
and the total fraction of the nucleon momentum carried by strange (anti-strange)
quarks, is roughly 2%. Therefore, this result is an unambiguous observation of the
existence of the strange sea in the nucleon. However the momentum fraction in the

parton model is theoretically difficult to connect with ordinary observables.

1.2.2 The Scalar Matrix Element and Its Contribution to the Nucleon
Mass

In the language of quantum mechanics, the mass of the nucleon is given by
the matrix element My = (N|[Hgcp|N), where Hgoep is the QCD Hamiltonian
of a nucleon and |N) is the (same) initial and final state of the nucleon (here the
normalization that (N|N) = 1is taken). The quark mass term in Hgcp is Y, miGigi,
in which m; is the Dirac mass of quark flavor 7. In the chiral limit, in which all
quark masses are zero, the mass of the nucleon approaches a non-zero value M,,
corresponding to the gluon and gq condensate. When the masses of the quarks are

turned on, additional terms of the scalar matrix element show up as

My = My + 6 + o4 + heavy quark terms (1.2)

6 =m{N|uu+dd|N), o,=ms(N|ss|N), (1.3)

tThis simple physical definition of  (or so-called Feynman zr) [Fey69], turns out to be identical

with a dimensionless kinematic variable zp = Q—i that Bjorken introduced as the scaling variable
of the nucleon structure functions [Bjo69].



My +M ~
“u T 74 Note that both & and o, are scalar form factors that depend

where m =
only on the momentum transfer. As the mass terms, however, zero momentum
transfer is implicit in both of them. We shall neglect the heavy quark terms in the
following discussion, although they could also contribute to the nucleon mass to
some level [Shi78].

The first constraint on these scalar matrix elements comes from the hyperon
mass splitting due to the SU(3) flavor symmetry breaking effect [Che88]. At leading

order,

1 _
§(rh—ms)(N\e‘erdd—2§s|N) = My — Mz, (1.4)

where M, and M= are the masses of A and = hyperons respectively. It is convenient

to define a quantity y to reflect the strange content of the nucleon as

2(N|5s|N)
y = — - . (1.5)
(N|au + dd|N)
So Eqn. 1.4 becomes
1 ms .
31— )1 —y)o =My — M. (1.6)

If one takes the canonical ratio that mg/m ~ 26 [Gas85], and assumes that the
strange matrix element is zero (y = 0), then & ~ 25 MeV. Higher order chiral
corrections increase its value to 6 ~ 35 MeV [Gas91].

The second constraint comes from the analysis of the so-called T—/N “sigma
term”, Y, n. Experimentally, >,y is related to the isospin even m—N scattering

amplitude D* (leading Born term subtracted) at the “Cheng-Dashen” point [CD71]:
Yan = F2D (s = My, t = 2m?2), (1.7)

in which F, ~ 92.4 MeV is the pion decay constant, s is the invariant mass of the
m—N system, and ¢ is the four-momentum transfer squared to the nucleon (¢ < 0

for physical region). In the lowest order of chiral perturbation theory, a low energy



theorem states that [CD71]

Sev ~ 6(t = 2m2). (1.8)

However, the Cheng-Dashen point (s = M&%,t = 2m?2) is unphysical, therefore one
has to extrapolate the experimental data using phase-shift analysis and dispersion
calculations [Rey74]. In a comprehensive analysis in [Gas91], the authors concluded
that S,y ~ 6(t = 2m2) ~ 60 MeV. Extrapolating this value to zero momentum
transfer (f = 0) to get the mass term is also quite involved; higher order chiral
perturbation terms are significant. In the accompanying paper [Gas91b], the authors
applied dispersion relations and found that the ¢ dependence of 6(t) is remarkably
large. Extrapolating it to t = 0 lowered the value of & to ~ 45 MeV.

If the strange quark does not contribute to the scalar matrix element, or y = 0,
then one would expect & obtained via the two approaches to agree. The discrepancy
between 35 and 45 MeV implies that y ~ 0.2. Taking a typical average light quark
mass to be m ~ 5 MeV (see, for example, [Bij95]) and ms/m ~ 26 [Gas85] would
yield

s = ms(N|5s|N) ~ 130 MeV , (1.9)

which suggests that the strange quarks contribute a sizable amount to the nucleon
mass. However, the uncertainty of this result could be quite large due to the ex-
perimental uncertainties and inconsistency of the 7— N data, the extrapolation of
the data to the unphysical region, the inaccuracy of the higher order chiral cor-
rections to hyperon mass relations, and the uncertainty in the quark mass ratio
%. Indeed, a recent lattice calculation gave (¢t = 0) ~ 53 MeV, which leads
to y = 0.36 = 0.03 [Don96|, and another two-flavor dynamic QCD lattice calcula-
tion yielded 6(t = 0) = 45 — 55 MeV [LTWO00]. A recent global analysis including
the new experimental inputs suggests that 6(t = 2m2) ~ 90 + 8 MeV [Pav99].
Another analysis based a dispersive sum rule relying on the threshold parameters

yields 6(t = 2m2) ~ 70 + 9 MeV [Ols00], also significantly larger than previous

values. Without consensus on these results, the uncertainty of the strange scalar



matrix element (N|5s|N) is probably at 100% level.

Lastly, it is worth noting another (suggestive) piece of experimental evidence
— the excessive ¢ meson production in the pp annihilation. One of the explanations
involves an intrinsic §s component in the proton wave function that gets rearranged

during the reaction [E1195], although further investigation is needed in this regard.

1.2.3 The Axial Matrix Element and the Strangeness in the Nucleon
Spin

The unpolarized quark structure function ¢;(x) has been defined in Sec. 1.2.1.
For a polarized nucleon, ¢;(z) can be decomposed into ¢;(z) = ¢; (x) + ¢} (z), with
the superscript 1 ({) reflecting that the spin of the quark is aligned (anti-aligned)
to that of the nucleon. Then the overall contribution of quark flavor 7 to the spin

of the nucleon is

Ag; = / 4 (@) — ¢H(@)] dz, (1.10)

where ¢; could be either a quark or anti-quark of a certain flavor i (u,d,s,...). Note
that if only quarks are responsible for the nucleon spin, then » . Ag; = 1. Ag; can

be related to the one-nucleon axial current matrix element as

Agioy, = (p, G|G@vus9:|p: O) (1.11)

which is closely related to the axial form factor of the nucleon (see Secs. 2.3.2
and 6.1.2).

Experimental constraints can be put on Au, Ad and As. The first constraint
comes from polarized inclusive DIS of the electron (or muon) from the nucleon,
for which the cross section is characterized by two polarized structure functions,
g1(z, Q%) and go(z, @?). During the last two decades, a number of experiments have
been carried out at CERN [Ash89, Ada97], SLAC [Abe98, Ant00] and DESY [Air98§]

to determine g; over a large range of x and Q2. To the leading order in the parton



model, ¢; is independent of Q? and one has
1 _
(@) =3¢ al@) - ()] . (1.12)

So if ¢, b and t quarks are ignored, one gets a g; sum rule of

r —/1 (@) de =+ (2Au+ tAd+ 1A (1.13)
=)o —2\97" g 9=") > '

in which the contributions of a quark and anti-quark of a given flavor are combined.
As an example, the result for I'; of the proton at Q? = 3(GeV/c)? from E143 [Abe98]
is

I = 0.132 + 0.010. (1.14)

The parton model, combined with strong isospin symmetry, enables us to
re-derive the Bjorken sum rule’, which puts a second constraint on Au and Ad

as [TW00]

Au—Ad=F+D=-94 (1.15)

gv
Extending SU(2) isospin to SU(3) flavor symmetry leads to [TW00]

Au+ Ad —2As =3F — D = 2v/3¢5. (1.16)

F and D in these two equations are phenomenological parameters to characterize
the charged current matrix element of the baryon octet [Cab63, Wil64], and can be
determined through beta decays of baryons. g4 and gy are the charged current weak
axial and vector charges of the neutron; F+D = —g4/gy = 1.2695+0.0029 [PDG04]
is well-established by neutron beta decay. 2\/§g§1 = 3F — D is the 8th octet axial
charge of the baryon; a recent analysis of hyperon beta decay data yields 3F' — D =
0.585 £ 0.025 [Got00].

Naively combining Eqns. 1.13, 1.15 and 1.16 with the values of T'y, g4/gyv and

tOriginally Bjorken derived the sum rule based on the current algebra [Bjo66].



3F — D given above yields

Au=0.76+£0.03, Ad=-0.51+0.03, As=-0.17+0.03, (1.17)

indicating that the overall contribution of quarks to the nucleon spin is quite small
and As is small and negative. In reality, however, extracting Agq is a very involved
and model dependent process. First, the data must be extrapolated to z = 0 and
2 = 1 in order to compute I';. Second, when taking into account the next-to-leading-
order (NLO) corrections to Eqn. 1.13, the evolution of g; with four-momentum
transfer introduces uncertainties. The result also depends on the renormalization
scheme and scale. Third, the gluon contribution to Eqn. 1.13 introduces some
ambiguity. Fourth, Eqn. 1.16 assumes SU(3) flavor symmetry, which is not exact in
real world. Nonetheless, most of the NLO analyses tend to give small and negative
values for As [LLS02, LLS03, BB03, HKS04].

The model dependence in the flavor separation for polarized inclusive DIS
results can be partly overcome by the “flavor tagging” technique in polarized semi-
inclusive DIS experiment. Unlike inclusive reactions, in a semi-inclusive DIS the
scattered lepton and one of the hadrons in the final state are detected in coinci-
dence, and the flavor content of the hadron “tags” the flavor of the struck quark.
This implies that strange quark contribution to the nucleon spin can be isolated
by looking at the kaon channels in polarized semi-inclusive DIS. In a recent paper
by the HERMES collaboration [Air05], As measured by this means was reported
to be consistent with zero within the kinematical range of 0.023 < z < 0.3. The
discrepancy between this result and those from inclusive DIS indicates the size of
model uncertainty in As.

Besides the polarized DIS, neutral weak probes also have sensitivities to As.
As shall be discussed in Sec. 6.1.2, As contributes to parity violating elastic electron
scattering, however its sensitivity is suppressed due to the smallness of electron’s
weak charge. On the other hand the contribution of As is not suppressed in elastic

neutrino-nucleon (v—N) scattering, and it can be determined by fitting the cross



section data with nucleon EM form factors as inputs. This analysis was first at-
tempted in [Ahr87] based on v—p and 7—p data taken by BNL734, and later refined
in [GLW93]. Both analyses obtained As in agreement with the results from the DIS,
but with larger uncertainties due to the limited precision of the v—N cross section

data.

1.2.4 The Vector Matrix Element and Strangeness in the Charge and

Magnetization Distributions of the Nucleon

With the electromagnetic interaction, the most ordinary observables of the
nucleon are its charge and magnetic moment. That the proton has one unit of charge
and the neutron is charge neutral have long been built into our intuition. But it
is less so for the magnetic moment. In 1933, Stern and collaborators carried out a
pioneering experiment and found, surprisingly, that the proton’s magnetic moment

was [, ~ 2.5uy [FS33]. In 1940, Alvarez and Bloch determined the neutron’s

eh

SMe 1S the nucleon

magnetic moment to be p, ~ —1.93uy [AB40], where puy =
Bohr magneton. That the p, is not unity and p, is non-zero are probably the
earliest evidence that the nucleons are not fundamental particles. In the 1950’s,
Hofstadter and collaborators launched the far-reaching electron-proton scattering
program [Hof55], which used the electromagnetic interaction as a probe to determine
the internal structure of the proton. The electromagnetic form factors, in field theory
language, are related to the matrix element of a Lorentz vector current operator jﬁMN
as
1 G, - G,

(NI T2 IN) = U@) |Gl = & +p) g o [U@), (118)

in which p and p’ are the initial and final four-momenta of the nucleon. G7, and G},
are the nucleon’s electric and magnetic form factors, which describe the distribution
of charge and magnetization inside the nucleon. To date, the electromagnetic (EM)
form factors of the nucleons are well-measured over a wide range of kinematics.

It is then natural to ask how much the strange quark contribution is to these

nucleon EM form factors. Formally this is to determine the matrix element of the



strange vector current (N |5y*s|N). Similarly to Eqn. 1.18, one can write it in terms
of the strange electric and magnetic form factors, G% and G3;.

In 1988, Kaplan and Manohar suggested that one could access G% and G5,
by measuring the neutral weak EM form factor Ggﬁ’f ™) of the nucleon [KM88].
Shortly after, McKeown and Beck proposed a feasible experimental probe, namely
the parity violating (PV) elastic electron-proton scattering [Mck89, Bec89]. Their
seminal proposal has been followed by more than a decade of experimental efforts on
PV electron scattering. This thesis is devoted to one such experiment, known as G°,
and the remainder of the text is organized as follows. In Chap. 2, the theoretical
formalism of the nucleon (vector) strangeness, and how one can measure it via
parity violating electron scattering are presented. At the end of this chapter, various
theoretical predictions will be given. In Chap. 3, a brief summary of the existing
world data prior to the G experiment will be given, followed by a discussion of the
experimental aspects of G° in Chap. 4. The analysis of the G° data is separated
into two parts: in Chap. 5, step-by-step corrections that bring the raw measured
asymmetry to the physical elastic asymmetry of interest are detailed, followed by
a discussion of the extraction of strange vector form factors in Chap. 6. We will
end Chap. 6 by discussing the physics implications of the G° forward measurement,

looking into the near future, and presenting our conclusions.
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Chapter 2
Theory
2.1 Electroweak Currents in the Standard Model

In the Standard Model of particle physics, elementary fermions (leptons and
quarks) interact by exchanging vector gauge bosons. The interaction Lagrangian
can be formally written as fermion current operators coupling to gauge boson fields.
The Standard Model contains a local symmetry group SU(2)xU(1), which leads
to the unified electroweak theory. In this theory, there are three types of fermion
currents, electromagnetic (EM), neutral current (NC) and charged current (CC),
which couple to the gauge bosons v (photon), Z° and W=, respectively. Feynman

diagrams representing these three types of interactions are depicted in Fig. 2.1.

7 z2° W
Jim VS N N e /5D N N ———
(a) EM Current (b) Neutral Current (c) Charged Current

Figure 2.1: The Feynman diagrams of three types of electroweak currents and their
couplings to the gauge bosons.

The EM current operators can be expressed in terms of the field operators as

Tt = QU (2.1)

in which v (¢) is the annihilation (creation) operator of the fermion field, v* (u =
0,1, 2, 3) are the Dirac matrices, and @ is the electric charge of the fermion (in units

of the proton charge). The EM current is a pure Lorentz vector.
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The neutral and charged currents both have a vector and an axial (V—A)

component. The neutral current operator can be expressed as

Thc = " (ev + cars)¥, (2.2)

in which 75 = 7°y'4293, and ¢y and c4 are the so-called weak vector and axial

charges of the fermion. In the electroweak theory, they are given by *

cy =213 — 4sin? 0y Q ,

cq =—2T°, (2.3)

in which 7% = +1 is the third isospin component of the (left-handed) fermion in

the SU(2) weak isospin space, and @y is the Weinberg angle, which characterizes

. 3_ 1
the mixing of the U(1) and SU(2) spaces. As an example, an electron has T° = —3
and Q = —1, therefore ¢y = —1 4+ 4sin?fy and c4 = 1.
The charged current operator takes a similar form as
o =" (1 =)0 (2.4)

Unlike the electromagnetic and neutral currents, since W= carries one unit of charge,
¥' and 1 represent different particles with charges differing by one, e.g. v and
e, u and d quarks, etc. For completeness, we note that ' and 1) here are the
so-called weak eigenstates of the fermions. For the quarks (and neutrinos), it has
been discovered that their (measurable) mass eigenstates are mixtures of these weak
eigenstates [HM84]. In parity violating electron scattering, the charged current is
not involved and shall be ignored in the remainder of this work.

As a summary, the electric, weak vector and axial charges of different elemen-

tary fermions are listed in Table 2.1.

tHere we are following the convention used in [Mus94]. In other places in the literature, the
neutral and charged currents are also sometimes accompanied by factor of %, and cy and c4 might
also carry a factor i. To resolve the discrepancy, it is simply a matter of redefining the coupling

constants when expressing the scattering amplitude.
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Fermion @ T° cy ca

Ve, Vy, V7 0 % 1 -1
e, 7 —1 =1 —1+4+4sin’6y 1
u,c,t 24 1-3sin’y -1
d,s, b —% —% -1+ %sin2 0w 1

Table 2.1: Electroweak charges of elementary fermions in the Standard Model.
2.2 Nucleon Matrix Elements and the Form Factors

The experimental observables, such as the scattering cross section, are related
to the matrix elements of the current operators in Sec. 2.1. For the elementary
fermions, since they are assumed to be point-like particles, it is self-evident when
writing the fermion matrix elements of these current operators. Using |k) and |k')

to denote the initial and final states of the fermion, Eqns. 2.1 and 2.2 become

w1 = (K| Tl k) = QUK )y UK) (2.5)
Thd = (K| Thclk) = UK ) (ev + cars)U(k) = Tedy + Teda,  (2:6)

in which U (k) and U(k") are now the Dirac spinors, and the “f” in the superscripts
of J indicates it is the current of the elementary fermions. Note that the neutral
current has been separated into its vector and axial components.

The nucleons are made up of point-like quarks. Therefore the nucleon current
operator can be written as a sum of the underlying quark current operators. Using
Eqns. 2.1 and 2.2, the nucleon electromagnetic and neutral currents can be expressed

explicitly as

i = (V@) T sl N @) = (N @) | Y. GRY'gIN D) (2.7)
Tk = (N@)|JK IN®) = (N()| | Y. @ (e +hw)aINE),  (28)
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in which p and p’ represent the initial and final four-momenta of the nucleon, j
represents the quark species, ¢; and ¢; are the quark fields, and @, c’v and cf;l are
the electric, weak vector and axial charges of quark flavor j, respectively.

Since the nucleon has extended structure, one cannot directly apply Eqns. 2.5
and 2.6 here. Instead, a set of form factors is defined to encapsulate the in-
ternal structure of the nucleon. Generally, from Lorentz invariance, it can be

shown [HM84, TWO00] that the hadronic vector and axial current of a spin § particle

can be expressed as

VE = (N BN W) = Ul [Fe+ R ), (29)
A = (NG P stV 0) = Ul) [Gaotn+ e U, (210

in which o* = % [v*, "], ¢ = p’ — p is the four-momentum transfer to the nucleon,
M is the mass of the nucleon, and ¥ and U are the nucleon spinors. Fj, F, and
GG 4 are the Dirac, Pauli and axial form factors, respectively; they are dimensionless
quantities and are only functions of four-momentum transfer squared (¢?). In elec-
tron scattering, since ¢ < 0, it is conventional to use Q% = —¢? > 0 instead of ¢.
The pseudoscalar form factor, G'p, is introduced for completeness; we shall neglect
it henceforth since it does not contribute to parity violating electron scattering.

Since the EM current is a pure Lorentz vector, we simply dress Equation 2.9
into

S 4
10 q,

B (@Up). (2.11)

= U@ (Q) +
F] and F] are the Dirac and Pauli EM form factors of the nucleon, and at
Q? = 0 they are normalized as

FI(0) =Qn, FJ(0) =k, (2.12)

in which @ is the electric charge of the nucleon (in units of |e|), and xy is the
anomalous magnetic moment of the nucleon (in units of the Bohr magneton).

Another set of commonly used form factors are the Sachs form factors [ESW60],

14



GE and Gys. They are related to F; and F; as

2
GE:F1—4Q—WF2, GM:F1+F2 (213)

G}, and G}, are usually called the electric and magnetic form factors of the nucleon,
respectively. At Q2 = 0, they are simply the charge and magnetic moments of the

nucleon:

proton: GL(0)=1, G7,(0)=2.793,

neutron: GL(0) =0, G},(0)=—1.931.

For each )2, there exists a reference frame such that the incident and recoiling
nucleon momentum is P — §/2 and P + §/2, where |g] = v/Q2. This is the so-called
Breit frame, or in the context of elastic electron scattering, the center-of-mass frame
of the electron-nucleon system. It can be shown that in the Breit frame, G}, and
G}, are simply the Fourier transforms of the charge and magnetization densities of
the nucleon [Sac62].

The neutral current has both the vector and axial components, and following
Eqns. 2.9 and 2.10, it becomes

wotq,

i (@) + " sGR@) | Up),  (214)

T =UW@) [V FEQ) +

of which F? and F{ are now the weak (vector) Dirac and Pauli form factors, and G%
is the axial form factor. A similar set of Sachs weak form factors, GZ and G%, can
be defined by Eqn. 2.13. The normalization of these form factors will be discussed
in Sec. 2.3.

Finally, in terms of the Sachs form factors, the electromagnetic and neutral

15



currents of the nucleon, Eqn. 2.11 and 2.14, can be re-written as

5 =) [ — o+ o S ) (2.15)
M M 2M 1+71 ’
N - 1 G —G? N
T =) |16~ 0+ 0 T G| Ule) = T+ T
(2.16)
Again, we have separated the neutral current into the generic V—A form.
2.3 Flavor Decomposition
Using Eqns. 2.9 and 2.10, Eqns. 2.7 and 2.8 can now be rewritten as
N 1o,
:u_z y W ol o
j=quarks
wuuqy . o

in which F f , FQJ and Gf;l are the Dirac, Pauli and axial form factors of quark flavor
j. Note that once the charges are factored out, the underlying vector currents of
individual quarks are identical in the EM and neutral currents. Therefore F/, FJ
are common to jé*MN and jl(}‘éN.

Comparing Eqns. 2.17 and 2.18 with Eqns. 2.11 and 2.14, one immediately

writes

> QF,, (2.19)

j=quarks

Fo= Y dF. (2:20
j=quarks

Gi= ) G (2.21)
j=quarks
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2.3.1 Flavor Vector Form Factors

It has been argued that heavier quarks (c, ¢, b) have negligible contributions
to the nucleon EM structure [KM88]. Therefore we shall only consider the three

light quark flavors (j = u,d, s). Eqns. 2.19 and 2.20 can be written out explicitly as

2 1

F17,2: 3F11f2_ 3(Fﬁ2—|—Ff72), (2-22)
8 4
Ff = <1 -3 sin? ew) Fyy — <1 -3 sin? ew) (Fy+ FY,), (2.23)
or equivalently,
Y 2 U 1 d s
Gpum = 3 EM g(GE,M +Gum)s (2.24)

8 4
G§7M = (1 — g sin2 Ow> %,M — <1 — g sin2 Hw) (G%,M + GSE’M) . (225)

Note that Eqns. 2.22—2.25 are generic for the nucleons. To apply them to the proton
or neutron, we shall add nucleon species superscripts (p or n) on the form factors.
Similar to the nucleon Sachs form factors, the form factors of a given quark flavor,
multiplied by the quark’s electric charge, correspond to the Fourier transforms of
the charge and magnetization densities (in the Breit frame) of this quark flavor
inside the nucleon. One should note that each flavor form factor includes both the
quark and anti-quark contributions. For nucleons, the v and d flavor form factors
contain contributions from both the valence and sea quarks, whereas the s flavor
form factors arise purely from the s3 sea.

A good symmetry of the strong interaction is charge symmetry, which states
that in exchanging the u (@) and d(d) quarks, a proton becomes a neutron, and vice

versa T. In other words, the (u, d) quarks in the proton are in the same wave function

as (d,u) quarks in the neutron, and the strange quark wave functions of the proton

tNote that this symmetry is less restrictive as compared to the isospin symmetry. The latter
requires the invariance of interaction Lagrangian under any rotation in isospin space.
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and neutron are identical [Mil98]. These imply
G?f;’,pM = G%,nM’ G%],DM = G%’,nj\/[a G%?M = G%?M' (2-26)

The breaking of these equalities is generally at the level of 1% or less [Mil98]. Given
the experimental precision at this stage, the charge symmetry violation can be

generally neglected. Therefore Eqns. 2.24 and 2.25 can be rewritten into

2 1 )

Gl = gGE,M - g(GdE,M +Goum), (2.27)
n 2 1 U s

GEv = ngE,M - g(GE‘,M +Guum) s (2.28)

8 4
Gé’fj’w = (1 —3 sin? 9w> %,M - (1 —  sin’ 9W> (GdE,M + G%‘,M) ) (2.29)

- W

8
Gg?\/f = (1 ~3 sin® 9w> GdE,M - (1 3 sin? 9W> (G%,M + GSE‘,M) J (2.30)

with the superscript of “p” in the flavor form factors suppressed.

The electromagnetic form factors of the nucleons, G, and Gy, have been
extensively measured for the past 50 years; here we shall treat them as known. If
one could experimentally determine Gg’f}w, then Eqns. 2.27, 2.28 and 2.29 would
contain only three unknowns (G% ,,, G% »s, G% 5/), which could be trivially solved.

The normalization of the flavor form factors at Q?> = 0 follows the same pre-
scription as the normal Sachs form factors. Since the charges of the quarks are
factored out, the electric flavor form factors now represent the net numbers of the

quarks. Therefore we have
GL(0)=2, GL0)=1, G5(0)=0. (2.31)
These lead to the weak charge of the proton and neutron:

b= GoP(0) =1 — 4sin® Oy, (2.32)

no=GEM0) = —1. (2.33)
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On the other hand, the magnetic form factors at Q2 = 0 do not have theoret-

ically constrained values. Let us define

G%(0) = py, Gi(0)=pa, G5(0) = ps, (2.34)

Then Eqns. 2.27 and 2.28 become

1
=GUP(0) = =y — =g — = s 2.35
M G/ (0) 3N 3,Ud 3M ( )
2 1 1
W= GU0) = =g — =y — = s - 2.36
pn = Gor'(0) = Spa — ghu — o1 (2.36)

One should note again here that for each quark flavor, Q,u, gives its contribution
to the magnetic moment of the nucleon in units of the Bohr magneton. Eqns. 2.35

and 2.36 can be rewritten into

o = 2ftp + pn + Ps 5 Hd = 24n + Py + s - (2.37)
Then the weak magnetic moments of the proton and neutron are

1 = GEP(0) = (1 — 4sin® O )y — pin — pis = 2.141 — pug, (2.38)

pZ = GEM0) = (1 — 4sin® Oy )y, — pp — s = —2.648 — p1s - (2.39)

Sometimes the flavor decomposition is also made with respect to the SU(3)
generators. For the vector current, we define SU(3) singlet, 3rd octet and 8th octet

form factors as

0 1 U S
G(E,)M = g(GE,M + GdE,M + GE,M) )
1 u
G(ES,)M = §(GE‘,M - GdE,M) )
1
GO = (G, + G — 2GS ) 2.40
EM 2\/5( E.M E.M E,M) ( )

Note that SU(3) decomposition does not assume SU(3) symmetry, such assumption

would be imposed only if one tried to relate the three form factors.
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7P Zsp ;
Then Gy, and G, can be rewritten as

P 3 1 8
GHn = Glo + %G(E,)M (2.41)
2 4
Gighs = =Gl + (2= 4sin’ Ow) G, + (% BV 9W> G
= G\ + (2 — 4sin® G) G, - (2.42)

This shows that without using charge symmetry, a measurement of Gg’fjw, combined
with the known electromagnetic form factors of the proton, leads to a determination
of flavor singlet form factors of the proton, G%)’)M. This is the origin of the name of
the G° experiment.

To make connections with conventionally used notations of radiative correc-
tions, we introduce another flavor decomposition of the neutral current form factors.

If we define an SU(3) singlet weak charge Q%) as
QW =ct+cl+cy=-1, (2.43)

then using the three weak charges QY,, @7, and Q%,?,), and Eqns. 2.27 and 2.28, the

neutral current form factors of the proton and neutron can be expressed as

GZb, = Qb GEy + QG + QW G s (2.44)

Gy = Qi Gt + QG + QW G (2.49)

Interestingly, Gé’f]’w (G?}V[) now contains contributions from EM form factors and
weak charge of the neutron (proton), which is a direct consequence of charge sym-

metry.
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2.3.2 Flavor Axial Form Factors

Taking the axial charge of u, d and s, and assuming the charge symmetry

between the proton and neutron, Eqn. 2.21 leads to

Gi'= Y &G =~(Gi~-GY)+GY,

j=quarks

Gim= Y G = (Gh - GY) + Gy (2.46)

j=quarks

Again, the “p” superscripts in the flavor axial form factors are implicit. Eqn. 1.11
implies that at zero momentum transfer, the axial flavor form factor Gf;l of quark j

is normalized to Ag;, the contribution of quark j to the net spin of the proton, i.e.
G (0) = Ag; . (2.47)

The same SU(3) re-parameterization (Eqn. 2.40) can be made for the axial form
factor G4. In the literature (see, e.g., [Mus94]), to emphasize the strange axial form
factor, G% is usually decomposed in terms of an isovector form factor G4, an

SU(3) octet (isoscalar) form factor Gf), and G as
G4 =mnQiT T + QA + QY Gy (2.48)

with 73 = +1(—1) for the proton(neutron), and G4=! and fo) are defined as

G =260 =G4 - G4, (2.49)
1

A% = _—_ (@Y +GY —2G). 2.50

A 2\/?—)( 4+ Gy —2GY) (2.50)
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The corresponding isovector, isoscalar and the flavor singlet charges are simply re-

lated to the axial charges of the quarks as

1
QL = 5 (- ¢4, (2.51)
QU0 = V3(ch + ), (2.52)
Q(O)_CA+CA+CA (253)
At tree level, using the values in Table 2.1, we have Q7=' = —1,Q7=° =

0, Q% =1, therefore Eqn. 2.46 is simplified as

GAree = —mGT= 4 Gy, (2.54)

G7' is a very good approximation of the axial form

In neutrino-nucleon scattering,
factor. In contrast, electroweak radiative corrections to the axial current is more
significant in electron scattering. For clarity, we shall use the notation =G4
henceforward to denote the radiatively corrected axial form factor seen in electron

scattering.

The Q? behavior of G4, =! is generally parameterized with a dipole form as

_ G%=1(0)
GiH(QY) = —2—o, (2.55)
1+ %)
with A4 ~ 1.0 GeV and
GT=H0) = Au— Ad = —Z= = 1.2695 + 0.0029 , (2.56)

gv

which is measured in neutron beta decay.

As mentioned in Sec. 1.2.3 and in Eqn. 2.47, at zero momentum transfer,

G5 (0) = As ~ —0.1 (2.57)

Conventionally, the Q2 evolution of G is assumed to be the same as G4~!.
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2.4 Experimental Observables: Parity Violating Asymmetry and the
Neutral Weak Form Factors

As shown in Eqns. 2.27, 2.28 and 2.29, a measurement of the neutral weak form
factor Gé "r would make the flavor separation possible. McKeown and Beck [Mck89,
Bec89] proposed an experimental probe, namely the parity violating (PV) elastic
electron-nucleon (e—N) scattering, to measured Gf;”’]’v[. The formalism of PV elastic
e— NN scattering shall be discussed in this section.

Elastic e—N scattering is dominated by the EM interaction, in which electron
and nucleon exchange a photon . However, there is also a small contribution from
the neutral current interaction, where a Z° boson is exchanged. The tree level

Feynman diagrams describing these two processes are shown in Fig. 2.2.

(a) v exchange. (b) Z° exchange

Figure 2.2: The tree level Feynman diagrams of the elastic electron-nucleon scatter-
ing via EM and neutral current interactions.

The invariant amplitude of the scattering can be written using the standard
Feynman rules: it is simply the gauge boson propagator, sandwiched between the
electron and nucleon currents with coupling constant of the interaction. For the EM

interaction in Fig. 2.2(a), the invariant amplitude is
M, = 4mjgﬁg% ol (2.58)

in which o = 7.297 x 1073 is the fine structure constant, Q* = —¢®> = (p' — p)? =

(k" — k)*> > 0 is the four-momentum transfer squared. J%7 is the electron EM
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current, which takes the simple form for the point-like fermions given by Eqn. 2.5,
and J]fj’l\flv is the nucleon EM current given by Eqn. 2.15.
The invariant amplitude of the neutral current diagram in Fig. 2.2(b) can be

written out similarly:

92 y,egul/ - ql«‘q’//M%

Mz = 16 cos? Oy “NC Q2 — M2

I (2.59)

where g = 0.653 is a dimensionless electroweak coupling constant [PDGO04], 6y is
the Weinberg angle, M, = 91.19 GeV is the mass of the Z boson [PDG04], and
T and JLY are the electron and nucleon neutral currents from Eqns. 2.6 and
2.16, respectively. At relatively low momentum transfer (Q? < 1 (GeV/c)?), the
Q? dependence of the propagator can be neglected, so the NC interaction can be
simplified as a contact interaction with a coupling constant Gz, as first proposed

by Fermi in the 1930’s. So we have

GFg v e 7U,N
T (2.60)

22
Gy = V2g

= 8M2Z cos? Oy

My =

=1.16637 x 107°GeV 2. (2.61)

The total invariant amplitude of e— N elastic scattering is a coherent sum of
Mtot = My + MZ . (262)

The scattering probability do is proportional to the invariant amplitude squared:
do o< [Myo|” = |M,|> + 2MiMz + M), (2.63)

in which the “*” on M, implies the complex conjugate.
Assuming the contributions of J’s in Eqns. 2.58 and 2.60 are comparable, the

orders of magnitude of the three terms in Eqn. 2.63 can be estimated. For example,
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at @Q* ~ 1(GeV/c)?, one gets

2
) ~1:2x107%:9%x107°.

2
|M7|232M:MZZ|MZ|2N<47TQ/> . AT GF (GF

@) Tear an
Clearly, the absolute cross section (do o< [Myy|?) is not a sensitive observable to
measure the neutral current effect. On the other hand, since the weak interaction
disrespects parity, the parity violation in e— /N elastic scattering solely arises from
the interference term 2MJMj . Therefore, a measurement of the parity violat-
ing asymmetry in elastic e—N scattering will allow a determination of the neutral
current contribution.

To make this discussion more self-contained, let us outline the experimental
principle of parity violating electron scattering. In this type of experiment, a lon-
gitudinally polarized beam is used with an unpolarized target. The helicity of the

electron is defined as the projection of the spin onto its momentum direction

Wy
B

h =

Bk (200
and h has two eigenvalues: A = +1 or “right-handed” for spin and momentum
aligned, and A = —1 or “left-handed” for anti-aligned. With an unpolarized target,
the only (parity violating) pseudoscalar one can construct is §- ko A Therefore, a
scattering process correlated with A violates parity. Experimentally, the helicity of
the electron is flipped back and forth, and the parity violating asymmetry is defined
as the relative difference in the scattering cross section between the two helicity

states of the electron
dO’R — dO’L

Apy = ————~.
PV dogr + doy,

(2.65)

Notice that, since this is a measurement of the relative difference, to first order the
luminosity of the beam and the spectrometer acceptance cancel out, which reduce
the sensitivity to the experimental systematics significantly.

Now let us try to connect Apy with physics. Using the V—A prescription in
Eqns. 2.6 and 2.16, we can split M into its V-V, A—A, V—A and A—V compo-
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nents:

GF e V.
Mz = _Q—ﬁgw TxGvIN cv+~7Nc RS CA+~7 vy CA+\—71<I%,AL7N£,[V]
=Myyy +Mgaa+Mzgya+ Mgav, (2.66)

in which the the subscripts imply the couplings of Z° to the electron (first) and the
nucleon (second), e.g., “VA” means the vector coupling of electron and axial coupling
of nucleon to Z°. A Lorentz vector conserves parity and an axial vector maximally
violates parity [PS95], which implies that both My and Mz 44 conserve parity,
whereas Mzy 4 and My 4y violate it. Mathematically, the PV terms are those
containing odd numbers of 5. So we decompose M7 into a parity conserving and

a parity violating term as

My = M5+ MY,
Gr

2\/—guu
Gp

2\/—.9;“/

M5C = Mzyy + Mgan = — [JNC vINew + JI\LILg,AJI(I/,(JE\,IA} ;

MY = Mgyva+ Mzay = — [ch I NCA T J#&?,A«Z?éfv} . (267

Ignoring the tiny third term in Eqn. 2.63, Apy can be cast into

MEMEY 2MEMEY
Apy = : ~ :
‘M7|2 + 2M§;MZ |M7|2
Gr @ 20w TTN )" G (TSE N T+ TEATG )

—_ . (268
2V/2mor |9 T El\;[ |2 ( )

in which the EM and neutral currents of the electron and nucleon are written out
explicitly in Eqns. 2.5,2.6, 2.15, and 2.16.
After a standard calculation [RS74], Apy becomes

GrQ? eGLGE% + 1G,G%, — (1 — 4sin® Oy )€ GL,G
42T e(GL)? +7(GY,)? ’

Apy = — (2.69)

26



with

2 9.\ !
T = AIQW’ €= (1 +2(1 + T)tarﬁi) , €= \/7-(1 +7)(1 —€?), (2.70)
N

where 6, is the lab angle of the scattered electron, and My is the mass of the
nucleon. For elastic scattering, the kinematics is fixed once the beam energy and
Q? are known. Two additional useful kinematic relations are

Q2
2My’

Q* = AE,FE' sinQ(%) , E'=E,— (2.71)
where Ey and E' are the incident the scattered electron energies. Several observa-
tions can be made at this point. First, in Eqn. 2.69, eGLG% + 7G;,G%, arises from
My (or A(e) x V(N)) and — (1 —4sin? By, )G arises from My 4 (or V(e) x A(N)),
of which —(1—4sin® fyy) is the weak vector charge of the electron. Second, Eqn. 2.69
is a generic formula for elastic electron-nucleon scattering. To get the asymmetry
of the proton or neutron, one simply feeds the corresponding form factors into the
right-hand side of the equation. Third, if all but the neutral current form factors are
known, a measurement of Apy leads to a linear combination of GZ and G#%, using
Eqn. 2.69.

Substituting the proton weak form factor Gg’f;w by Eqn. 2.44, and G% by
Eqn. 2.48 (with 73 = 1 for the proton), Eqn. 2.69 becomes

B GrQ? 1
4y2ra €(GR)? + T(Gh,)?
x{(e(GR)* + 7(GR)*) Qi + (€GRGE + TG, G Qly

+ €GB (G + 1G5 QY

APV =

— ¢(1 - sin’fy) G, (LT GE + QUG + Q4G)Y (2.72)
QP

in which n = Gé,” . Therefore, if one treats the nucleon EM and axial form factors
€Up

as known, a measurement of the PV asymmetry leads to a linear combination of

G% and G5,. The parity violating asymmetry for the neutron can be obtained by
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exchanging the “p” and “n” indices on nucleon form factors (but keep the indices
of the weak charge unchanged), replacing the proton form factors by those of the
neutron in the expression of 7, and adding a negative sign to GL=* term in Eqn. 2.72.

For later convenience, we define the isovector component of the axial form factor as
T:l = =
GV =Qha, (2.73)

and we shall see in Sec. 2.5 that Q%= is subject to significant electroweak radiative
corrections.

At a given four-momentum transfer, two measurements with different kinemat-
ics are needed to separate G% and G5, just like the standard Rosenbluth separation
in cross section measurements [Ros50]. To demonstrate the sensitivities of different
observables to the kinematics, 1, € and € vs. electron scattering angle are shown in
Fig. 2.3 for Q% = 0.25 (GeV/c)?. For completeness the beam energy Ej as a function
of the electron angle is also overlaid. One sees, first of all, that n starts from small
values at the forward angle, then increases with . (quite drastically at the back-
ward angle). Therefore a forward (backward) angle experiment is more sensitive to
G5 (G%;). One should note however, that € also increases with scattering angle,
therefore the sensitivity to the axial form factor is also enhanced in backward angle
experiment. Therefore, a better constrained electroweak radiative correction to the
axial form factor is important for interpreting the result of the backward angle exper-
iment. A measurement of the backward parity violating asymmetry of quasielastic
scattering form deuterium will in this regard serve as a control experiment. Under

the static approximation, the quasielastic asymmetry is

Apop + Apoy,

Ad ==
op +0n

: (2.74)

in which A, (A,) and o, (0,) are the parity violating asymmetry and cross section
for elastic scattering from proton (neutron). It can be shown that the relative
sensitivity of A, to G;(T:l) is further enhanced as compared to a backward proton

measurement [Mus94]. Obviously one has to apply nuclear corrections to Eqn. 2.74,
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but the above observation remains valid. Therefore by combining a proton forward
and backward, as well as a deuterium backward measurement, one can make a model
independent separation of G, G3, and G =". The full G° physics program is
designed to perform these measurements at a few different values of four-momentum

transfer.
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Figure 2.3: The dependence of n (blue solid), € (pink dashed) and € (black dot-
dashed) on the electron scattering angle for Q* = 0.25 (GeV/c)®. The required beam
energy (solid purple) at different angle is also overlaid.

2.5 Electroweak Radiative Corrections to the Neutral Current

So far Eqn. 2.72 only contains the lowest order (tree level) contributions in
perturbation theory. The evaluation of higher order corrections is usually called
the radiative correction. One has to redefine the theory in such a way to make
higher order corrections finite — the prescription of this redefinition is called the
“renormalization scheme”. A widely used renormalization scheme is MS (or modified
minimum subtraction) [PS95], in which the correction depends on a renormalization
scale p. In most applications of the standard model, p is set to M, = 91.19 GeV
(the mass of the Z boson). All of the radiative corrections to Apy in this work

are evaluated in MS. A detailed discussion of the electroweak radiative correction
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for parity violating electron scattering can be found in [Arv05]. The procedure in
[Arv05] will be recapped in this section for later reference.

As shown in Eqn. 2.60, the electroweak interaction has been reduced into a
contact interaction. Higher order corrections modify the coupling constant at the
interaction vertex. In effect, the weak vector and axial charges are modified. Taking

the tree level formula, Eqn. 2.72, the following corrections are made to the six weak

charges:

Tree level —> Rad. Corr. Included

by =200 + ¢} =1—4sin’0y = Qh = (1+RY)(1—4sin’0y),
neo=2c + b =—1 — Q% =—(1+RY),

QY =t +ch+c =1 — QY =—-(1+RD),
T = (- e =1 = Q' =0+ R,
10 = V(e + ) =0 = Q= VAR,
O — vt 45 =1 — QY =1+RD. (2.75)

The radiative correction of the PV asymmetry can be classified into three
categories: heavier quark contributions, “one-quark” and “many-quark” electroweak
radiative corrections, and generically the radiative correction factor R is broken

down into three additive factors:
R= Aheauvy + Ronefquark + Rmanyfquark . (276)

The modification of the hadronic NC coupling due to the heavy quark (c, b, t)
renormalizations of the light quark current operator is called the heavy quark cor-
rection. This effect is estimated in [KMS88] and found to be small: Apeayy ~ 1074
for the vector term (A(e) x V(N)) and ~ 102 for the axial term (V (e) x A(N)),
and is therefore neglected in this work.

The “one-quark” correction collectively stands for the higher order corrections

to the scattering, in which only a single quark is involved. Its contribution can be
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evaluated rather reliably within the standard model, and there is a gentle dependence
on Q% [Mus94, Zhu00]. Two representative higher order “one-quark” diagrams are
shown in Fig. 2.4. Fig. 2.4(a) is the so-called y—Z° mixing diagram, in which a Z°
and 7 couple to a ¢¢ loop. It is sometimes referred to as the vacuum polarization
correction, analogous to a similar concept in QED. Fig. 2.4(b) is the so-called y—Z°
box diagram. It is assumed in this work that the “one-quark” correction has been
performed reliably and has been reflected in the standard model parameters in the
particle data book (PDG) [PDGO04]. One should keep in mind, however, that there
is still room for uncertainties. For example, the authors in [BHO1] pointed out that
the calculation of the y—Z° box diagram involves excited hadronic states, which is

not completely under control.

(a) y—2Z° mizing diagram (b) v—Z° box diagram

Figure 2.4: Two representative “one-quark” radiative correction diagrams.

We shall next present the procedure of incorporating the PDG parameters
into our formalism. For the PV electron scattering, PDG uses a set of constants,
Chu, Cia, Co, and Cyy, to describe the coupling of the electron current to the quark
current. Specifically, C1, and C14 (Co, and Cyy) are the parity violating coupling of
Ae) x V(q) (V(e) x A(q)) with “e” and “q” representing the electron and quark,
respectively. Note that Cy, and Cy, (C14 and Cyy) shall be applied to u, ¢, t (d, s, b).

The C' parameters, after the radiative corrections, are dressed into the following
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forms [PDGO04]

1 4
Cy = ,01(—5 + §K152z) + Ay s

1 2
Cia = ,01(5 — 3’“61822) + Aa,

1 .
Cgu = p2(—§ =+ 2/6282Z) + )\QU y

1 .
Coa = Pz(é — 2695%) + aa, (2.77)

in which all quantities are evaluated in MS, and 5% = 0.23120(15) is sin® §y with
the renormalization scale at M. At the tree level, p; = py = k1 = k3 = 1 and
AMu = Mg = Aoy = Ag9qg = 0. The connections between these set of C' parameters and

the cy and cy parameters in Eqn. 2.75 are

't = —2Cy, g™t = —2Cy,
2C 2C
R — S (2.78)
1 — 45sin” Oy 1 — 4sin” Oy

In Table 2.2, the p, k, A parameters in [PDGO04], as well as our calculated values of
the C' and c¢ parameters are listed. The standard model (SM) values of the weak
charges of the nucleon, and the corresponding R factors, can then be computed
by substituting the tree level ¢ parameters by their SM values. The tree level and
the SM weak charges, and their corresponding correction R factors are summarized
in Table 2.3. Since [PDGO04] does not provide uncertainties for the p, x and A
parameters, we estimate their uncertainties based on a comparison with previous
releases of the PDG. The resulting uncertainties of the weak charges (including the
contribution due to 5%) are reflected in the uncertainties of the R factors summarized
in parentheses in Table 2.3. Their effects are negligible compared to the “many-
quark” correction to the axial charges, as will be discussed next.

The “many-quark” or anapole correction to the parity violating asymmetry
involves an axial coupling of the photon to the nucleon, leading to the so-called

anapole moment of the nucleon [BHO01]. The underlying process is that during the
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PDG p, k, A parameters

C and c parameters

Parameter Tree SM

82 0.23120(15)

P 1 0.9881

P2 1 1.0011

K1 1 1.0027

Ko 1 1.0300
Al 0 -1.85x107°
Aid 0 3.7x107°
A2y 0 —0.0121
Aog 0 0.0026

Parameter Tree SM
Cha —0.191733  —0.188648
Cha 0.345867  0.341377
Coy —0.0376  —0.0358541
Cha 0.0376  0.0263541
et 0.383467  0.377296
P —0.691733  —0.682753
et —1 —0.953567
b 1 0.700907

Table 2.2: The tree level and radiatively corrected (“one-quark”) electroweak coupling
parameters for electron-quark interactions. The table on the left contains the values
from [PDGO04]. The right table contains the C and c parameters calculated from
Egn. 2.77 and Eqn. 2.78.

Quantity  Tree SM R Factor Value
Q%  0.0752 0.0718379 | RY —0.045(3)
Qr, ~1  —0.988211| RrL  —0.0118(2)

© ~1  —0988211 | RY  —0.0118(2)
Q7= —1 —0.827237 | RI='  —0.173(3)
Q0 0 —0.437619 | RI=° —0.253(2)
©) 1 0448247 | RY  —0.552(5)

Table 2.3: The tree level and (“one-quark”) radiatively corrected weak charges, and
the radiative correction factors, defined in Eqn. 2.75. The uncertainties of the weak
charges due to 8% and the p, k and X parameters are reflected in the uncertainties
of the R factors in parentheses.

scattering, quarks inside the nucleon interact via exchanging a weak boson, which

effectively induces a modification to the nucleon axial coupling. One such process
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is depicted in Fig. 2.5, in which the weak interaction between quarks generates a
parity violating pion emission (pink crossed circle), followed by a parity-conserving
pion absorption (blue open circle) through the strong interaction. To date, there are
still significant theoretical uncertainties to the “many-quark” corrections, since it is
impossible to include all virtual hadronic states in the calculation. Nevertheless, it

should be noted that the “many-quark” correction only affects the axial contribution.

N N
e e +
O
4
I '
gl v s
T ) pv
e € +N
N

Figure 2.5: One representative “many-quark” diagram.

Recently, Zhu et al. made an evaluation of the anapole correction to the
axial form factor [Zhu00]. Under the framework of HBYPT (see Sec. 2.6.1), the
authors carried out a complete calculation of the “many-quark” diagrams, includ-
ing Fig. 2.5, to the order of % f. The authors expressed their results into two
terms, RT=!(“many-quark”) and R%=°(“many-quark”), in the on-shell renormaliza-
tion (OSR) scheme. The prescription to cast R from OSR to MS involves a simple

normalization [Zhu00]
RMS . 1— 43%[/
Rosg 1 — 485

= 1.45, (2.79)

in which 82 = 0.23120(15) is sin®fy in M S, and s}, = 0.2228(4) is that in the
OSR [PDGO04]. After the normalization, the “many-quark” correction should be

combined with the corresponding “one-quark” corrections from Table 2.3. This

(0)
A

procedure is contained in Table 2.5. Since no evaluation of R}’ (many-quark) has

been made in the literature, we simply use the “one-quark” value for RS)) and assign

tp is a momentum of the order of pion mass and Ay ~ 1 GeV is scale of the chiral symmetry
breaking.
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100% fractional uncertainty to it.

RY= R0 R
one-quark —0.173(3) —0.253(2)  —0.552(5)
many-quark —0.087(0.35) 0.015(0.20) N/A
total —0.26(0.35) —0.24(0.20) —0.55(0.55)

Table 2.4: The “one-quark” [PDGO04] and “many-quark” [Zhu00] corrections to the
azxial charges, both in MS, as well as the total corrections.

To conclude this section, we combine Eqn. 2.72 with the radiatively corrected
weak charges in Eqn. 2.75, and write out the full expression of parity violating

asymmetry for the proton as
B GrQ? 1
427 [€(GY)? + 7(Gh,)?]
x {(e(G)* + 7(G3,)*)(1 — 4sin” ) (1 + RY,)

— (eG%GY + 7GY,GhY) (1 + RY)

Apy =

— €GB (G +nG5) (1 + RY)

— € (1 — 4sin®0y ) Gh,G4 } (2.80)
in which
G4 = —(1+ R5)GE +v3REGY + (1 + RY)Gs, . (2.81)
and
_ @ _ 1+2(1+ 7)ta 20)" "=Vl +7)(1-€) _ O
T—4Mg, € = T Il2 y € = T T € ), n_EG%

2.6 Theoretical Predictions of G% and G},

In this section, a survey of various theoretical approaches to describe the
strangeness of the nucleon and their predictions will be presented. An excellent
review on this topic (from a more theoretical ground) can be found in [BHO1].

Let us first define observables. In the literature, two quantities are commonly
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used to capture the behavior of G, and G4, at zero momentum transfer: (r?)g

and ;. The strange magnetic moment has already been defined in Eqn. 2.34 as
ps = G5,(Q* = 0). It has also been mentioned that —%us gives the strange quark
contribution to the nucleon magnetic moment (Eqns. 2.27 and 2.28) in units of Born

nucleon magneton (n.m.). The strangeness mean square radius (r?)g is defined as

dGs,

107 (Q*=0), (2.82)

(r})g = —6

which is also often called the Sachs strangeness radius. Some authors define the

strangeness radius (r?) as the slope of the Dirac form factor (F}) instead:

dF?
Q2

(r2) = 6

S

(@*=0). (2.83)

For clarification, we add the subscript “E” on the Sachs radius and note that it

is the Sachs radius that gives the mean square radius of the strangeness “charge”

2

distribution. A positive (73

)E implies that the s quark is spatially further away from
the center of the nucleon than § and vice versa [BH01]. According to Eqn. 2.13, the
two radii are related by

6
<7'§> = <7"§>E - mﬂs

= (r?) i — 0.066; . (2.84)

In the second expression, the nucleon mass M has been converted into the dimension
of inverse length (~4.8 fm™!) and the units of both sides of the equation are fm?. Like
s, —%(r?) g gives the contribution of the strange quark to the nucleon charge radius
(see Equs. 2.27 and 2.28). Although these two quantities do not contain the entire
picture, we shall see that the predictions of them are already widely-spread enough
to differentiate between models. Just to set the scale, the proton’s magnetic moment

is g1, = 2.793 n.m. and the neutron’s charge radius ' is (r2)z = —0.12 fm? [PDG04].

tThe strangeness charge radius is more naturally to be compared to the neutron’s, since neutron
is an overall charge neutral object.
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The calculation of static properties of the nucleon in QCD from first principle
is one of the most difficult problems in hadronic physics. Unlike that of QED, the
strong coupling constant («;) is of the order of unity at low energy. Therefore one
cannot construct a natural perturbative expansion of the interaction in a power series
of a;. Instead, one has to seek other frameworks in which controlled approximations
can be made based on general principles.

One of such general principles is the (broken) chiral symmetry in QCD. Let us
consider the world with only the lightest three quark flavors, (u,d,s). In the limit
that all these quarks are massless, the QCD Lagrangian possesses a global symmetry:
it is invariant if the left-handed and right-handed quarks make independent rotations
in the flavor space. This is the so-called chiral symmetry, which is represented by the
symmetry group of SU(3),xSU(3)g. Since the physical masses of the three quarks
(M, mq and my) are much less than the typical hadronic scale (1 GeV), the massless
approximation above is reasonably justified. The exact chiral symmetry leads to
16 conserved currents, 8 of them are vector currents (L+R) and the others are
axial currents (L—R). In reality, SU(3),xSU(3) g symmetry is spontaneously broken
into a vector SU(3) flavor symmetry (SU(3)y), i.e., the ground state (vacuum) is
asymmetric under the action of the axial charges. This implies that there are 8
massless Goldstone bosons (which are energetically degenerate with the vacuum),
associated with the eight broken generators [TWO00]. They are identified as the
lightest pseudoscalar (J™ = 0~) mesons, 7's, K’s and 7. In a physical world, the
non-zero masses of the quarks break the chiral symmetry explicitly. By this means,
the pseudoscalar mesons acquire their physical masses. Nonetheless, due to the
smallness of the light quark masses, the masses of pions, kaons and n (m., mg
and m,) are considerably less than the mass of, say, the lightest non-Goldstone
hadron, p. One should also note that m, < mg ~ m, reflects the mass hierarchy
that m,, mg < ms. At low energy, these pseudoscalar mesons can be treated as
effective degrees of freedom that incorporate the symmetry of QCD. The quarks
and gluons do not show up explicitly here, as a consequence of confinement. As was

realized by Weinberg [Wei79], the Goldstone bosons interact weakly, and the loop
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corrections are suppressed by orders of (p/A,), in which A, ~1 GeV is the chiral
symmetry breaking scale, and p collectively represents momentum or pseudoscalar
meson masses that satisfy p < A,. This suggests that at low energy, the effective
interaction between Goldstone bosons can be treated perturbatively. In two seminal
papers by Gasser and Leutwyler [Gas84, Gas85], this approach was systematically
elaborated, which gave birth to the so-called chiral perturbation theory (xPT).

For the simplest two-flavor (u,d) case, the effective calculation in the meson
sector only involves two parameters, the mass of the pion (m, ~135 MeV) and the
pion decay constant (F; ~92 MeV). F; effectively contains the transition amplitude
of the Goldstone boson into the vacuum via the action of the broken axial charges; it
therefore reflects the spontaneously broken chiral symmetry of the theory. m, effec-
tively captures the small quark masses, which explicitly break the chiral symmetry.
When the loop corrections are included, however, one must insert counterterms into
the effective Lagrangian to absorb infinities. These counterterms have unknown co-
efficients, called the low energy constants, which can only be fixed from experiments.
This is a feature of xPT. SU(2) xPT has yielded enormous success in describing the
interaction in the meson sector.

It is natural to extend this treatment to nucleons. However, the situation is
complicated substantially since there now exist three parameters in the theory, m,,
F,, and my, in which my is the mass of the nucleon. my does not vanish in the
chiral limit (m, = my = ms; = 0), and my is the same scale as the chiral symmetry
breaking scale A, which spoils the natural perturbative scheme. The problem was
overcome by the proposal by Jenkins and Manohar [JM91], who suggested to treat
the nucleons as very heavy, so that the dependence on my can be absorbed into
a series of interaction vertices with increasing power of 1/my. Then a consistent
perturbative expansion of the theory emerges. This theoretical framework is the so-
called heavy baryon chiral perturbation theory (HBxPT). Since most of the models
that describe the nucleon strangeness are more-or-less related to it, we will present

the application of HBxPT to the strange form factors first.
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2.6.1 Heavy Baryon Chiral Perturbation Theory (HBxPT)

To include the strangeness in the calculation, one has to extend HByPT
from SU(2) to SU(3). The inclusion of the (kaon) loops introduces additional
phenomenological counterterms. Some of these counterterms can be fixed by the
experimental EM moments of the baryon octet, but two remaining singlet coun-
terterms require knowledge of strangeness radius and magnetic moment, which are
precisely the terms we seek to determine. Therefore HBYPT cannot predict nucleon
strangeness [RMI97]. Despite this fact, Hemmert, Meissner and Steininger realized
that to the order of p® (O(p?)) in the chiral expansion, the @* behavior of G%,
is dictated by the kaon loop diagram, which has an analytical and parameter free
form [HMS98]. Shortly after, in [HKM99]|, Hemmert, Kubis and Meissner derived
an expression of G%(Q?) to O(p?®) in terms of the two unknown counterterms and
argued that they could be fixed by the data from SAMPLE and HAPPEx f. From
this treatment, the authors obtained strangeness radius of (r?)y = 0.05 + 0.09 fm?
and a positive strangeness magnetic moment (us ~0.18 n.m.). However, when the
calculation was extended to O(p*), Hammer et al. showed that there is a significant
cancellation between the contributions from O(p?) and O(p*) [Ham03]. As a result,
the Q? slope of the strange magnetic moment exhibits enhanced sensitivity to the
unknown coefficient of an O(p*) counterterm, b¢. According to their calculation, at

small momentum transfer, u, takes the form
ps = G5,(Q%) — (0.17 + 1.3b7)Q?, (2.85)

with [b7| ~ 1 being the “reasonable” scale of this low energy constant. From this
updated analysis, neither the magnitude nor the sign of u; is rigorously constrained.

The above discussions demonstrate the difficulties of using the chiral pertur-
bation theory to calculate the strange vector matrix element, due to the presence
of unconstrained counterterms. On the other hand, progress can be made by mak-

ing model assumptions about the underlying physics. We shall discuss some of the

tThese two experiments will be discussed in Chap. 3
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models in dealing with the nucleon strangeness in the next few sections.

2.6.2 Vector Meson Dominance

Vector mesons are neutral, spin 1 and parity odd mesons. In many ways they
share the characteristics of a space-like photon. Historically, vector meson domi-
nance (VMD) played a crucial role in describing photo-hadron interactions [Sak69,
Fey72]. The underlying idea is that a photon can fluctuate electromagnetically
into an intermediate vector meson, which subsequently interacts strongly with the

hadron. The process is depicted by the Feynman diagram in Fig. 2.6.

Y

\Ad

X

Figure 2.6: The Feynman diagram of the vector dominance approzimation. v* is a
space-like photon, which fluctuates into an intermediate vector meson V. X and 'Y
represent the initial and final states of the hadron.

For the application to nucleon EM structure, VMD simply states that the nu-
cleon matrix element (N|J“ ,|N) can be written as a summation over intermediate
vector states as [Fey72]

N 1
(N|TEuINY = fv———(N|V¥IN), (2.86)
v, w4
in which my is the mass of an intermediate meson V', and ¢ < 0 is the photon four-
momentum-transfer squared, and fy is the vector-meson-photon coupling constant.

This expression can be understood diagrammatically from Fig. 2.6. fy describes

how much the physical state of the vector meson overlaps with the quark-antiquark
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pairs created by the EM current operator:
(V| Tl 0) = fre, (2.87)

in which |0) is the vacuum state and €* is the polarization vector of the vector
meson. The propagator of the vector meson, ﬁ, represents a pole (0 function)
at ¢> = m? in the dispersive integral (see also Sec. 2.6.6). V4 is the field operator
of the vector meson, and (N|V#|N) gives the strength of V coupling to the nucleon.
An important underlying assertion of VMD is the so-called current field identity,
which implies the equivalence between the field operator of the neutral vector meson
and the quark current with the same quantum number [KLZ67]. Consequently, V*
is a conserved Lorentz vector current. So we can write (N \V“\N ) in terms of two
constant “form factors”, gV and gy V", similar to F} and F, defined in Eqn. 2.9.

The vector mesons with the lowest masses are p (770 MeV), w (783 MeV) and
¢ (1020 MeV). The quark content of these vector mesons are

! 7] 1 = —(uu ) = sS
pzﬁ(uu—dd), wo—\/i( +dd), ¢ : (2.88)

The subscripts “0” on w and ¢ imply that they are the flavor pure states. The
small w—¢ mixing will be taken into account a little later. One sees that p is an
isovector meson, and w and ¢ are isoscalars. In order to have a well-defined isospin
quantum number for the vector-meson exchange, we consider the isoscalar (I=0) and
isovector (I=1) nucleon form factors, defined in terms of the proton and neutron’s
form factors:

o 1 i L1 i
F1{50:§(F£2+F1,2), F1I,21:§(F£2_F1,2)- (2.89)

Let us use Fj(¢?) as a generic symbol for these form factors. Based on Eqn. 2.86,

F;(¢*) can be decomposed as

Fi(¢°) = Z # ; (2.90)
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in which

af = fvg/"". (2.91)

Eqn. 2.90 suggests that the behavior of the form factor vs. ¢ can both be used to
identify the dominating vector mesons, as well as to constrain the pole residual a) .
The most important vector mesons for the isovector and isoscalar channels are p
and w, respectively.

Hohler et al. made a global fit of the electron-nucleon elastic cross section data
using a vector meson dominance model [Hoh76]. To get reasonable x?, the authors
performed a three-pole fit to both the isovector and isoscalar form factor. The p
pole in the isovector fit was fixed based on a m7—/N scattering amplitude analysis,
and the first pole in the isoscalar fit was fixed at w. They identified the second
isoscalar pole as ¢, and used the third pole to mimic the contributions due to higher
resonances . The meson-nucleon coupling strengths, g¥'V¥ were also produced
from their fits. Quite surprisingly, the ¢/ NN coupling was found to be large, which
seems inconsistent with the approximate OZI rule of the strong interaction [OZI63]
!, We shall see that due to the large strangeness content of ¢, Hohler’s results
imply significant nucleon strangeness, as argued later by Jaffe in [Jaf89]. Hdhler’s
treatment was updated by Mergell et al. [MMD96]. In addition to a more recent data
set, Mergell et al. imposed the constraints from perturbative QCD and unitarity.
The results of this analysis support the identification of the 2nd pole in FlI 70 as the
¢ meson, as suggested by Hohler’s fit, and identifies the 3rd pole as w(1600).

We shall focus on the isoscalar form factors to make contact with the strangeness.

tTo make contact with the later discussion of the form factor parameterization, we note here
that the summation of two closely-lying monopoles with residuals of different signs mimics a dipole
form given later in Eqn. 6.5 in Sec. 6.1.1.

¥To put into simple language, the OZI rule says that the process with disconnected quark lines
is highly suppressed. Since ¢ is primarily made of s5, which is disconnected from the u and d
quarks in the nucleon, a large NN implies the violation of OZI rule.
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The forms of Hohler’s three-pole fits are $

I=0 I=0 I=0
FI:O(qQ) _ 1+ QZ(Z‘IJ QZG,? q2a,11) (2 92)
! 2 m2—¢? mi—qQ m2 — g%’ .
goA=0 10 G010
2 (q) mz}_qg mi_qg mg_qg’ ( )

in which a} and m, correspond to the 3rd higher mass pole in Hohler’s fits. In

[Jaf89], Jaffe wrote the strange vector form factors into a very similar form:

2 W, 2 _&,s 2 v,
q 0, q 0 q 0y
Fi(g?) = 2.94
2 ay” ag”’ ay”
F; = ) 2.95
2(¢) m2 — ¢? mi—q2 m2 — ¢? (2.95)
Clearly, as implied from Eqns. 2.87 and 2.91, for each vector meson V/,
Vs 71=0
a;’ VIJ:="0
i _ VIZT0) , (2.96)

al"="  (V]J:|0)

in which the subscript 7 can be either 1 or 2, and jNIZO = (@ + dyud) — 1(57,8)
and J, = 57yus are the isoscalar and strange vector currents, respectively. By further
assuming that the quark current of flavor k£ couples exclusively with a universal
strength to the component of the vector-meson wave function §.q; with the same

flavor f, the ratio of the matrix (ilements above is simply determined by the quark
(V]7,=°[0)
(V|7310)

reality, there is a small mixing between w and ¢, parameterized by the mixing angle

e = 0.053 £ 0.005 [Jaf89], so that the physical state of w and ¢ are

content of V. For instance, is 0 and —3 for wy and ¢y, respectively. In

W =COS€E wy —Sine ¢y, ¢ =sine wy+ cose ¢y. (2.97)

$Note that Eqn. 2.93 is the same as Eqn. 2.90, which represents the so-called unsubtracted
dispersion relation. Eqn. 2.92, on the other hand, has utilized the a subtracted dispersion relation
to enforce the constraint that Ff=°(0) = 1.
tThis flavor counting rule that Jaffe used is in excellent agreement with experiment [Mei88].
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Having taken this into account, from Eqn. 2.96 Jaffe derived

a”’ V6sine a;’b’s B V6 cose

L — ~ —0.2, = — ~
q1=0 sin(e + 6p) a?"=0 cos(e + 6p)

(3

-3, (2.98)
in which §; = tan~! %, the “magic” angle of octet-singlet mixing that yields flavor
pure states wy and ¢y. For the third higher mass pole, Jaffe used the asymptotic
constraints that F) vanishes as 1/¢? and F, as 1/¢*. Then by applying the pole
residuals from the Hohler’s fits, he obtained the expressions of F¥(¢?) and Fi(g?),
from which he concluded that u, = —0.31 £+ 0.09 and (r?)g ~ 0.14 4+ 0.09 fm?.
Hammer, Meissner and Drechsel made an updated analysis based on the Mergell
fit and obtained 1, = —0.25 + 0.03 and (r2)p = 0.22 + 0.03 fm® [HMD96], in good
agreement with Jaffe’s estimate, as well as a similar analysis by Forkel [For97].
Despite the consistent results from various VMD analyses, the common model
dependence in them should not be neglected. First, the values of us and (r?)g cru-
cially depend on the identification of the 2nd pole as ¢ (which has a large strangeness
content). The results are also quite sensitive to w—¢ mixing angle €. Second, the
asymptotic constraints imposed to determine a;"*, as a matter of fact, requires more
poles with unknown masses and residuals. Therefore the three-pole treatment is
ambiguous at best [RMI97]. Furthermore, one should also be concerned about
mimicking the high energy continuum as a zero-width pole [BHO1]. Along this line,
Forkel has shown that replacing Jaffe’s asymptotic ansatz with the QCD asymptotics
would reduce the magnitude of the three-pole results up to a factor of 2.5 [For97].
The connection between Jaffe’s VMD analysis and xyPT was made in a pa-
per by Ramsey-Musolf and Ito [RMI97]. As was mentioned earlier, in HBxPT,
the experimental u, and (r?)z contain the contributions from both loops and the
counterterms. In [RMI97], it was elucidated that using the VMD model to cal-
culate aZV’s is equivalent to evaluating the counterterms. However, in a pure pole
fit like Jaffe’s, the loop (or multi-meson continuum) is not well-represented. As
an attempt to remedy this, these authors took the pole residuals of w and ¢ from

Hoéhler’s isoscalar fit [Hoh76] to fix the counterterms, and calculated the leading,
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nonanalytic loop contribution based on xPT. They called this treatment the reso-
nance saturation model. The results from this treatment were (r?)g ~ 0.36 fm? and
s = 1.85. The strangeness radius result is larger than the findings in the three-pole
fits [Jaf89, HMD96], due to the fact that the cancellation between the ¢ pole and
continuum in this analysis is not as drastic as that between ¢ and the 3rd higher
mass poles in [Jaf89, HMD96]. The surprisingly large and positive p, arises from
a very large kaon loop contribution to the isoscalar anomalous magnetic moment
(a factor of 20 higher than the experimental value). As these authors pointed out,
this kaon loop contribution requires large counterterms to balance it. However the
Hohler fit is a pure resonance fit with no continuum. So using Hohler’s pole residuals
to fix the counterterms of the isoscalar form factors in this procedure is conceptually

inconsistent with the kaon loop continuum calculation.

2.6.3 Kaon Loop

A different and intuitively appealing model of the nucleon strangeness is that
the nucleon can fluctuate into a kaon (K) and a hyperon (Y), with strangeness
—1 and 1, respectively. The photon can vector-couple to either K or Y. The pro-
cess is depicted as the Feynman diagrams in Fig. 2.7. The kaon is much lighter
than a hyperon, therefore is more likely to be located further away from the cen-
ter of the nucleon. For this reason, this picture is also often referred to as the
kaon cloud model. Due to the negative strangeness of s in the kaon, naively one
expects that strangeness radius (r2) should be negative, if the recoiling effect is
ignored [For94]. The expectation of s is not so obvious under the same “cloudy”
picture. Nonetheless, according to a simple non-relativistic argument in [HRGO00],
is due to the K—A fluctuation is expected to be negative as well. Both arguments
are clearly over-simplistic. Nevertheless, the results from various calculations bear
these features.

One should be concerned about the kaon loop picture, since the loop integral
includes both the long and short distance physics. This is not a problem in general,

since the short distance (or high energy) physics, e.g. ultra-violet divergence, should

45



[{/ e RN N 1 Y \
, \ e - [ —
1 \ N v N
e [
N Y N
(a) v couples to K. (b) v couples to Y.

Figure 2.7: The kaon loop diagrams with vy coupling to either the kaon or the hyperon.

be absorbed into the renormalized parameters of the low energy effective theory,
which is fully correct at low energy. However, a subtlety arises when the residual
short distance effects remain large after the renormalization. As pointed out by
Donoghue and Holstein, this is precisely the situation in HBxPT — the residual
short distance component of the loop diagram is responsible for the poor convergence
of the chiral loop [DH98|. They suggested to reformulate the theory by introducing

a form-factor-like regulator into the chiral loop as

F(¢*) = <A2A7_2q2)2 : (2.99)

in which ¢ is the loop momentum, and A is a cutoff scale (typically from 300 to
600 MeV), with which the short distance physics is largely eliminated from the
loop integral. This regulator maintains the chiral symmetry of the theory, while
improving the convergence of the chiral expansion significantly. In many ways, this
prescription provides justification to similar regularization procedures which had
been adopted by some kaon loop practitioners. On the other hand, one should note
the subtleties arising from this procedure. First, the additional cutoff scale breaks
the consistency of the chiral expansion, which is not desirable from the theoretical
point of view. Second, for finite value of A, to satisfy Ward-Takahashi identity [PS95]

f  “seagull” or contact terms at the meson-nucleon vertices have to be introduced,

tA general identity for a two point correlation function in a field theory to satisfy in order to
maintain the gauge invariance.
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of which the choice is not unique. As an example, the authors in [RMB94] noted
~30% difference in p; and (r?)g in two different treatments of these contact terms.
Third, some dependence on the cutoff scale A is an inevitable consequence of this
procedure.

Bearing these in mind, let us focus now on some representative calculations. In
a paper by Ramsey-Musolf and Burkardt [RMB94], the nucleon strangeness arising
from the K—A loop was computed. At the meson-nucleon vertices, they inserted
the form factor from the Bonn-Jiilich potential [BJ89] obtained from the fits of
baryon-baryon scattering, F(k?) = % Here, m and k are the mass and
the momentum of the meson, respectively, and the cutoff scale A, has a typical
range from 1 to 2 GeV. Ad hoc “seagull” vertices were introduced to ensure gauge
invariance. The strange magnetic moment and radius obtained from this calculation
were ps = —0.31+0.05 n.m. and (r)y = —0.03 £ 0.003 fm?, with the uncertainties
corresponding to the the variation of A within the “nominal” range in the Born-
Jiilich potential, from 1.2 to 1.4 GeV. To test the predictive power of this simple
kaon loop model, the authors also calculated the contribution of 7— N loop to the
neutron EM form factors using the same procedure and the cutoff parameter. They
found that the neutron’s Sachs charge radius was over-predicted by more than a
factor of two (the situation was even worse for the Dirac radius). This, at the very
least, implies that the picture with only the lightest meson-loop is far from complete.

An alternative implementation of the kaon loop is through the so-called cloudy
bag model. The original MIT bag model [Cho74] separates the short and long dis-
tance physics via a three dimensional “bag”. The surface of the bag has a ¢ function
potential, outside which no free quarks are allowed. In contrast, the quarks con-
fined inside the bag interact very weakly. This simple construction reflects important
characteristics of QCD: the short distance asymptotic freedom and the long distance
confinement. The inverse of the bag dimension (radius if one considers a spherical
bag) serves as a natural cutoff scale. However, the bag surface breaks the chiral sym-

metry. The so-called cloudy bag model introduces the pion field, whose coupling to

the confined quarks restores the broken chiral symmetry at the bag surface [TTMS80].
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To calculate the strangeness of the nucleons, Koepf, Henley and Pollock extended
the pionic cloudy bag to the full pseudoscalar octet, kaons in particular [KHP92].
The radius of the bag was determined to be ~ 1.1 fm by fitting with the experimen-
tal nucleon EM form factors. The strangeness moments from their calculation were
ps = —0.026 and (r?)p = —0.012 fm?, which agree in signs with those in [RMB94],
but with less magnitude.

Cohen, Forkel and Nielsen proposed a hybrid model to combine the vector-
meson-dominance model with the kaon loop [CFN93, For94]. Their treatment was
not a simple addition of the results from the two. Rather, the calculation started
by computing the intrinsic strangeness form factors of the nucleons with the as-
sumption of K —A dominance, similar to the treatment in [RMB94]. Effectively, in
the framework of VMD, the intrinsic kaon loop renders strangeness to the matrix
element (N|V#|N) in Eqn. 2.86, which was ignored in the pure VMD treatment .
The intrinsic isoscalar (I=0) form factors were also computed, on the other hand,
based on Hohler’s empirical fits, instead of using a pion loop model. The intrinsic
isoscalar and strangeness form factors were then mixed with the “external” con-
tribution under the VMD assumption with only w and ¢ poles. Due to the w—¢
mixing, both the intrinsic isoscalar and strange form factors contribute to the full
strange form factors. The resulting strangeness moments are p; ~ —0.28 n.m. and
(r?)g ~ —0.042 fm?, in reasonable agreement with those in [RMB94]. Along the
same line, Meissner et al. also made the calculation by combining the kaon loop and
the VMD [Mei97]. The authors looked into the OZI-allowed ¢ meson coupling to the
kaon loop. In addition to the simple K—A loop, they also considered the excited
intermediate states with K* and X. However, no w—¢ mixing was considered in
their treatment. Their treatment gave very small and positive pus and (r?)g.

The assumptions made in simple kaon loop calculations had been challenged
by later authors. One concern raised by Malheiro and Melnitchouk was that the one-

meson current (or impulse approximation) used in the naive kaon cloud calculation

tWe reiterate that according to the current field identity V# is equivalent to a EM current with
the same flavor quantum number. In the pole fits discussed in Sec. 2.6.2, the matrix element of
(N|VH|N) was simply parameterized with g7V with no flavor separation.

7

48



violates Lorentz covariance [MM97]. These authors calculated the spurious contri-
butions arising from this violation and observed that, once subtracted, the resulting
s became quite small and slightly positive (+0.01 n.m.). Geiger and Isgur made a
quark level calculation to include the complete set of OZI allowed intermediate loops
of K*—Y™* [GI97]. They assumed simple harmonic oscillator wave functions (with
empirical “tension” parameters) for the baryons and mesons. In contrast to the
simple K—A loop, the authors arrived at a small and positive ps (~+0.035 n.m.),
although (r?)g stayed negative (~ —0.04 fm?). They noted that the resulting signs
of these two quantities are accidental, since they arise from delicate cancellations
between large contributions from a tower of intermediate states. Prompted by this
paper, Barz et al. made the complementary hadronic calculation of the contribu-
tion from K™, employing both the one-loop calculation, as well as the dispersion
analysis [Bar98]. They confirmed the findings in [GI97], that the contribution from
K* can be as important as K. In view of all these complications, any kaon loop
prediction should at best serve as a qualitative estimate of the strangeness effect

that one might expect.

2.6.4 Constituent Quark Model

In the non-relativistic version of the constituent quark model, the nucleon
is made up of the point-like constituent U and D quarks f. This intuitive model
has been very successful in describing the properties and the spectroscopy of the
hadrons. However, this simple picture is apparently inconsistent with the existence
of a non-trivial QCD sea. Kaplan and Manohar had argued some time ago that the
constituent quarks are the QCD quarks surrounded by a non-perturbative cloud of ¢q
and gluons [KM88]. Under this picture, even U and D quarks can have a strangeness
distribution. The nucleon strangeness is then simply the quark model average of the
strangeness of individual constituent quarks. Spontaneously broken chiral symmetry
is reflected in this model by the interaction between the pseudoscalar mesons and

the constituent quarks, which can be formulated in the framework of xPT. This is

tWe have capitalized U and D to distinguish them from the u and d quark in QCD.
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the so-called chiral quark model. Due to the fact that the mass of the constituent
quark (~ 300 MeV) is significantly lighter than the chiral symmetry breaking scale
(Ay ~1 GeV), and that the coupling between the meson and constituent quark
is weak, the convergence of the chiral loops in this model is much faster than the
conventional baryon xyPT. Moreover, the quark model approach automatically takes
into account the intermediate baryonic states [RMI97, HRGOO0].

There are different approaches to implement the strange quark effects into the
constituent quarks. One of them is by employing the Nambu Jona-Lasinio model
(NJL) [NJL61]. In application to modern QCD, the NJL model replaced the short
range interaction between quark currents with an effective local four fermion term,
which respects chiral symmetry [TW00]. Under this construction, if a massless quark
is exposed to a nonzero {qq) condensate (mean field), it becomes a massive pseudo-
particle (constituent quark). Consequently, chiral symmetry is spontaneously bro-
ken. The generalization of the NJL model to N; > 3 (N, is the number of flavors)
is given in [BJM88|, in which a 2N;-quark term was included to break the axial
U(1) symmetry. In the mean field approximation, this is precisely the term that
generates flavor mixing, which renders strangeness to constituent U and D quarks.
The coupling constant in this model can be fixed by the known n—n" and p—w mix-
ings, but a cutoff has to be introduced to regularize the point-like interaction. In
[For94], Forkel et al. presented a calculation of the nucleon strangeness under this
framework and obtained a small and positive (r?)g (+0.017 fm?).

Ramsey-Musolf and Ito took an alternative approach by estimating the ef-
fect of constituent U and D quarks fluctuating into a kaon and a constituent S
quark [RMI97], illustrated by the Feynman diagrams in Fig. 2.8. The axial coupling
of the constituent quark to the kaon was determined via fitting the constituent quark
calculation of the nucleon’s axial charge g4 with its experimental value (1.27). Sim-
ilar to their kaon cloud calculation, the hadronic form factor with a cutoff scale
A = A, was introduced at kaon-constituent-quark vertices, along with additional
seagull terms to preserve gauge invariance. Their results of u; and (r?)p are both

small and negative. This treatment was extended by Hannelius, Riska and Gloz-
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(a) Meson cloud (b) Vertex correction

Figure 2.8: The Feynman diagrams contributing to the nucleon strangeness form
factors in the K—S wversion of the chiral quark model.

man, who included contributions due to pseudovector K* loop (replacing K by K*
in Fig. 2.8), and kaon loop with K —K* radiative transition (which only contribute
to the Pauli form factor Fj) [HRGO00, HR00|. None of the loops create signifi-
cant strangeness, and the resulting strangeness moments are p; = —0.05 n.m. and
(r?)g = 0.02 fm?. Lyuboviskij et al. made another estimate based on the pertur-
bative chiral quark model [Lyu02]. In their model the valence quarks are viewed as
moving in a perturbative Goldstone meson cloud. The effective confinement poten-
tial that quarks feel has a cutoff scale, which is determined via a fit to the charge
radius of the proton; the underlying idea is quite similar to the cutoff scale used in
previous calculations. The perturbative calculation is carried out at one-loop, and
the values of both p, and (r?)z obtained by these authors are small and negative,
in reasonable agreement with the conclusions in [RMI97]. However, as stressed in
[RMI97], besides the usual model dependence involved in a meson loop calculation
mentioned in Sec. 2.6.3, a conceptual concern associated with the chiral quark model
is the issue of double-counting, i.e. it is unclear whether the Q@ bound states pre-
sented in the chiral quark effective theory should be separated from the pseudoscalar

Goldstone bosons or not.
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2.6.5 Skyrme and Soliton Models

Long before the birth of QCD or xPT, Skyrme constructed a non-linear field
theory based on the isovector meson fields, and conjectured that baryons are the
solitons of the meson fields [Sky61]. The theory was revitalized by Witten, who
made contact between the Skyrme model and QCD at the limit of a large number
colors (large N, QCD) [Wit79, Wit83]. Shortly after, Adkins et al. successfully
calculated the static nucleon properties under the Skyrme model [ANWS83]. In its
simplest SU(2) framework, the starting point of Skyrme model is a 2 X 2 unitary
field U defined as

U(zx) = exp [ﬁ- () /FW] (2.100)

in which 7 is the vector made by Pauli matrices and 7 is a vector representing the

pion fields (1, 7y, m3). The so-called Skyrme Lagrangian is constructed as

F2
L=-FTr [0*U0, U] + L, (2.101)

in which £, is a phenomenological term in fourth-order of U and its derivative
in order to stabilize the solution of the field [HS86]. This construction satisfies
SU(2);, x SU(2)g chiral symmetry. To minimize the static energy of the system,
one takes the hedgehog ansatz that the time-independent solution of the Lagrangian
should satisfy Uy = exp [iT - 70(r)/ F], in which 7 is the radial direction, and imposed
the boundary conditions that #(0) = 7 and #(co) = 0. This results in a stable soliton
solution, with a conserved topological quantum number, which is identified as the
baryon number. Interestingly, baryons arise from this theory without any quarks
present. However, the soliton is the eigenstate of the vector-sum of isospin and
angular momentum, I+ f, because Uy ties the isospin with the coordinate. Hence it
does not represent a single hadronic state with spin and isospin quantum numbers.
Therefore, one has to quantize the soliton in some way and seek time-dependent

solution of the Skyrme Lagrangian. As an example, practitioners sometimes take

tWe only keep the relevant terms for this discussion.
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a collective rotation of the soliton in the coordinate space, quantize the rotation,
and then obtain the solution using the variational principle [HS86, BHO1]. For
application to real hadronic problems, one has to add terms in the Lagrangian to
mimic the effect of explicit chiral symmetry breaking due to the quark masses.
Despite the technical difficulties associated with a non-linear field theory, the SU(2)
Skyrme model has been a successful picture describing nucleon structure [HS86).

In order to make an estimate of the strangeness effect in nucleons, obviously
one has to extend the SU(2) Skyrme model to SU(3). However, similar to the situa-
tion of xyPT, this is not at all trivial, since one can not simply “map” the SU(3) fla-
vor space into a 3-D coordinate space. Various treatments in this respect inevitably
contain ambiguities [WSP91]. Furthermore, SU(3) flavor symmetry breaking has
to be carefully taken into account. In a paper by Weigel, Schechter and Park, the
authors addressed the flavor symmetry breaking by introducing nonminimal deriva-
tive terms in the Lagrangian [WSP91]. Only pseudoscalar mesons were considered
in this calculation. After the quantization of the collective perturbations, they di-
agonalized the Hamiltonian, with the symmetry breaking term treated exactly (in
numerical sense). The strangeness radius and magnetic moment they obtained were
(r’Yg = —0.11 fm? and p, = —0.13 n.m.. In a follow-up study [PW92], vector
mesons were added into the model. The magnitudes of both quantities dropped
by a factor of two, and the sign of strangeness radius changed. This indicates the
uncertainty of Skyrme model predictions.

The concept of the Skyrme model is intimately related to an alternative model
— the chiral soliton-quark model. The prototype of the latter, in SU(2), describes
the interaction of quarks with the chiral fields with a so-called linear sigma La-

grangian as [TWO00, Rip97]
L= |i,d" — glo — w57 8)| v, (2:102)

in which the fermion field 1 is a doublet of the Dirac v and d quark, and ¢ and q;

are a scalar-isoscalar and pseudoscalar-isovector field, respectively. It is noteworthy
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that U(x) in Eqn. 2.100 can be cast in the terms of an isoscalar and isovector field
as well. Therefore from an “impressionistic” perspective the two approaches are not
dissimilar. The Lagrangian in Eqn. 2.102 respects chiral symmetry, and the “hedge-
hog” ansatz again leads to a stable soliton solution for the meson fields. Similar
to the Skyrme model, the soliton solution is identified as a baryon. An equivalent
treatment starts from the NJL model, which contains only the quark degree-of-
freedom (see Sec. 2.6.4) [TWO00, Rip97]. The four-quark point interaction can be
“bosonized” into the Yukawa type couplings between the quark and the collective
scalar-isoscalar and pseudoscalar-isovector fields, ¢ and 7, which gives rise to a lin-
ear sigma Lagrangian as in Eqn. 2.102. Once again one has to extend the model to
SU(3) in order to tackle the strangeness. A recent treatment of nucleon strangeness
under the chiral soliton-quark model was made by Silva, Kim and Goeke [SKG02].
They obtained a positive strange magnetic moment (us; ~ 0.12 n.m.) and a negative
strangeness radius ((r?)g ~ —0.1 fm?).

The main difference between the Skyrme and chiral soliton-quark models is
that the quarks are explicit in the latter, so the soliton (baryon) can be more in-
tuitively pictured as a localized object which binds quarks together. However, the
prediction of strangeness from either framework can be challenged from several
grounds. First of all, there are ambiguities in extending the model from SU(2) to
SU(3) in both models. Second, since the Skyrme model does not contain quark de-
grees of freedom, the strangeness effect is calculated based on the difference between
the matrix elements of the baryon and hypercharge currents. The prediction of the
strangeness matrix element is then plagued by taking the (small) difference between
the two large and uncertain terms [For94, BHO1]. This uncertainty is not present in
the chiral soliton-quark models. Third, both models are regarded as justified in the
large N, limit of QCD; therefore one should be concerned about their reliability of
making predictions in the physical world with N, = 3.
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2.6.6 Dispersion Relations

Like xPT, the dispersion relation is another approach to derive observables
of interest from experimental data based on general principles. The underlying
principles of a dispersion relation are causality and analyticity, instead of chiral
symmetry in case of yPT. The vector meson dominance model presented in Sec. 2.6.2
is a special application of a dispersion relation. In this section, we will discuss the
latter from more general grounds.

The Dirac and Pauli form factors measured in electron scattering, F}2(q?),
are associated with a space-like virtual photon, i.e., the four-momentum transfer
squared ¢? is negative. One can extend ¢? to a complex variable z. The key point of
the dispersion relation is that, as a consequence of causality and analyticity, F} 2(2)
have certain analytic properties, which imply integral relations based on Cauchy’s

theorem [TWO00]. Specifically, one writes

Fi(t) = F1(0) + % /too wdtl’ (2.103)
Ry(t) = % / h @dt’, (2.104)

with conventional variable substitution of t = ¢ < 0, and t' is a complex vari-
able infinitesimally close to the real axis. As mentioned in Sec. 2.6.2, Eqn. 2.103
and Eqn. 2.104 are subtracted and unsubtracted dispersion relations, respectively;
the former was applied to F} so that the physical bound of F;(0) can be imposed.
The integral ftzo dt' is along the positive real axis, corresponding to a time-like pho-
ton. In this region, Fy»(t' > 0) captures (NN|J%,,0), the matrix element of the
EM current in electron-positron annihilation (efe~ — NN), the crossed-channel
of the electron scattering. The integral can be replaced by a sum over all possible
intermediate states, which carry the same quantum numbers, [I GJPC}, as the EM
current. This decomposition with respect to various intermediate states is illustrated
in Fig. 2.9. The lower limit of the integral, ¢y, represents the production threshold

of the lowest possible intermediate state. For the isovector(isoscalar) form factors,
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it is 4(9)m2, corresponding to n(w7m) thresholds [TWO00]. To the extent that the
scattering amplitudes of the intermediate states are experimentally determined in
the time-like region, the space-like form factors can be derived model-independently.
Im [F} 5(t')] are commonly referred to as the spectral functions, since they imply
dynamical contributions from the intermediate states to the form factors. In this
regard, VMD relations in Eqns. 2.92 and 2.93 simply represent the approximation
that the spectral functions are dominated by a few zero-width vector meson res-

onances: Im[F}(t')] = WZaKQ(S(t' —mi). Unlike VMD, which only includes a

-
few off-shell vector meson resonance [HRM99b], a general dispersion relation in-

cludes all possible on-shell intermediate states (continuum). For the isoscalar and
strangeness form factors, the allowed continuum are 37, 57, 77, KK, KK7, NN,
. The wirtual vector meson resonances, such as w, are already included in the

on-shell continuum contributions, such as that from 3.

N

9 [ AVAVAVAY

N, IKKY(KK]

[3) (3|
K)

Figure 2.9: Diagrammatic representation of the decomposition of the spectral func-
tions into individual intermediate states.

In applying the dispersion relation to nucleon strangeness, it is quite natural
to focus on the KK continuum, since it is the lowest intermediate state containing
strangeness explicitly (no OZI suppression), and it is closely related to the kaon
cloud picture. This evaluation was first carried out by Ramsey-Musolf, Hammer
and Drechsel [MHD97]. Like in the VMD model, the contribution of KK to the

strangeness spectral function can be written in terms of a product of the amplitudes
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of y -+ KK and KK — NN:

tm [ ()] = Re {Al(bé’%(t), b2 I (1)) x F 0}, (2.105)
tm [F{(¢)] = Re {Ag(b%’%(t), b2 (1)) x F 0}, (2.106)

wk

with the superscript denoting complex conjugate. In these two relations, F I((a ) (t)

is an effective kaon form factor defined by
(K (R)E(K)|T710) = (k= K), (¢ = b+ K), (2.107)

analogous to Eqn. 2.87. The superscript “(a)” implies that j,fa) is either an EM or

strangeness current, and at ¢t = 0, FI({a )

141 _ _
Fy(t=0)=—1. b} ’i2(t) are the J = 1 partial wave amplitudes of KK — NN,

is normalized to its corresponding charge, e.g.

analogous to the VNN coupling in Fig. 2.6, and A; and A, are two different linear
combinations of them. The dispersive integrals in Eqns. 2.103 and 2.104 go from
4m2 to co. However, the data of KK — NN only exist in the physical region
of t > 4m?%. Therefore some modeling/extrapolation is needed. In [MHD97], the
authors calculated the scattering amplitudes of KK — NN in both the physical
and unphysical regions under the Born approximation. They showed that (a) the
Born approximation of KK — NN with point-like kaon strangeness form factors
(F%(t) = —1) is equivalent to the lowest order kaon loop calculation (Sec. 2.6.3), and
(b) the Born amplitudes in the physical region (¢ > 4m?3) violate unitarity substan-
tially. Based on these, they argued that the rescattering (multi-loop) effects have
to be included to restore the unitarity, and any calculation based on the one-loop
(in xPT framework) or Born approximation (in dispersion relation) is problematic.
In addition, they showed that a realistic kaon strangeness form factor could have
major impact on the prediction of the nucleon strangeness.

Ramsey-Musolf and Hammer refined this analysis in a series of papers [RMH98,
HRM99a, HRM99b]. Due to the low quality of KK — NN data, they simply set
b%’i% (t) in the physical region (¢ > 4m3;) at their unitarity bounds. This turns out
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to have negligible contribution to the dispersive integral. In the unphysical region
(4m3. < t < 4m3), instead of using the erroneous Born approximation, blé ’i%(t)
were determined by making an analytical continuation of the experimental K—N
scattering amplitudes. The determination of the kaon strangeness form factor FX
follows a similar procedure as in [Jaf89]. The authors started from the fact that
the time-like EM kaon form factor FEM measured in efe™ — KK is well described
by a VMD parameterization with three poles at p, w and ¢. Assuming the same
w and ¢ pole structure in FX, one can derive the pole residual based on Jaffe’s
“flavor rotation” relations in Eqn. 2.98. Numerically, the w pole is of little con-
sequence compared with the ¢ pole. Once the spectral functions were determined
via Eqns. 2.105 and 2.106, they completed the dispersive integral (Equns. 2.103 and
2.104) to determine the space-like Dirac and Pauli strange form factors arising from
the KK continuum. The strangeness magnetic moment obtained in this analy-
sis is pus = —0.42, in reasonable agreement with the one loop kaon cloud calcula-
tion [RMB94]. The strangeness radius, on the other hand, is enhanced by more
than a factor of two ({(r?)g = —0.07 fm?), as compared with that in [RMB94],
due to the implicit inclusion of multi-loop effects in the dispersion analysis. In
[HRM99a], Ramsey-Musolf and Hammer reanalyzed the nucleon isoscalar form fac-
tors by combining the KK continuum contribution with the three-pole fits. They
realized that the ¢ pole strength in the Hohler and Mergell fits [Hoh76, MMD96]
can be accounted for by the K K continuum in the Pauli form factor F/=°, whereas
additional ¢ resonance strength is required for F{=°. The resulting strangeness mo-
ments (by combining the three-pole with the KK continuum) are (r?)y ~ 0.42 fm?
and ps ~ —0.28 n.m.. The charge radius from this analysis is large and positive, due
to the dominating contribution from the ¢ resonance. However, as these authors
noted, one can also obtain a reasonable fit by replacing the ¢ pole by a “fictitious”
w' pole with a mass of 1.12 MeV to mock up a pm continuum. Under this treatment,
(r?)g becomes ~ —0.15 fm? instead. In addition, the 3rd high mass pole again
introduces some ambiguity. In general terms, unlike yPT, dispersion relations do

not provide a scheme with a systematically controlled approximation. For example,
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the treatment presented above assumed that the lowest OZI-allowed state K K has
dominating contribution to the continuum, which is not that obvious. The contribu-
tions from light multi-meson intermediate states can also be important, despite the
fact that naively these processes are OZI violating. In this regard, the same authors
showed in [HRM98] that the effects of 3m — w or 3w — pm — ¢ can enhance the 37

contribution up to the same scale as the KK continuum.

2.6.7 Lattice QCD

Like QED, the QCD Lagrangian is constructed based on the Yang-Mills local
gauge invariance principle [YM54]. The only parameters of theory are the coupling
constant of the quark and gauge field, and the Dirac masses of the quarks [PS95].
However, analytic solution to such a seemingly simple and almost parameter-free
theory is formidable, due to its non-perturbative nature in the low energy regime.
The effective theories discussed in the previous sections contain certain characteris-
tics of QCD, e.g. the chiral symmetry. However, none of them provides a complete
physical picture. Lattice QCD is a unique theoretical approach, which formulates
QCD on discrete space-time lattice, and which has the potential of solving QCD
from first principles numerically [Wal95].

Lattice field theory is developed based on the concept of Feynman’s path
integral [PS95]. For any Lagrangian £(®(x), 0*®(x)) of field ®(z), the action S[P]
is defined as

S[a] = / Ao L(D(z), 04B(z)) (2.108)
The n-point Green’s function of the theory can then be formulated as

D] D (1) ®(29) - - - B(z,) 512
[D®]eise] !

GO (- ) = L (2.109)

in which f [D®] represents a functional integral over all possible configurations of the
field ®, and the “differential volume” D® is commonly referred to as the measure

of the path integral. All physical observables can be derived from the Green’s
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function [Wal95, TW00].

To introduce a discrete lattice in space-time has two purposes. First, any
renormalizable quantum field theory requires ultra-violet regularization in order to
eliminate unphysical infinities. Using spaced lattice to replace the continuum, the
inverse of the lattice spacing provides a natural momentum cutoff. Second, the finite
number of lattice sites makes numerical computation possible. In this regard, the
lattice must also have a finite volume. The cell associated with each lattice site is
called a plaquette, and the space-time integral in the action S can be replaced by a
sum of the action of each plaquette. The functional integral in the Green’s function,
on the other hand, is replaced by a multi-integral over the values of the field at each
plaquette [Wal95].

A gauge theory on a lattice has to satisfy gauge invariance. Therefore one
has to make special constructions of both the action S, as well as the measure D
for each plaquette, to ensure that they are both invariant under gauge transforma-
tions [Wal95]. Afterwards, it is just a matter of carrying out a numerical integration
to solve the Green’s function.

In QCD, the Lagrangian contains both the quark (fermion) and the gluon
(gauge boson) fields. Due to the anticommutation relation, the functional integral of
the fermion fields leads to the so-called fermion determinant term, which is extremely
time-consuming to calculate. Enormous simplification can be achieved if one makes
the so-called quenched approrimation, which replaces the fermion determinant with
a constant. However, it turns out that the quark determinant generates quark
loops [TWO00]. Therefore, any quenched lattice calculation of the QCD sea effects,
such as the nucleon strangeness, inevitably contains some theoretical uncertainties.

Despite its phenomenological nature, xPT plays a very crucial role alongside
lattice QCD. One important feature of lattice QCD is that the convergence improves
with increasing quark masses. Therefore, lattice calculations are usually made at
several different unphysically large quark (or equivalently pion) masses. Then, with
the guidance from yPT, one extrapolates the results to masses of physical quarks.

This procedure is called chiral extrapolation. However, for a quenched lattice theory,
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the corresponding effective theory needs to be modified from the full xPT to the
so-called quenched xPT. The construction of the SU(3) quenched xPT for baryons
is discussed, e.g., in [LS96].

With these somewhat lengthy preliminaries, we now focus on lattice QCD pre-
dictions of the nucleon strangeness content. The evaluation of the strangeness EM
matrix elements in lattice QCD involves a three-point Green’s function, which can
be separated into two topologically distinct processes, as illustrated by the connected
and disconnected diagrams in Fig. 2.10. To a certain extent, the connected and dis-
connected diagrams correspond to the “valence” and “sea” contributions. However,
both diagrams can be dressed by an arbitrary number of gluons. This, at the very
least, has indicated that the “valence” and “sea” diagrams in the lattice framework
are different from the conventional experimental jargon in, e.g., deep inelastic scat-
tering. This point will be further elucidated later. In any event, the strangeness of

the nucleon entirely arises from the disconnected diagram in Fig. 2.10(b).

u,d, s

T

o D VY4 .
\ o \ L

(a) Connected “valence” diagram. (b) Disconnected “loop” diagram.

Figure 2.10: The lattice diagrams illustrating two different insertions (connected and
disconnected) of the EM current. Both diagrams make a three-point Green’s function
to correlate (0,1, x2).

Dong, Liu and Williams made the first quenched lattice calculation of G%
and G35, [DLW98]. With a simple extrapolation to physical valence masses, they
obtained a negative pu; (—0.36 + 0.20 n.m.) and a small and negative strangeness
Sachs radius. After a refinement of the Monte Carlo technique, their u, was updated

to —0.28 + 0.10 n.m. [MDO1].
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Like in full xPT, the strangeness form factors in quenched yPT can be ex-
pressed explicitly in terms of the four-momentum transfer and the valence and
the strange quark masses, apart from a few low energy constants. A more elab-
orate quenched chiral extrapolation was made in a paper by Lewis, Wilcox and
Woloshyn [LWWO03]. These authors obtained the low energy constants by fit-
ting the lattice data, from which they deduced the quenched strangeness form
factors. The strangeness magnetic moment pug, according to their calculation, is
slightly positive (+0.05 n.m.), and the strangeness Sachs radius is small and neg-
ative ((r?)g ~ —0.02 fm?). However, as these authors pointed out, one should be
aware of the “quenched” nature of their calculation, as well as the omission of higher
order terms in the chiral expansion, which could introduce non-trivial theoretical
uncertainty to their results.

Leinweber proposed to attack the problem from a different perspective. Start-
ing from the symmetry of the QCD path integral and the Green’s functions, with
additional charge symmetry considerations, he derived a set of equalities among the
quark sector contributions [Lei96]. Let us recap the principle of Leinweber’s QCD
equalities in a more “mundane” language. The magnetic moments of baryon octet

can be flavor-decomposed into the following form:

pz%u”—%d”—i—()p, n:—%dn—i-%u”—}-()n,

¥t = §UE+ - %sv + Os+, »T = —%dz_ + gsz_ + Ox-,

=0 = guﬁ" - %SEO + O=o, = = —%dﬁ‘ + §SE_ + O=-. (2.110)
p,n, -+ on the left hand sides of these equations represent magnetic moments of

corresponding baryons. uP, dP, etc. are the contributions of different “valence”
flavors from the connected diagram in Fig. 2.10(a). O,,, O,, etc. represent the “loop”

contributions from the disconnected diagram in Fig. 2.10(b). Standard SU(3) flavor

tRecall that the valence quark content of these baryons are: p = uud,n = udd, 2t = uus, ¥~ =
dds,=° = uss, =~ = dss.
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decomposition can be made for the loop contributions, e.g.,
2 1 1 2 1 1
Op = glGTJt/,[p — glG?\}[p - gGi\;}): O = glejtrn - glG?\;[n - ng\;[n’ (2'111)

in which the superscripts “I” on the left of the v and d flavor form factors indicate
that they arise from the disconnected loops. “I” on the strange form factors are
suppressed since they solely arise from the disconnected loops. In this context, all
these flavor form factors are short-hands of their values at zero momentum transfer.
A similar decomposition can be made for the ¥ and = baryons.

Now let us generalize charge symmetry, which has been used in Eqn. 2.26 to
relate the flavor form factors of the proton and neutron. Charge symmetry states
that if one neglects the mass difference between the u and d quarks and ignores the
electromagnetic effects, the QCD Lagrangian that governs hadronic physics would
be invariant under the interchange of v and d quarks [Mil98]. The charge symmetry

assumption leads to

ST=" =5, £ =5 =5 (2.112)
and
l ui,n’ — l dip l d7n — l u’p s!p — s!n — S l u’p — l d’p

Similar “loop” relations hold for ¥’s and Z’s. Naively, the fourth relation in Eqn. 2.113
seems to imply an additional assumption of an iso-symmetric sea in a given baryon,
which is known to be significantly violated [Haw98]. This is a misunderstanding.
As pointed out in [Lei96], the connected “valence” diagram simply describes the
quark whose flow line propagates continuously from 0 — x5. These lines can flow
backwards as well as forwards in time, therefore have a sea contribution associated
with them. For disconnected loops depicted in Fig. 2.10(b), the correlator asso-

ciated with v and d are strictly identical under u < d if m, = mgy. Therefore
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IGWP = 1G%P is “unconditionally” satisfied under charge asymmetry. The experi-
mental iso-asymmetric quark sea effect measured in deep inelastic scattering arises
purely from the connected diagram in Fig. 2.10(a). Eqns. 2.111 and 2.113 lead to

relations
Op = On = ON, 024— = OE— = 02, Oz = OE— = OE . (2114)

In other words, the disconnected loop contributions between the isospin doublets

are identical. Now with Eqns. 2.112 and 2.114, Eqn. 2.110 can be rewritten into

2 1 1 2
= 4P — ZP 0] — _ P —dP O
p 3u 3 + On, n 3u +3 + On,
2 1 1 2
E+:§U2—§SE+OE, E_:—guz+§82+02,
2 - 1 2 1 - 2
EO = gU: — gS: + OE, E_ = —guu + gsu + OE . (2115)

This set of relations are the QCD equalities Leinweber derived for baryons [Lei96].
They are direct consequences of QCD under charge symmetry. Defining ‘RS =
G5;/'G4, to be the ratio of the s quark contribution to that of the “sea” d quark,

Eqn. 2.115 leads to two independent constraints of G5, [LT00]:

I s uP B
d
le un
s = d om—— (=0 —=7)] . 2.11
Ghy = i [p+ 20— 222 - =) (2.117)

u? u” - :
— and — imply the environmental sensitivity of the “valence” u quark in the
u u=

medium of different baryons; in the naive quark model both of them are unity. Since

the magnetic moments of the baryon octets are well measured, a determination of

uP u”
- (or u_E) and 'R leads to G3;.
A recent calculation in this framework is made by Leinweber and collabora-
u? u” i .
tors [Lei05]. The environmental ratios —; and — are determined from the lattice.
u u®

Similar to the treatment of Lewis et al. [LWWO03], quenched lattice data were fit
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to yield the chiral expansion coefficients in quenched YPT. A correction from the
quenched xPT to full yPT was made, followed by an extrapolation of the pion mass

, , u? u
to its physical value. The extracted — and — yielded excellent agreement between
UuE

5
the bracketed term in Eqns. 2.116 anud 2.117, both ~ —0.3 n.m.. These authors thus
argue that their chiral extrapolation is very precise. To calculate 'R}, these authors
started from the full yPT obtained from the previous step, and inserted a dipole
regulator (Eqn. 2.99) suggested by Donoghue and Holstein [DH98] into the loop
integrals, which vastly improved the convergence properties. They concluded that
'R5 = 0.14 £ 0.04, with the uncertainty estimated by varying the cutoff scale of the
regulator. Combining 'R with the environmental ratios, their treatment led to a
small negative strangeness magnetic moment (us = —0.05 + 0.02 n.m.). However,
one should be aware of the potential uncertainties not included in this evaluation,
particularly in the determination of ‘R5. The loop integration procedure with the
dipole regulator, apart from the uncertainty of the cutoff, contains similar model
dependent uncertainties, as was stressed in Sec. 2.6.3. As an indication, we note
that ‘RS = 0.55 was taken in [LT00] instead. Second, in [Lei05], it was argued that
!R% has to lie between 0 and 1, corresponding to m; = co and ms; = m, = my.
However it is not obvious that ‘RS is required to stay within the limits when m;
takes its physical value, nor could one even make a convincing case about its sign.
As a side note, the value of u, crucially depends on the value of ‘RS, e.g., if ‘RS < 0
or ‘RS > 1, u, would become positive. Third, the charge symmetry assumption
is generally regarded as satisfied at the level of 1%. Leinweber’s derivation not
only assumed the charge asymmetry between proton and neutron, but also between
YH(E% and X7 (7). Therefore, were p, indeed as small as —0.05 n.m., one might
have to more carefully evaluate the impact of the charge symmetry breaking. This
was not presented in [Lei05]. Lastly, the non-trivial chiral extrapolation leading to
the environmental ratios might also have a larger uncertainty than assigned. In this
regard, the large theoretical uncertainty of the chiral extrapolation that Lewis et al.

assigned to their results is suggestive [LWWO03].
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2.6.8 Summary

So far we have made a survey of various theoretical approaches in evaluating
the nucleon strangeness. This survey is not meant to cover all existing calculations,
but rather to give the flavor of the wide spread of various physical pictures, as well as
the outcomes of the predictions. We have emphasized the non-trivial theoretical un-
certainties associated with individual approaches. It is perhaps fair to say that none
of the treatments so far give unambiguous predictions. Lattice QCD is constructed
from first principles of QCD, and therefore has the potential of making model-
independent predictions. However credible predictions still await the development
of powerful computers, as well as a firmer theoretical framework of making numerical
simplifications. The xPT and the dispersion relations are based on well-grounded
general principles and are closely connected to experimental data. In dealing with
the strangeness EM matrix elements, however, yPT is non-predictive, therefore one
has to make model assumptions. The dispersion relations seem more secure, but
the dispersion analysis does not contain a systematically controlled approximation
procedure: one has no choice but to analyze a limited number of intermediate states.
It is also somewhat frustrating that both xPT and dispersion relations do not pro-
vide simple physical pictures. For the model predictions, on the other hand, there
is no obvious way to make judgment from physical grounds, and by definition none
of the model contains the complete picture. In any case, one could hope, that the
experimental data will eventually tell which model is more “true” than the others,
or prompt model builders to come up with new ideas.

To conclude this section, listed in Table 2.5 are the predictions of us and (r?)g
from different theoretical approaches. The predictions can be compared, for exam-
ple, with the proton’s magnetic moment (4, = 2.793 n.m.), and the neutron’s charge
radius ((r2)g = —0.12 fm?) [PDGO04]. For each approach, only one representative
prediction is selected. Once again, this table is not meant to cover the entire spec-
trum but to give a flavor of the outcomes. For clarity we choose to not to quote the

uncertainties from the literature, but to stress that any value in the table could have
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100% or even larger uncertainty. In any event, one sees that most of the theoretical

predictions of u, are negative. The predictions of (r?)g are either small or negative,

except for the dispersion relation, which predicts a large and positive value.

Model Reference s (n.m.) (r?)p (fm?)
HBYPT  [HKM99]  0.18 0.05
VMD [HMD96] —0.25 0.02
Kaon Loop [RMB94] —-0.31 —0.03
Cloudy Bag ~ [KHP92]  —0.026 —0.012
Hybrid [CFN93]  —0.28 0.04
Chiral Quark [HROO] —0.05 0.02
Dispersion ~ [HRM99a]  —0.28 0.42
Skyrme [WSP91]  —0.13 —0.11
Chiral Soliton  [SKGO02] 0.12 —0.1
Lattice ~ [LWWO03] 0.0 ~0.02

Table 2.5: A summary of different theoretical predictions of strangeness magnetic
moment and Sachs radius. p, is in units of Bohr nucleon magneton, and (r?)g is
in fm?. Only one representative prediction is chosen for each theoretical approach.
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Chapter 3

Summary of Existing Measurements

Several parity violating electron scattering experiments have attempted to
access the strange vector form factors prior to the G® experiment. The kinematics
of these measurements vary, so they have different sensitivity to G3, and G5,. In

this section, a brief summary of these measurements will be presented.

3.1 SAMPLE

The SAMPLE experiments were performed at the MIT-BATES laboratory [Spa00,
Has00, Ito04, Spa04, Bei05]. The experimental setup is shown in Fig. 3.1. The de-
tector was a set of air Cerenkov modules designed to detect electrons scattered from
a hydrogen or deuterium target at backward angle (6, ~ 145°). An array of ten
ellipsoidal mirrors focused the Cerenkov light cones onto an array of ten 8” PMTs.
The beam was pulsed at 600 Hz, with the duration of each pulse ~25 us, and a
helicity which was selected pseudo-randomly. For each beam pulse, the signals (an-
ode currents) from the phototubes were integrated for a period of 60 us and then
digitized by the ADCs, which were then read out by the data acquisition system.

With a beam energy of 200 MeV, measurements were performed on liquid
hydrogen (SAMPLE-I) and deuterium (SAMPLE-II) targets. Detecting backward-
scattered electrons, these measurements were sensitive to the nucleon strange mag-
netic and axial form factors, but much less so to the strange electric form factor.

The measured asymmetries with hydrogen and deuterium targets were [Bei05]

Ap(Q? = 0.1) = —5.61 & 0.67(gqar) & 0.88(5ys) = —5.56 + 3.37G5, + 154G =" ppm,
(3.1)

Ag(Q% = 0.1) = —7.77 4 0.73spa) £ 0.72(eys) = —7.06 + 0.72G%, + 1.66G" =" ppm.
(3.2)
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Figure 3.1: The schematic setup of the SAMPLE ezperiment. The Cerenkov photons
from backward-scattered electrons were reflected and focused by the mirrors onto the
phototubes. Figure taken from [Spa01].

In these two results, GZ(T:U is the isovector component of the axial form factor

defined in Eqn. 2.73. In Fig. 3.2 the two results are plotted in the space of G5, vs.
G;(T:l). The dark pink ellipse is the 1o error ellipse obtained from combining the
two experimental results. Also overlaid is the theoretical prediction of GZ(T:D =
—0.8340.26 (the vertical band) by Zhu et al. [Zhu00], which is in agreement with the
experimental result. The light yellow ellipse in Fig. 3.2 is the 1o contour obtained

by combining the hydrogen result with the theoretical GeA(T:D. The value of G3,

using this approach is
G5, (Q*=0.1) =037+ 0.20(stat) £ 0.26(sys) &= 0.07 (model) 5 (3.3)

in which the last model uncertainty includes those due to the nucleon electromag-
netic and axial form factors.

To further test the theoretical calculation of GZ(T:U, a third SAMPLE deu-
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Figure 3.2: The SAMPLE hydrogen (blue diagonal band) and deuterium (red band

in crossed hatch) results plotted in the G5, vs. GZ(T:U plane. The inner and outer
error bands represent the statistical and total uncertainties. The dark pink ellipse is
the 1o error ellipse from combining the two measurements. The light green vertical
band is the theoretical calculation of GZ(T:U = —0.83+£0.26 from [Zhu00]. The light
yellow ellipse is the 1o error ellipse bg{ combining the SAMPLE hydrogen results
with the theoretical prediction of GZ(TZI . Figure taken from [Bei05].

terium measurement was performed at Q? = 0.038 (GeV/c)? with a beam energy of
125 MeV. The measured value of GZ(T:D in this experiment is in agreement with

the theoretical calculation [Ito04].

3.2 HAPPEx

The HAPPEx is a parity violating electron scattering program in Hall A of

the Jefferson Lab. The experimental setup is shown in Fig. 3.3. The incoming
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electron beam energy is 3.2 GeV. Forward-scattered electrons from a hydrogen or
“He target are focused by the two high resolution spectrometers. There have been
three HAPPEx measurements so far. The first one was performed in 1998 with a
liquid hydrogen target at Q* = 0.477 (GeV/c)? (HAPPEx-H-I) [Ani04]. Two other
measurements were recently performed on hydrogen (HAPPEx-H-II) [Ani05] and
‘He (HAPPEx-He) [Ani05b] targets in 2004 at Q? ~ 0.1 (GeV/c)?. The HAPPEx
detectors are Cerenkov calorimeters, with lead-lucite used in the first experiment,
and alternating layers of brass and quartz in the later two, and Cerenkov photons
from the scattered electrons were collected by the phototubes. Similar to SAMPLE,
the phototube signals were integrated for each helicity state (1/30 s) and read out
by the DAQ.

polarized
source

Hall A

-----, polarimeter

O Steering Coils
: B Position Monitors |

i = Intensity Monitors | Hall
L T T A
hydrogen target g;?::?;l
E
spectrometers faia ;
T —=| acquisition Xperiment
& control

detectors

Figure 3.3: The setup of the HAPPEx experiment. The forward-scattered electrons
are detected by the high-resolution spectrometers. Figure taken from [Ani0].

The measurements with hydrogen are sensitive to a linear combination of

G5, and G5, whereas the measurement on *He is only sensitive to G%,. The first
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HAPPEx measurement at Q* = 0.477 (GeV/c)? yielded [Ani04]

Ap(Q? = 0.477) = —15.05 + 0.98sgat) + 0.565ys) PP, (3.4)
which led to

(G3, + 0.39G5,)(Q? = 0.477) = 0.014 + 0.020 = 0.010 (3.5)

with the first uncertainty being experimental, and the second uncertainty arising
from the uncertainties of the nucleon EM form factors. The other two measurements

at Q% ~ 0.1 (GeV/c)? resulted in [Ani05, Ani05b]

Ay (Q% = 0.099) = —1.14 4 0.21(g11) + 0.065ys) ppm, (3.6)

G35, + 0.080G5 Q2 = 0.099) = 0.030 £ 0.025(gtat) £ 0.008 5y £ 0.012(m0del)
E M (stat) (sys) ( )

(3.7)

and
AHe(Q2 =0.091) = —-1.14 + 0.21(gat) £ 0.06(5ys5) ppm , (3.8)
G%(Q2 =0.091) = —0.038 + 0.042(g1a1) £ 0.010(gys) - (3.9)

When these results were published in 2005, both these two low Q% measurements
had only collected 10% of the proposed statistics. The programs resumed in 2005
and data taking has recently been completed. Another forward angle measurement

at Q? = 0.63 (GeV/c)? is in preparation (see Sec. 6.3.4).

3.3 PVA4

The PVA4 experiment is being carried out at the MAMI accelerator facility in
Mainz, Germany. A schematic drawing of its forward angle setup is shown in Fig. 3.4.
The electron beam helicity is flipped at 25 Hz. A liquid hydrogen target was used

in the forward angle experiment, and there is no magnetic spectrometer. Forward-
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Figure 3.4: The setup of the PVA4 forward angle experiment. The forward-
scattered electrons were detected by an array of PbFy Cerenkov detectors. Fight

water Cerenkov luminosity detectors were placed at very small angle. Figure taken
from [Bat04].

scattered electrons were detected by an array of PbF, Cerenkov total-absorptive
calorimeters, which covered elastically scattered electrons between 30° to 40°. In
addition, eight auxiliary water Cerenkov luminosity detectors were placed at very
small angle.

The Cerenkov photons in the PbF, crystals resulting from scattered electrons
are collected by phototubes. Inelastic electrons and photons from 7° decays are
also detected. The separation of the elastic signals and the inelastic background
is made based on their differing energy loss in the PbF, crystals. The electronics
of this experiment works like a very fast ADC: the pulses from the phototubes are
integrated over 20 ns, digitized by a fast digitizer with a threshold trigger, and
stored in a first-in-first-out (FIFO) pipeline chip. By this means, the individual
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Figure 3.5: A typical energy spectrum of detected particles in PVA4. The red his-
togram 1s the raw spectrum and the smooth black histogram has been corrected for
the non-uniform energy bin width of the ADC. The energy losses of inelastic elec-
trons from the A excitation and decay photons from the threshold 7°, and the cuts
on elastic electrons are also indicated in the plot. Figure taken from [Maa04).

particles are counted, and histograms of the deposited energy of these particles are
read out by the DAQ. A typical energy spectrum of the particles striking the crystals
is plotted in Fig. 3.5.

Two forward angle measurements have been performed by PVA4, at Q? =
0.230 (PVA4-I) and 0.108 GeV/c? (PVAA4-II), respectively. The results of the two

measurements were [Maa04, Maa05]

A,(Q* = 0.230) = —5.44 + 0.54(sa1) £ 0.26(5y5) Ppm, (3.10)

(G5, + 0.225G3,)(Q? = 0.230) = 0.039 + 0.034, (3.11)
and

A,(Q* = 0.108) = —1.36 + 0.29stat) £ 0.13(sys) Ppm, (3.12)

(G5 + 0.106G%,)(Q* = 0.108) = 0.071 £ 0.036 . (3.13)

The uncertainties of the linear combination of G, and G5, have combined the sta-
tistical, systematic and the nucleon form factor uncertainties.

Currently, the backward angle experiment of PVA4 is ongoing, which will be
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discussed briefly in Sec. 6.3.4.

3.4 Summary

A summary of the world data prior to G° is contained in Table 3.1. The table
includes average kinematics, measured asymmetries, linear combination coefficients
(n) between G%, and G%,;, and published results of G%, + nG?%, from [Bei05, Ani04,
Ani05, Ani05b, Maa04, Maa05]. The results of SAMPLE-II and SAMPLE-IIT have
been neglected, since they are insensitive to GG5,. To make the result more compatible
with the world data, the SAMPLE-I result in [Bei05] has been cast into G%, +nG3,,
with G4 taken from the theoretical calculation [Bei05p].

Reference &’ Gra Aphys n G% +nGiy
(GeV/c)®  (deg) (ppm)

[Bei05] 0.098 144.8 —5.61+0.67£0.88 1.67 0.56 £ 0.55
[Ani05] 0.099 6.0 —1.14+£0.24+0.06 0.080 0.030 = 0.029
[Ani05b] 0.091 5.7 6.72+0.84 £0.21 0 —0.038 4+ 0.043
[Maa05] 0.108 356.0 —-136+0.29+0.13 0.225 0.03940.034
[Maa04] 0.230 35.0 —544+054+0.26 0.106 0.071 4 0.036

[Ani04] 0.477 12.3 —15.06£0.98£0.56 0.39 0.014 +0.022

Table 3.1: A summary of the available world data prior to G°, including the av-
erage kinematics, measured asymmetries, n, and G5, + nG%5, from the publications.
Rows listed in order of SAMPLE-I, HAPPEx-H-1I, HAPPEz-He, PVA4-1I, PVA -1
and HAPPEz-H-1. The first and the second uncertainties of the measured asymme-
tries are statistical and systematic, respectively. The central kinematics of the two
PVA/ measurements and the SAMPLE measurement are obtained from [AM05p] and
[Bei05p] respectively. Both experiments have rather large kinematical acceptance, so
a determination of the central kinematics requires a Monte Carlo acceptance aver-
aging. However, the SAMPLE central kinematics can be determined accurately by
taking Q* = 0.1 (GeV/c)? and E, = 193.5 MeV.

One should note that in extracting G%,+nG5,, different experiments have used
different parameterizations of the nucleon EM form factors and electroweak radiative
correction parameters in their published results. A global analysis requires taking

the measured asymmetries, applying a common set of theoretical and form factor
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parameters, calculating G3,+nGY,, and then combining them to make the separation
of G}, and G%,;. The details of such a global analysis will be presented in Sec. 6.3.2.

As a prelude to the coming sections, a combined analysis of the SAMPLE-
I, PVA4-1I, HAPPEx-II and HAPPEx-He measurements at Q* = 0.1 (GeV/c)?
from [Ani05] is shown in Fig. 3.6. The bands in G, vs. G%, space are the experi-
mental results, and the ellipse represents the 95% confidence contour of a joint deter-
mination of G and G3;. The light blue point in the figure represents G3 = G, = 0,
which is clearly disfavored by the data at the ~95% confidence level. The vertical
pink band represents the lattice calculation by Leinweber et al. [Lei05] discussed in
Sec. 2.6.7, which is also disfavored by the data. The black point in the figure is the
best fit of (G%;, G5,) by combining the four measurements. The resulting G%, and

S
G5 are

G%(Q* = 0.1 (GeV/c)?)

—0.01 £ 0.03, (3.14)

G5,(Q% = 0.1 (GeV/c)?) = 0.55 + 0.28. (3.15)

One sees that, according to this analysis, G, is large and positive at the 20 level,
which is contradictory to most of the theoretical predictions (see discussions in

Sec. 2.6 and Table 2.5).
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Figure 3.6: The G5 vs. G35, space at Q*=0.1 (GeV/c)* constrained by the HAPPEz-
I(red band), HAPPEz-He (blue band), SAMPLE-I (black band), and PVA4-II (green
band) measurements. The black point is the solution of (G%;, G%,) with the mazimum
likelihood by combining the four measurements. The ellipse represents the 95% confi-
dence contour for a joint determination of G5 and G5, at this Q*. The vertical pink
band represents the calculation in [Lei05]. Figure taken from [Ani05]. For clarity,
other theoretical calculations in the same figure in [Ani05] have been removed.
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Chapter 4
The G° Experiment

The G° experiment is being carried out in Hall C of the Thomas Jefferson
National Accelerator Facility (TJNAF or JLab) in Newport News, Virginia. G is
designed to measure both the forward parity violating asymmetries on the proton, as
well as the backward parity violating asymmetries on proton and deuterium targets
at various values of momentum transfer, thereby allowing a model independent

s

separation of G%, G5, and GZ(TZI). In this section, experimental aspects of the

forward angle measurement will be discussed in detail.

4.1 Principle

The first measurement of parity violation was made by C. S. Wu et al. in

1957 [Wub7]. It was a 8 decay experiment with *°Co nuclei: °Co —% Ni*+e™ + 77,

A simplified setup of the experiment is shown in Fig. 4.1. The %°Co atoms were

polarized in a magnetic field. The decay electrons were detected by a g detector.

The magnetic field was flipped back and forth, reversing the polarization of %°Co.

The relative differen::Le in electron rates between the two polarization states (labeled
R™ — R~

————— is proportional to ¢ p, where & and p are the net spin of
R LR PP P P p

%0Co and the momentum of the outgoing electron. & - 'is a pseudo-scalar, therefore

as+and —), A=

A is the parity violating asymmetry of the decay. This measurement showed that A
was of the order of unity, which gave the very first evidence that parity is maximally
violated in the weak interaction.

The measurement of parity violation in electron scattering employs the same
idea. A schematic diagram of the experiment is drawn in Fig. 4.2. The incident elec-
tron can be polarized either parallel or anti-parallel to its momentum, corresponding
to positive (right-handed) and negative (left-handed) electron helicity, respectively
(Eqn. 2.64). The target is unpolarized, and the outgoing particles are detected. The
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relative difference of the detected rates between the two incoming electron helicity
Rt — R~
Rt + R~
(Eqn. 2.65). The size of the asymmetry, due to the dominance of the parity con-

states, A = , is then the parity violating asymmetry of the scattering
serving electromagnetic interaction, is only of the order of 107*Q? (see Sec. 2.4), in
which @? is the four-momentum transfer squared in units of (GeV/c)?. Therefore,

parts-per-million (ppm) is conventionally used as the unit for these asymmetries.
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Figure 4.2: A schematic diagram of
the experimental technique to mea-
sure parity violation in electron scat-
tering.

Figure 4.1: A simplified setup of
Wu’s experiment to measure parity
violation in °Co’s B decay.

4.2 Experimental Setup

The setup of the forward angle G° experiment is illustrated in Fig. 4.3. The
polarized electrons were incident upon a liquid hydrogen target, and the recoiling
protons were bent by a toroidal magnetic field in the superconducting magnet system
(SMS), and focused onto scintillating detectors (FPDs) located along the focal plane
of the spectrometer. The magnetic field was set to select positively charged particles,
and particle time of flight was used to identify elastic and inelastic protons, and

positively charge pions.
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SUPERCONDUCTING

ELECTRON BEAM

(a) An overview of the G° forward angle setup.

FP Detectors

(b) An inside view on one segment of G° spectrometer.

Figure 4.3: G° forward angle setup. The full setup is illustrated in (a). The beam is
incident on the target from the left. Recoiling protons are focused by the magnetic
field onto segmented detectors. An inside view of one segment of the spectrometer is
depicted in (b). There are eight such segments in total. The trajectories of protons
are defined by two collimators (yellow blocks) inside the magnet. Each arc is a pair
of scintillating detectors.
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4.2.1 Beam

4.2.1.1 CEBAF Accelerator

The electron beam at JLab is provided by the CEBAF (continuous electron
beam accelerator facility) accelerator, which allows for the delivery of continuous
electron beams of different energies (from 1 to 6 GeV) simultaneously to the three
experimental areas, Halls A, B and C. The word “continuous” is only approximate,
in that all three beams are in fact pulsed with very high repetition rate f. The
accelerator can be divided into two major components: the injector and the recircu-
lating linear accelerators (LINACs). The layout of the electron injector is depicted
in Fig. 4.4. Three individual lasers, one for each hall, all pulsed at 499 MHz but

5 MeV Dump Synchrotron Light Monitor

&
Chopper 1/4 Cryo Cryomodules 4

Prebuncher Buncher Capture

o5 -

Bunchlength o bl sl
FC#1 Cavity. W FCH2 Wrliviee el i

Injection Chicane

Gun#3

500 keV Dump 45 MeV Dump/Spectrometer

Figure 4.4: The layout of the CEBAF injector. Figure taken from [Kaz04]

offset in phase by 120°, illuminate a common photo-cathode, from which electrons
are created by the photo-electric effect. The electrons are accelerated by a cathode
gun to ~100 keV. The electrons first go through a pre-buncher cavity and a few
apertures, followed by a chopper cavity, which operates at 499 MHz. As the name
“chopper” suggests, the cavity provides three variable RF “slits” for the three in-
dividual beams with the full width of the phase acceptance from 0 to 110 ps. The
pre-buncher and the chopper ensure the timing and the longitudinal spread of the
three beams. These are followed by the main beam buncher and a capture cav-
ity, which accelerates the beam to ~500 keV. Two superconducting radio frequency

(SRF) cavities provide further bunching and accelerate the beam to ~5 MeV. At the

tDuring normal running, all three beams are pulsed at 499 MHz. During the G° running period,
the Hall C beam had a repetition rate of 31.1875 MHz to allow a clean measurement of particle
flight time.
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end of the injector, there are two modules, each containing 8 SRF cavities, which
accelerate the electrons to the 45 MeV region * [Hov96, Kaz04]. The beam passes
through a chicane before entering the main machine.

A layout of the CEBAF accelerator is shown in Fig. 4.5. It is arranged in a

180° Bending
Spreader prc? / Elements
North Linac Recirculation
(600 MeV) Arcs
Recombiner
Refrigerator
Recombiner

5Mev
Pre-acceleration

/

“——— South Linac
(600 MeV)

Polarized Spin

Source Rotators T Spreader

\\

Beam Switchyard

~

Extraction Elements

End Stations
o

Figure 4.5: The CEBAF accelerator. Figure taken from [Gra00].

five-pass racetrack configuration. There are two SRF LINACs, the south and north
LINACs, joined by two 180° bending arcs. The fundamental operation frequency of
the machine is 1497 MHz. There are in total 20 SRF cavities in each LINAC. In
each pass, the electron gains a maximal energy of 600 MeV in each LINAC [Kee01].
Inside each bending arc, the beams from different passes have different energies,
therefore they require different bending fields and have to follow different orbits. To
accommodate this, beams of different passes are deflected vertically into different
beam lines by the spreader made up of a series of magnets. At the exit of each
arc, the reverse of the above happens — the beams are recombined vertically by
the recombiners for the subsequent acceleration by the LINAC. To allow for the
extraction of the beams with different passes into different experimental halls, there

are RF separators (time-domain beam deflector) located at the exit of the south

Hn fact, the electrons can have a variable exit energy from 23 to 68 MeV.
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LINAC (see Fig. 4.5). Each separator cavity operates at 499 MHz, therefore can be
tuned to extract the beam bunches for any one hall with the desired pass without
interfering with the acceleration of the remaining bunches [Gra00]. The extracted
beams enter the beam switch yard, and are deflected into Halls A, B and C according
to their different timing.

The timing of the three beams is determined by the timing of the pulses of
the three lasers. In reality, the beam into hall X can have a small mixture of the
beam from the other two lasers due to the fact that those lasers are not turned off
completely when laser X fires. This is the so-called leakage beam. Since the leak-
age beam originates from different lasers, it can have very different characteristics
compared with the main beam. For the G° forward running, this turned out to be
a nontrivial contamination because of the fact that the G° beam had a different
time structure. The impact of the leakage and the systematic studies carried out to

quantify its effect are presented in detail in Appendix A.

4.2.1.2 Polarized Beam for the G° Experiment

As mentioned in Sec. 4.1, a polarized electron beam is required for the parity
violation measurement. The polarized electrons are produced with the widely-used
technique of optical pumping of a gallium arsenide (GaAs) semi-conductor with a
circularly polarized light [Pre95]. With appropriate energy, the photon field can
excite the electrons from the valence band (J = 2) to the conduction band (J = 1)
with Am; = +1. A mono-layer of cesium (Cs) is coated onto the crystal to lower
the potential barrier to help the electrons to escape into the vacuum. Quantum
mechanically, the electrons favor carrying the same handedness as the photons.
With 100% polarized light, the electrons excited to the conduction band could carry
up to 50% of the polarization [Pre95]. The polarization can be further enhanced
by applying strain to the crystal in such a way that the degenerate valence band
structure is broken at the gap minimum [Pre95]. During the G° running period, the
average electron polarization was ~73.7%.

Careful tuning is required to maintain the highest possible longitudinal polar-
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ization of the electron beam in the experimental hall [Gra00]. The G° run can be
broken down into two periods, with a 3-pass electron beam for one and a 4-pass for
the other (with the same final beam energy). The electron spins in the hall for these
two periods were opposite to each other, which can be understood as follows. To
first order, the precession of the spin of the electron with horizontal momentum in
a vertical dipole magnetic field is [Gra00]

g—2

Aep?‘e = 9 7A0bend; (41)

in which Afenq and Af,,. are the rotation of the momentum and spin of the elec-
tron, respectively. The dipole magnets in each arc rotate the electron momentum
by m. For the 3-pass beam, the electrons go through 5 arcs in the machine. To
get a final electron energy of 3.03 GeV, the electron gains 505 MeV in each LINAC
(neglecting the small pre-acceleration in the injector). For the 4-pass beam, the elec-
tron goes through 7 arcs instead, and the energy gain of the electron in each LINAC
is 379 MeV. Summing the spin precession angles Af),. in all arcs, the electron spin
rotates approximately by 177 and 247 in the 3-pass and 4-pass configurations, re-
spectively. Therefore, if the source and injector conditions are kept the same, the
spins of the electrons in the hall are opposite for these two configurations.

A simplified diagram of the G° laser and its control devices is shown in Fig. 4.6.
The G° laser is a commercial mode-locked AOM (acousto-optic loss modulator)
Ti:Sapphire laser, also known as a “Tiger” laser, from Time-Bandwidth Prod-
ucts [TBWP]. It is capable of delivering > 400 mW power, with the wavelengths
selectable from 780 to 860 nm. The laser was pulsed at 31.1875 MHz instead of
the JLab nominal 499 MHz, with the duration of each pulse ~70 ps and an output
wave-length of 840 nm to match the width of the band gap of the cathode [Bay02].
Circularly polarized light is generated from linear polarized light with a helicity
Pockels cell (HPC), a crystal which exhibits an induced birefringence upon the ap-
plication of the electric field [Het97]. The high voltage applied on the HPC was

reversed back and forth, which led to an alternating circularly polarized light.
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Figure 4.6: A simplified layout of the laser table for G°.

The reversal frequency of the Pockels cell high voltage was chosen to be 30 Hz
in order to cancel any potential 60 Hz noise due to the cycle of the power line. Each
1/30 s window is a basic unit of the G® measurement, which will be referred to as a
macro-pulse (MPS). The electron helicity of a given MPS is defined by the polarity
of the electric field on the Pockels cell. The helicity flip sequence was generated
in a quartet pattern, such as + — —+ or — + +—, in order to minimize the effect
of potential long term drifts. The asymmetry of the detector yield was computed
for each of these quartets. The helicity bit of the first MPS within a quartet was
decided by a software pseudo-random bit generator [Sta01]. In between MPSs, there
was a ~500 us period, during which the data taking was inhibited, to allow the high
voltage on the HPC to settle.

To further eliminate the potential cross-talk of the helicity bit with the detector
electronics, the actual bit that was reported to the G data acquisition was delayed
by 8 MPSs, i.e., the helicity bit in the data of a given MPS was the actual helicity
8 MPSs ago. In the analyzer, the true helicity was recovered in software based on
the delayed helicity and the algorithm of the pseudo-random bit generator [Sta01].
With this implementation, even if there were cross-talk between the detector signals
and the reported helicity, it would be totally uncorrelated with the true helicity of
the beam, therefore would not contaminate the measured asymmetries.

Before discussing the control components on the laser table, let us elaborate
on the potential systematic effect of the beam. For parity violating experiments,
any helicity-correlated beam property (the beam intensity, position, etc.) would

result in a false asymmetry in the detector (see detailed discussion in Sec. 5.3.3).
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Ideally, one wants to understand the origin of any helicity-correlated property, as
well as to minimize it. The helicity-correlated beam intensity asymmetry, or charge
asymmetry, can result from a helicity-correlated change in the quantum efficiency of
the photo-cathode. As mentioned before, the GaAs crystal at CEBAF is strained,
which typically has an analyzing axis; the absorption of the linear polarization along
or orthogonal to it could have an anisotropy of the order of 10%. It is also known that
light emerging from the HPC always contains some small linear admixture, therefore
is elliptically polarized. When the handedness of the light is flipped, usually the
major axis of the ellipse also rotates [Cat05]. So if the major axes of the ellipses for
the two helicity states are not symmetric with respect to the analyzing axis of the
crystal, a helicity correlated change in the quantum efficiency of the cathode will be
created, which leads to a charge asymmetry of the electron beam.

The helicity-correlated position difference is a more subtle issue. One mecha-
nism is that the alternating electric field on the helicity Pockels cell could alter the
shape of the cell (since the birefringent crystals are usually piezoelectric as well),
which results in a helicity-correlated steering or lensing of the laser. Another pos-
sibility is a helicity-correlated change of the profile of the electron beam from the
cathode, either due to a non-uniformly distributed ellipticity of the laser (the so-
called phase gradient) or a gradient of the analyzing power of the photo-cathode
within the laser spot (typically mmxmm) on the cathode [Cat05].

Two halfwave plates sandwich the HPC (Fig. 4.6). The upstream one is called
the Insertable Halfwave Plate (IHWP). If inserted, it results in a reversal of the
handedness of the polarized light, which will ultimately lead to a flip of the helicity
of the electron beam. The helicity bit that is decoded by the analysis software,
however, is simply the polarity of the electric field applied on the HPC, which
knows nothing about the halfwave plate. Therefore, if the measured asymmetries
are truly due to physics, the corresponding values of the “IN” and “OUT” states of
the IHWP should be the same but opposite in sign. On the other hand, some of the
false asymmetries, e.g., due to the Pockels cell steering or a cross-talk between the

electronics and the “telegraphed” true helicity bit from the source, will stay intact.
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Therefore using the IHWP enables us to study the impact of such a class of false
asymmetries. During the run, the IHWP was inserted or retracted about once every
three days.

The HPC might have a residual birefringence even without the external electric
field. Under this circumstance, to achieve circular polarization, one has to apply
asymmetric electric fields for the two helicity states. The adjustment of the voltages
on the HPC is the first line of defense against the charge asymmetry.

As mentioned earlier, the charge asymmetry will be minimized if the ma-
jor axes of the polarization ellipse of the laser light for the two helicity states are
symmetric with respect to the analyzing axis of the cathode. The halfwave plate
downstream of the HPC is the so-called Rotating Halfwave Plate (RHWP). By ro-
tating the RHWP, one can symmetrize the residual linear polarizations of the two
states of laser light. This technique is another powerful means of minimizing the
charge asymmetry.

The two methods described above are “static” adjustments — the adjustment
of the HPC voltage was only performed once every few weeks, and the RHWP tuning
was performed about once every three days (right after the insertion/retraction of
the IHWP). Besides these, there were two types of active feedback devices located
upstream of the HPC, which modulated the property of the laser to make real-time
adjustment of the charge asymmetry and the position difference. We shall discuss
these two feedbacks in turn.

The IA (Intensity Attenuator) Cell (see Fig. 4.6) is a feedback device to mini-
mize the charge asymmetry of the beam [Cat05]. It is made up of an upstream linear
polarizer, a wave plate (A/4 or A/10), a Pockels cell, and a downstream linear polar-
izer. The laser light is first elliptically polarized by the wave plate. An alternating
voltage is applied onto the Pockels cell for different helicity states, which changes
the ellipticity of the laser. By this means, the transmission of the light through the
downstream linear polarizer can be modulated in a helicity-correlated way.

The helicity-correlated position differences in the x and y directions were ac-

tively controlled by two PZT mirrors (see Fig. 4.6). The PZT is a piezo-electric
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crystal whose dimension changes with the applied electric field [Kit95]. Two reflec-
tion mirrors are mounted onto these PZT transducers on the path of the laser .
If the voltages on these transducers are altered in a helicity-correlated manner, one
can achieve a helicity-correlated steering of the laser to compensate for the observed
helicity-correlated position difference of the beam. The two mirrors are commonly
referred as PZTx and PZTy. However, each mirror steers the beam in both the z
and y directions.

The TA and PZTs were calibrated and implemented in active feedback systems.
The error signals of these feedback systems were the charge asymmetry or position
differences measured in the experimental hall. The implementations and the perfor-
mance of these feedback systems are discussed in detail in [Nak05a, Nak06]. With
these feedback systems, the helicity-correlated beam properties were controlled at
very low level. The average helicity-correlated parameters over the entire run are
summarized in Table 4.1. We will translate these values in terms of the false asym-

metry in the detectors in Sec. 5.3.3: they had virtually no impact on the measured

asymmetries.
Parameter value
Az (nm) 3+4
Ay (nm) 444
Af, (nrad) 1+1
Af, (nrad) 1.5+1
AE (eV) 20+4

Ag (ppm) —0.14+0.32

Table 4.1: Summary table of the helicity-correlated beam parameters throughout the
entire run. The quantities in the first 5 rows are defined as the helicity-correlated
differences: AQ = QT — Q. The last row is the charge asymmetry, defined as
Ag = gi;g: The values are taken from [Nak05a], corrected for a mistaken factor
of 2 [Nak05p].

It is also important to note a few features of the G° beam. Despite the mod-

tThere is also a common PZT mirror on the paths of all three lasers. Since this device affects
all three beams, we had no control over it.
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erate beam current (40 pA), the G° beam bunch charge was ~1.6 pC/bunch, as
compared to ~0.2 pC/bunch for the 100 uA standard 499 MHz beam, due to the
unusual 31.1875 MHz time structure. This imposed a challenge to the beam trans-
port. A number of modifications to the injector setup had to be made to ensure the
quality of the beam [Kaz04].

For each beam bunch, the measurement of the time of flight (ToF) of the
detected particle required the beam arrival time on target as the reference. This
“T' = 0” reference signal (also known as the Yj) is conceptually simple. However,
special attention had to be paid since any helicity correlated timing shift of Yy would
lead to a false asymmetry in the detector, because a timing shift leads to a change
in the rate in a fixed ToF window. The maximally tolerable helicity-correlated
timing shift for G° was of the order of a few femto-seconds (averaged over the entire
run) [Liu01]. One of the first options of Y; being considered was the start signal
from the 31.1875 MHz master oscillator of the laser. However, due to the potential
helicity-correlated orbit difference, Yy produced from the laser was likely to introduce
a helicity-correlated offset to the actual time of flight of the scattered particle from
the target to the detector. Therefore, instead we chose to use a beam pick-off
signal right upstream of the target. This signal was generated by a custom piece
of electronics that derived Y; and another 499 MHz clock signal (CLK) from the
1497 MHz RF cavity signal of the CEBAF machine, in conjunction with the signal
from a 31.1875 MHz stripline beam position monitor (BPM) [Qui03a, GOCer04]
For monitoring purposes, the Yj signals were also sampled by a VME TDC. The
sensitivity of the Yj signal to the beam charge and position had been studied and
shown to be negligible [GOCer04]. Furthermore, no helicity correlated Y timing
shift was observed up to a statistical precision of ~ 1 femto-second, averaged over

the entire running period [Bis05].

4.2.1.3 Beam Polarimetry

The beam polarization P, is a dilution factor to the parity violating asymme-

try. To correct for this dilution, one has to measure P, precisely. The polarization
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of the G° beam was measured periodically with the standard Hall C Mgller T po-
larimeter [Hau01], whose working principle is as follows. Consider the situation that
both the incident beam and the target atomic electrons are polarized longitudinally
with a polarization P, and P;. Then the asymmetry of the scattering cross section

between the beam-target spin parallel and anti-parallel configurations is [Hau01]

do™t do™ .9 .. 9
O~ o sin” 0(8 — sin” §)
Amol =40 di — PthA A (0) = - (42)
ot doTd 22 22 2 2 ’
il | doll (4 — sin” 0)
. do . . . . .
where the superscripts of o) indicate the beam-target spin alignment, A,,(#) is

the physical analyzing power of the Mgller scattering, and 6 is the center-of-mass
scattering angle. The above expression of A,,(f) is a very good approximation for
high energy electrons (v > 1), and higher order QED corrections have virtually no
contribution. Therefore, if one knows the target polarization P;, a measurement of
the scattering asymmetry A,,, will determine the beam polarization. We further
note that the analyzing power A,, peaks at § = 90° with A,, = —g. Therefore it
is preferable to design the polarimeter to focus the scattered and recoiling electrons
close to these kinematics.

The Hall C Mgller polarimeter is located 40 m upstream of the Hall C pivot.
The layout of the polarimeter is shown in Fig. 4.7. The Mgller target is made from a

tarfet collimator Q2 /m
— ol d

\ etectors

=
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Figure 4.7: The layout of the Hall C Mgller polarimeter. Figure taken from [Gra00].

thin Fe foil with its normal parallel with the incoming beam direction. A 4 pym thick

tThe Mgller scattering is the elastic scattering of two electrons.
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target is the default target used by G°. The target is polarized with an out-of-plane
4 T magnetic field provided by a pair of superconducting Helmholtz coils. Under
such a high field, the foil is polarized to saturation; for pure iron the polarization un-
der this circumstance is known to very high precision: P; = 8.00% %+ 0.02% [Hau01].
The spectrometers are made up of two quadrapole magnets, (J; and (), separated
by 3.2 m, with a collimator in between. This design helps to separate the small angle
and high energy scattered electrons from the elastic electron-nucleus scattering, and
focus only the Mgller electrons with ~90° center-of-mass angles onto the detectors.
Two left-right symmetric detectors are located 7.85 m downstream of (3. There
are lead slits in front of both of them to further define the angular acceptance. In
front of the main detectors, there are two hodoscopes, each made up of 14 vertical
scintillator bars, which provides information about the actual scattering angle. The
main detectors are made up of lead glass total-absorptive shower counters, with a
5” phototube (PMT) attached to each of them. The PMT signals are discriminated,
providing further energy selection. The left-right detector coincidence is required
such that the Mgller pairs are detected with essentially no background. The coinci-
dent hits are counted by scalers, which are then read out by the DAQ for each beam
helicity state. The asymmetry between the two beam helicity states is measured,
which leads to a determination of the beam polarization (Eqn. 4.2).

If the beam current is too high, it will heat up and demagnetize the Mgller tar-
get. Therefore, the normal Mgller measurements were restricted to a beam current
of < 2 pA. Some higher beam current measurements were also performed. First, a
much thinner Mgller (1 pm) target was used, which could tolerate beam currents
up to 10 pA. Second, a new kicker magnet and a 25 pym wire target system was
commissioned. The kicked beam had a much lower duty factor, therefore the tar-
get wire could endure a much higher beam current. The system was tested with
a beam current up to 20 pA. In both measurements, no current dependent polar-
ization change was observed [GOCer04], which gave us confidence that the routine
polarization measurement at the low beam current could be applied to our normal

high current data runs.
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4.2.2 Target

The target for the G° forward angle experiment was an unpolarized cryogenic
liquid hydrogen target. The design of the target was driven by the need to measure
tiny parity violating asymmetries. First of all, it is desirable to have a long target to
ensure high luminosity and good statistical precision. Second, the target conditions
need to be kept stable. This requires not only a large flow of coolant and a powerful
pump to recirculate the liquid hydrogen, but also a feedback system to maintain
the target temperature. Third, the target density fluctuations due to the beam
heating need to be minimized. Such fluctuations would increase the otherwise purely
statistical fluctuations of the measurements (see Sec. 5.2.2) and thus deteriorate the
measurement precision.

A detailed description of the G° target system and its performance during the
forward angle running is presented in [Cov04, Cov05]. Only the main features will

be recapped here. A schematic view of the target loop is shown in Fig. 4.8. Due to

—1T

Hydrogen cell

Figure 4.8: A schematic view of the G° target loop. The electron beam comes from
the right. Figure taken from [Cov05].

the space constraints, the loop is placed horizontally inside the magnetic vacuum
enclosure with a loop volume of 6.5 1. The beam came from the right of Fig. 4.8.
The cell that contained the liquid hydrogen was located at the downstream end of
the target loop inside a target manifold structure. A high torque cryogenic pump
(upper side in Fig. 4.8) circulates the target liquid rapidly (~ 0.2 1 liquid dislodged

per revolution) with a nominal operation frequency of 31 Hz. The liquid hydrogen,
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driven by the pump and guided by the flow diverters inside the loop, flows in a
clockwise direction in Fig. 4.8.

A heat exchanger (the two layers of tightly-packed tubes at the bottom of
Fig. 4.8) is located at the other leg of the target loop. Gaseous He coolant (15 K,
12 atm) provided by the end station refrigerator was circulated through the heat
exchanger, with a typical flow rate of 6 g/s. On average, the heat removal rate of
the exchanger was 50 W per g/s coolant flow.

A zoomed-in view of the target manifold is shown in Fig. 4.9. It is connected

MANIFOLD
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2
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HYDROGEN TARGET CELL

Figure 4.9: A detailed view of the G° target manifold which houses the primary
hydrogen cell and the secondary helium cell. Figure taken from [Cov05].

with the target loop through two aluminum conflat flanges. The manifold contains
two cylindrical aluminum cells: a primary hydrogen cell and a secondary helium cell,
both are placed parallel to the beam direction. The hydrogen cell was machined in
one piece with a total length of 23 cm, a wall of the thickness 0.178 mm, and an
inner diameter of 5 cm. The downstream wall of the hydrogen cell functioned as
the exit window of the target. The center of it was machined down to a thickness
of 0.0762 mm within a diameter of 8 mm to reduce inelastic proton and deuteron
background from the interaction in the aluminum. The remainder of the exit window

had a uniform thickness of 0.178 mm. The helium cell was a 16 cm long cylinder
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placed upstream of the hydrogen cell with an inner diameter of 1.27 cm. The
downstream window of the He cell, with a thickness of 0.228 mm, was also the
entrance window of the hydrogen cell. The distance between entrance and the exit
window of the hydrogen cell was 20 cm, defining the length of the liquid hydrogen
target. The upstream end of the helium cell was protected against the vacuum
with another aluminum window (the so-called He window) of 0.178 mm thick. The
helium cell was filled with He gas, which was maintained at the same pressure and
temperature as the hydrogen cell. Under this circumstance, both the entrance and
the exit windows of the hydrogen cell had a spherical convex shape with a curvature
radius of 7.6 cm, which helps to reduce any helicity correlated change in target
length due to potential helicity correlated parallel beam position shifts. Another
advantage of having a long He cell is that the entrance window of the hydrogen cell
naturally becomes azimuthally symmetric — the asymmetric joints/elbows of the
vacuum window of the manifold have been pushed further upstream, outside of the
detector acceptance.

As indicated by the arrows in Fig. 4.9, the liquid hydrogen flows into the
target cell from the heat exchanger side. There is a thin-walled (0.0762 mm) conical
aluminum tube (the light blue tube in Fig. 4.9) in the hydrogen cell, which guides
the liquid down the center of the cell. There are holes on the wall of the conic tube
to help remove heated liquid from the interaction region. The conical tube and the
flow diverters inside the loop also increase turbulence in the liquid, which enhances
the heat transfer and removal.

The nominal running conditions for liquid hydrogen target was 19 K (2 degrees
below the boiling point) with a loop pressure of 1.7 atm. During normal running,
the target loop was connected to a 2500 gallon ballast tank filled with hydrogen
gas, which served as a pressure buffer to maintain a constant loop pressure. There
are temperature sensors located at various places inside the loop, and a high power
heater is located upstream of the cryopump. The loop temperature was maintained
by a Proportional-Integral-Differential (PID) feedback system. The feedback tracked

the beam current incident on the target, and regulated the output of the heater to

94



maintain the total power from the beam and heater at ~ 300 W and to keep one of
the temperature sensors constant. By this means, the temperature excursion after
changes in beam current (e.g., beam trips) was maintained to be less than 0.2 K.

The electron beam creates local heating, hence some boiling and/or density
fluctuation of the liquid is expected. As mentioned before, these fluctuations would
increase the width of the measured asymmetry beyond that expected from Poisson
statistics. In addition, boiling might reduce the target density globally. The boiling
effect can be studied systematically by adjusting three variables: the beam current,
the raster size and the pump speed. The raster was a two-magnet system which
steered the beam with high frequency in a uniform square pattern on the target
(2 mmx2 mm was the nominal size for G°) [Yan05]. By varying the size of the
raster, the power density (per unit area of the beam) can be controlled. Varying the
pump speed affects the heat removal and liquid mixing, therefore indirectly affects
the boiling.

There were two sets of auxiliary luminosity detectors (or LUMIs) instrumented
downstream of the G° main detectors, with a scattering angle of ~2° and 1.3°, re-
spectively. Each set was made up of four quartz Cerenkov detectors, which were
placed in thin-walled (1.59 mm) aluminum cups intruding into the beam pipe in
an azimuthally symmetric manner. With a nominal 40 pA of beam, the primary
scattering rate per detector was ~1 GHz, much higher than the rates in the main
focal-plane detectors (~1 MHz per detector). The high scattering rate in the lumis
led to good statistical precision, beyond which one could easily observe the effect
of target density fluctuations. Furthermore, the electronics of the lumis were inte-
grating instead of counting, so the non-linearity due to the electronic deadtime was
not present in these detectors. This allows a precise determination of the global
target density reduction. A detailed description of the lumi detectors and the tar-
get density related analysis are given in Appendix C. Here, we simply quote the
published values in [Cov05]. Under the normal running conditions, i.e., 40 yA beam
current, 2 mmx2 mm rastered beam size and 31 Hz pump speed, the global density

reduction was less than 1.5%, as compared to that with no beam on target. The
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target density fluctuation contributes 238 + 65 ppm to the measured asymmetry
width, typically about 1200 ppm in a () bin in the main detector.

The target loop can also be filled with gaseous hydrogen (GH2) to allow studies
of the background contribution arising from the aluminum cell windows. During the
experiment, measurements were made on the GH2 target under two conditions, one
at 28 K and the other at 35 K, both with the loop pressure maintained at 2.2 atm. In
addition, two dummy Al targets were instrumented for G° forward configuration: the
so-called “aluminum frame” and “flyswatter”, designed to mock up the entrance and
exit windows of the hydrogen cell, respectively. The frame target was located 1.7 cm
upstream of the entrance window, with a thickness of 0.307 cm, and the flyswatter
target was located 1.0 cm downstream of the exit window, with a thickness 0.076 cm.
A tungsten (W) radiator of 0.0085 cm thick was located 38.5 cm upstream of the
flyswatter. The flyswatter could be used with or without the W radiator in order to
study the contribution of inelastic protons due to the photo- or electro-production

from the exit window.

4.2.3 Spectrometer: the Magnet and Detectors

The G° spectrometer consists of a superconducting toroidal magnet (SMS) and
an array of scintillating detectors. The details of the design and the performance of
the spectrometer are given in [GONIM]. What shall be highlighted here is how the
spectrometer achieves the physical requirements of this experiment.

The toroidal magnet has the features of large acceptance due to its unob-
structing structure, intrinsic azimuthal symmetry, iron-free construction ', and zero
magnetic field at the target location which avoids beam steering. To accommodate
a long target, the magnet by design has so-called “zero-magnification” optics, with
which the particles from different z locations in the target of the same momentum
and angle are focused onto the same location on the focal plane.

As shown in Fig. 2.3, at a given four-momentum transfer, the linear com-

tThe rescattering of recoiled protons with the magnetized iron has a large analyzing power,
which could create a false asymmetry in the detectors.
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bination coefficient between G% and G7,, 1, increases with electron angle .. To
optimize the experimental separation of G% and G3,, it is therefore desirable to
run the forward and a later backward experiment at a small and large electron
angle, respectively. For the forward angle measurement, given the requirements of
high luminosity and solid angle, detecting scattered electrons at very forward angles
would be difficult. Therefore the experiment was designed to measure recoil pro-
tons instead. Since the four-momentum transfer varies rapidly with proton angle
f,, a coverage of four-momentum transfer from 0.1 to 1.0 (GeV/c)? is made possible
with a single beam energy at the forward angle configuration. For the G° forward
angle electron beam energy (3.03 GeV), 0.1 < @Q? < 1.0 (GeV/c)? corresponds to
77.4° > 0, > 52.0° and 6.0° < 0, < 20.9°. It is noteworthy that the elastic proton
angle has an inverse correlation with the four-momentum transfer and the proton
momentum, i.e., an elastic proton with larger angle has a smaller four-momentum
transfer and momentum.

The G° magnet consists of 8 superconducting coils (SMS). The coils supply
the toroidal fields, with a nominal coil current of 5000 A and a field integral of
1.6 T-m. The layout of the coils (labeled from A to H) is shown on the left side

of Fig. 4.10, with the field direction indicated by the green arrows. The bending of

GO spectrometer viewed from the target

magnet Q=10
HO)
== P beam
target

Figure 4.10: Left side: the layout of the eight superconducting coils viewed from
upstream. The magnetic field direction, in the forward angle mode, is shown as the
green arrows. The placement of the 8 detector octants is also indicated (1-8). Right
side: an illustration of the bending of elastic protons with different Q2.
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elastic protons under such a field is illustrated on the right side of Fig. 4.10. The
lower the Q? of the elastic proton, the lower momentum it has, and the stronger
bending it experiences in the magnetic field.

There are two sets of collimators made from lead-alloy inside the magnet: the
upstream azimuthal collimators and the downstream primary collimators. Both
are arranged in 8 azimuthally symmetric segments, corresponding to the 8 detector
octants, which will be described later. A drawing of one segment of the collimators
is displayed in Fig. 4.11. FEach pair of (upstream) azimuthal collimators has a
+10° azimuthal opening, cutting off the acceptance close to the coils to maintain a
uniform field within the ® acceptance of the detectors, in order to achieve a good
Q? resolution. The lower jaws of the primary collimators (LPC) shield the focal
plane detectors from direct view of the target. They also cut off protons with high
momenta but low recoil angles, whereas the higher jaws of the primary collimators

(HPCs) eliminate the slow protons with large recoil angles.

. s primary collimators

Figure 4.11: One of the eight segments of the azimuthal and primary collimators
inside the SMS. Figure taken from [Bat04)].

Thin Titanium windows (0.51 mm) on the downstream vacuum end cap of the

magnet allowed the protons to pass through and be collected by an array of plastic
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scintillation detectors located on the focal plane of the magnet. The layout of the
detector package relative to the magnet is shown in Fig. 4.3(a). It was made up of 8
azimuthally symmetric octants (Fig. 4.10), labeled 1 through 8 in clockwise order if
viewed from upstream. The azimuthal acceptance (£10°) of each octant was defined
by the upstream collimators. A 3-D rendered drawing of a single octant is displayed
in Fig. 4.12. In each octant, there are in total 16 detectors (FPDs) with arc-like

shape dispersed on the focal-plane, with FPD 1 located closest to the beam axis.

Figure 4.12: A 3-D rendered picture of a French octant. There are 16 arc-like
detectors. FEach detector consists of two layers of plastic scintillators. Light guides
are attached to both ends of the scintillator, which transmit the lights into phototubes
(not shown) located behind the back plate.

Let us revisit the elastic optics shown on the right side of Fig. 4.10, with
the detector configuration (Fig. 4.12) taken into account. Elastic protons with

the lowest Q? start off at the target with the largest 6,, however they experience
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the strongest bending by the magnetic field and thus strike the lowest detectors.
The Q? of the elastic protons increases with detector number up to 0.55 (GeV/c)?,
which correspond to the late time of flight region in detector 15 (see Sec. 5.3.6.2).
Beyond this point the decrease of the ¢, becomes faster than the decrease in the
bending angle, so the locus of the elastics on the focal-plane moves slightly backwards
with increasing @Q?. As a consequence, detector 15 covers a broad range of four-
momentum transfer from 0.44 to 0.88 (GeV/c)? (see Sec. 5.3.6.2), and there is a
secondary elastic peak on detector 14 with a four-momentum transfer ~1.0 (GeV/c)?
(see Sec. 5.3.6.3).

Now let us consider all types of protons without the elastic kinematic con-
straint. A given location on the focal plane corresponds to a range of (p, 6,) at the
target. The (p,6,) phase space covered by individual FPDs is shown as the 2-D
map in Fig. 4.13. Each colored band on the figure corresponds to the acceptance
of a single detector, with lower numbered FPD covering lower momentum. The
left and the right edges of the acceptance, highlighted in thick black lines, are de-
fined by the lower and higher jaws of the primary collimators, as mentioned earlier.
The diagonal dashed line represents the constraint of the elastic kinematics with
E, = 3.03 GeV, and the intercepts between the horizontal lines and the elastic line
indicate the (p, 6,) of the elastic proton at given values of Q2. As discussed earlier,
detector 15 (second highest band in cyan) covers 0.44 < Q* < 0.88 (GeV/c)?, and
detector 14 (third highest band in pink) has two foci, the main Q? ~ 0.41 (GeV/c)?
and a “folding-over” @Q* ~ 1.0 (GeV/c)?. The separation of the elastic and inelastic
protons in a given detector can be made via additional time of flight information.
The majority of the inelastic protons are located in the phase space below the elastic
line. For a given FPD, these protons have higher momentum and lower angle than
the elastics, therefore have shorter flight time. The emerald band above the elastic
line corresponds to the acceptance of detector 16. In principle inelastic protons from
electron-proton scattering are kinematically prohibited in detector 16, but some do
reach it due to the resolution of the spectrometer, protons from interactions in the

Al target cells, as well as re-scattering. For all other detectors, the regions to the

100



right of the elastic line correspond to the protons with longer flight time than the
elastics in the same detector. The rates there share the same “super-elastic” origins

as those in detector 16.
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Figure 4.13: The proton acceptance of the G° spectrometer in the space of proton
lab momentum and angle (p,0,) at the reaction verter. These protons are not con-
strained by the elastic kinematics. Fach colored band corresponds to a given FPD,
with lower numbered ring covering lower momentum: [black = FPDs 1 and 9, red
= FPDs 2 and 10, green = FPDs 3 and 11, blue = FPDs J and 12, yellow = FPDs
5 and 13, pink = FPDs 6 and 14, cyan = FPDs 7 and 15, emerald = FPDs 8 and
16]. The cutoffs defined by the HPC and LPC are represented by the two thick black
lines. The elastic proton is represented by the diagonal dashed line in the figure. The
intercepts between the horizontal lines and the elastic line indicates the (p,0,) of an
elastic proton at a given Q*. The diffusive dots outside the colored bands correspond
to the protons that penetrate the collimators or that are rescattered.

The lengths of the detectors were defined by the protons originating from the
target with a & = +10.5° about the center of each octant, slightly larger than the
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opening of the azimuthal collimators to take into account multiple scattering and
the potential misalignment. The width of the detectors were determined such that
elastic proton rates for detectors 1 through 11 are roughly the same (~500 kHz). For
higher numbered detectors, the elastic rates were smaller and the widths were chosen
based on the momentum resolution. Typically the scintillators are 60—120 cm in
length and 5—10 cm in width.

Octants 1, 3, 5 and 7 were constructed in North America (NA) and the others
were constructed in France. As illustrated in Fig. 4.12, each detector consists of a
pair of scintillators (with identical shapes and areas), made from Bicron BC-408,
with lucite light guides attached to both ends. The scintillators were polished and
wrapped in aluminized mylar (NA) or aluminum foil (French). Neutral background
events are strongly suppressed by requiring a coincidence between the pair. To fur-
ther reduce the low energy charged particle background entering the back scintillator
created by neutrals in the front scintillator, a layer of absorber was inserted between
the two scintillators. For the NA detectors, it was a layer of 3 mm black plastic
(polycarbonate) [Roc02b]. The French detectors used a 3 mm thick aluminum plates
instead, which at the same time served as a support structure [Bat04].

Scintillation light was collected by the phototubes attached to the end of the
light guides. The NA octants used 12-stage Phillips XP-2262B photomultiplier
tubes with custom-built bases. Modified commercial Phillips amplifiers (x25) were
installed so that the gain of the tubes could be kept low. The French octants used
8-stage Phillips XP2282B tubes with an on-board amplifier of a gain of ~20 in the
bases. Furthermore, a base-line restorer was also included in the French base to

avoid a shift of the base-line due to changes in counting rate.

4.2.4 Electronics

A conceptual diagram of the G° forward angle electronics is shown in Fig. 4.14.
The electronics contained two components, the time-encoding and the monitoring
(Fastbus) electronics. Due to the high counting rates, the event-by-event recording

with conventional electronics was not practical, so the experiment used custom-built
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time-encoding electronics to store histograms of the particle ToF spectra for each

MPS (1/30 s).
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Figure 4.14: A block diagram of the G° electronics. Figure taken from [MKO02].

Different time-encoding electronics were instrumented for the NA and French
octants. Both sets used the coincidence counting technique. The pulses from each
phototube were sent to a constant-fraction-discriminator (CFD), and an average
timing signal was produced between each pair of CFDs of a given scintillator by a
meantimer (MT). For later reference, let us define some useful nomenclature here.
The four CFDs for a given detector are labeled according to the location of the cor-
responding phototube as viewed from upstream: front-left (FL), front-right (FR),
back-left (BL) and back-right (BR). The meantimers are named in a similar fash-
ion as either the front or back meantimer. A coincidence between the front and
back MTs were required with a window of ~10 ns, and the timing was encoded in
the custom built electronics. The high counting rate inevitably leads to deadtime
losses (~10%). Both sets of electronics implemented a technique called “next-pulse-
neutralization” (NPN), which would disable the electronics for a given detector

during the remainder of the micropulse (32 ns) and the one following it after a given
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hit. The result of this technique is slightly higher, but more deterministic deadtime
(see Sec. 5.3.1).

For monitoring purposes, a small sample of the hits were also recorded with
Fastbus ADCs (LeCroy 1875) and TDCs (LeCroy 1885). There is one ADC channel
associated with each phototube, and one TDC channel associated with each CFD
and MT.

We will describe the NA and French custom time-encoding electronics in turn

in the next two sections.

4.2.4.1 North American Electronics

A detailed description of the NA custom-built electronics is given in [Cla03].
Shown in Fig. 4.15 is the chain of the NA electronics, including both the time-
encoding and Fastbus. Only the essential components of the time-encoding elec-
tronics will be recapped here.

The analog signal from a phototube was first split by a passive splitter: 33%
of the signal went into the Fastbus ADC, and remaing 67% triggered the CFD.
Commercial CFDs (LeCroy 3420) were used in the NA electronics. Careful tun-
ing of the CFD parameters was carried out to minimize the pileup and deadtime
effects [Fur03, Qui03].

The NA meantimers were custom-built based on an Application Specific In-
tegrated Circuit (ASIC) developed at IPSC-Grenoble. The outputs of the CFDs
of a given scintillator propagate in opposite directions along two separate delay
lines. A meantime signal was generated when a coincidence occurred between these
two signals [Cla03]. The timing resolution of the meantimer was determined to be
~200 ps [Roc02].

The main component of the NA time-encoding electronics is the Latching Time
Digitizer (LTD). There were two reference signals for timing, the 31.1875 MHz beam
pick-off signal at the target (Y5) and a syncronized 499 MHz clock (CLK) signals, as
discussed at the end of Sec. 4.2.1.2. A gated clock signal was externally generated
by turning off 8 ns of the 499 MHz clock signal, which served as the basic clock train
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Figure 4.15: The chain of the NA electronics corresponding to a pair of the scintil-
lators, including both the time-encoding electronics and the Fastbus. The label “FB”
in the figure stands for Fastbus. Figure taken from [Cov04].

for the ToF measurement. The relation among the three timing signals is illustrated
in Fig. 4.16.

The concept of the operation of the LTD is quite simple. The back and (few
ns delayed) front meantimer signal of a given detector were fed into the signal input
and the clock input of a latch, respectively. When a front-back coincidence occurred,
the output of the latch was held high upon seeing the rising edge of the clock input
(delayed front signal). The back MT output has a width of 10 ns, which defines the
width of the coincidence window [Qui06], and the timing of the coincidence trigger
is determined by the front hit. The NPN was enforced by waiting until the end
of a following beam pulse before resetting the latch. The output of the latch was
connected to the signal input of a 16-bit serial-in parallel-out shift register. The

gated clock signal was connected to the clock input of the shift register. At the
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Figure 4.16: An illustration of the three timing reference signals: Yy, CLK and the
gated clock, used by the NA electronics. Figure taken from [GONIM].

rising edge of each clock pulse, the shift register recorded the data input state to its
lowest bit, and shifted the previous states of the bits to their adjacent higher bits.
Therefore, the penetration depth of the input “high” into the shift register encoded
the ToF of the hit.

The gated clock signals were 2 ns apart, therefore using the above method
one could only achieve 2 ns timing resolution. The resolution was improved to 1 ns
by feeding the inverse of the clock signal (CLK) into another 16-bit shift-register
and combining the two clock trains. For each channel there were in total 24 bits
which encode the ToF. After the last pulse of the gated clock train, the bit patterns
of the shift-registers were copied to registers, which subsequently incremented the
scalers associated with individual bits. The scalers used by the NA electronics
were custom-built VME latching scalers, designed by LPSC-Grenoble. During the
interval between macropules (1/30 s), the scaler data were read out and cleared to
get ready for the next macropulse. The encoded bit pattern collected by the scalers
represented an integrated ToF spectrum. To reconstruct the normal spectra, one

has to take the difference of the raw data associated with adjacent bits.
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4.2.4.2 French Electronics

The French electronics used active (1:1) splitters, so that the sizes of the sig-
nals going into the Fastbus ADCs and the CFDs were identical to the original PMT
signal. A diagram of the French time-encoding electronics is displayed in Fig. 4.17.
The electronics were integrated onto the DMCH boards (Discriminator, Meantimer,
Time-to-Digital-Convertor and Histogramming) developed at IPN-Orsay. Each board
contained 32 CFDs and 16 MTs by custom design. The front-back MT coincidence
logic (EPLD-Trig) was also built on board and programmable, with nominal con-
figuration as the front-back coincidence with NPN. The coincidence window was

selectable with 7 ns (default) and 11 ns.
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4 fine adjustment
Fhreshold |

(Analog) ! Output M1

HF

=
il
q-

.

TDC —» FIFO —»Front
Timcrﬂ TRIG ; I

DFC \.:1,_4”———1_. L J e } ,,,,,
INPUT L Mean|| | EPLD | Il [ oo | =

g DFC Left J f l
Test DFC/MT | J I g Y
| Daughter Card . /7 DSP
Threshold l)(']a_v ‘ t VME '
{Analog) v~ \ /
¥ Read Oup’
Buddy Labeling w:[ : _,-f’l
Oiiteat CFD Enabling — I 2
utput CF SRR J -
i Front-Back Coincidences < VME Bus =

Figure 4.17: A block diagram of the French time-encoding electronics. Figure taken
from [Bim02]. Different components are explained in the text.

In contrast to the NA system, the French electronics used flash TDCs to
encode the time, with a reference high frequency signal (HF) derived from the Yj.
The TDCs were readout by the Digital Signal Processors (DSPs, Model 2106 by
Analog Devices Inc.), in which the ToF histograms with 250 ps timing resolution
were constructed. The DSPs were processed by the VME bus. Each DMCH board
also contained a daughter SDMCH board, which recorded the number of hits for
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each CFD and MT with scalers. These data will be important later on when we
consider the deadtime loss due to the single hits in Sec. 5.3.1.

Each DMCH board processed signals for 8 detectors. There are 9 such boards
in total, with the first 8 covering all 4x 16 French detectors. The 9th board imported
the signals from detectors 14 and 15 of the NA octants, in order to record their ToF
spectra with better timing-resolution. This implementation was essential for the
@Q? binning and background correction in these NA detectors (see Secs. 5.3.6.2 and
Sec. 5.3.6.3). The data from the 9th DMCH board shall be later referred to as the
hybrid data.

All DMCH boards were housed in a single VXI crate. Similar to the NA
electronics, the data in the VXI CPU were read out by the DAQ for each MPS.

4.2.5 Data Acquisition

The G° data acquisition (DAQ) was built upon the CODA system [Hey94]
developed at JLab, and ran on a linux computer in the counting house. In Fig. 4.18,
a conceptual diagram of the DAQ system is shown. Different crates contained the
electronics modules for different sub-systems. The DAQ computer sent the trigger
command to a “command module”, called the Trigger-Supervisor (TS), which then
passed the signals to the readout controller (ROC) of each crate. The acquisition
software on each ROC then read the data from individual modules according to the
trigger types and parameters. The data from the ROCs were shipped to the DAQ
computer through Ethernet.

For the G° forward angle experiment, there were in total 5 crates. ROC0 was
in the crate containing the trigger supervisor (TS0), the scalers which read out the
beam monitors, and the VME TDC module which samples signals of Y. The beam
helicity bit was stored in the input register of the trigger supervisor. ROC1, 2 and
4 corresponded to the VME crates housing the scalers (32 channels/module) for the
NA detectors. ROC3 was in the French VXI crates reading the data from all 9
DMCH boards. ROC) was in the Fastbus crate, which contained all the monitoring
ADCs and TDCs modules.
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Figure 4.18: A block diagram of the G° DAQ system including the read-out con-
trollers, the DAQ computer, the slow control I0CSs, and the analysis computer.

There were three general types of triggers: 30 Hz, Fastbus and 120 Hz. For
the regular 30 Hz trigger (type 1), ROC0, ROCs 1,2 and 4, and ROC3 were read
out at the end of each MPS. This formed the basic data stream for asymmetry
computation. The Fastbus triggers (type 4) were invoked by a prescaled Yj signal,
so that only a small sample of the beam pulses were taken. To improve the trigger
efficiency, a fast clear was implemented, which cleared all channels unless there was
at least one good front-back coincidence hit in all 8 x16 detectors. The time required
to read out all Fastbus modules was ~1 ms, which limited the trigger rate to a few
hundred Hz. In order to measure the 60 Hz noise in the electronics [Pat99], a special
120 Hz trigger mode (type 2) was implemented. In this mode, each MPS was split
into 4 equally spaced periods, during which the NA and the beam monitor scalers
were read out [GONIM]. The 60 Hz noise extracted from the 120 Hz data had been
verified to be negligible [Arv05b].

The data were stored in the standard CODA format onto a disk drive in a

“bank” structure: the data from a given ROC were written into a bank, with the
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ROC number and the length of the data encoded in the band header. The slow
control data (target and magnet conditions, high voltages, etc.) were sampled every
half a minute or so and written into the data stream as well. Data were collected
in one-hour runs, after which each was analyzed by a replay engine running on a
dedicated analysis computer in the counting house. The details of the replay engine
will be presented in Sec. 5.1.

To facilitate the realtime monitoring during data taking, the DAQ also wrote
the data into a shared memory buffer, called the event-transfer (ET) buffer. A
consumer program running on the same analysis machine read the data from ET in

realtime and produced diagnostic plots (detector rates, beam qualities, etc).
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Chapter 5

From Raw Asymmetries to Physics Asymmetries

The details of the data analysis will be presented in this chapter. The mechan-
ics of the replay engine will be introduced in Sec. 5.1, followed by a short overview
of the G° raw data in Sec. 5.2. The main focus of this chapter is the correction
procedure that brings the raw asymmetries to the physics asymmetries; it will be

presented step by step in Sec. 5.3.

5.1 Data Reduction Procedure

The raw data collected by the data acquisition system (DAQ) are processed
by the replay engine, which decodes the raw data into physical quantities event by
event, and reduces the data set. A simplified flow diagram of the data processing is
shown in Fig. 5.1. The analysis of the asymmetries involves only the 30 Hz events
(MPSs); which will be the focus of this section.

A MySQL database [MySQL] harbors all the input data for the replay, in-
cluding the calibration data and the cuts, which are loaded at the beginning of the
replay. The standard I/O functions of the CODA libraries are invoked to read out
the CODA banks. The data are decoded into physical quantities, e.g., the coinci-
dence rate measured in each time bin, and the beam current and position.

Cuts are imposed MPS by MPS to ensure the data quality. The first cut is
applied on the beam current to remove the events with beam current < 4 pA (the
nominal beam current is ~ 40 pA). Furthermore, the first 500 MPSs (~17 s) after a
beam trip recovery are also removed in order to give the liquid hydrogen target some
time to thermally stabilize. In addition to the beam cuts, more stringent cuts are
imposed onto individual detectors. Both sets of the electronics have error indicators
in the data stream. For each LTD board of the NA electronics, if it happens to “see”

too many or too few beam micro-pulses in a given MPS, the error counter associated
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with it will increment. For the French electronics, an error occurs whenever a data
word overflows 16 bits (~2 MHz instantaneous rate). In the analyzer, the detectors
are tagged as bad in an event whenever the associated counter reads non-zero.
To detect an instability in the electronics, which occasionally results in some non-
statistical “jumps” in the detector yield (current normalized), the code sacrifices the
first 100 good MPSs which pass the above cuts in each run to compute the mean
and width of the yield distribution of each time bin, and applies a 10 ¢ cut around
the 100 MPS mean on each time bin henceforth. A detector is tagged as bad if any
time bin fails the cut subsequently during the run.

If all of the above cuts are satisfied, the beam parameters and the raw detector
rates for each time bin are kept. The electronic deadtime correction (see details in
Sec. 5.3.1) is then made detector by detector to compute the true rate bin by bin,
which is then normalized to the beam current to give the detector yield.

As mentioned in Sec. 4.2.1, the helicity of the beam is flipped in a quartet-wise
pattern (+——+ or —++—). If all the four MPSs of a quartet pass the cuts, the

asymmetry of the detector yield in each time bin will be computed as

Vi+Y, - (Yo+Y3)

Appr = H ,
QRT Vit Y, +Ys+Y;

(5.1)

in which Y] is the yield measured in the ith MPS in a quartet, and ‘H = 1(—1) if
the helicity bit of the first MPS of the quartet is +(—). Note that  is determined
by the helicity bit which sets the polarity of the helicity Pockels cell. The charge
asymmetry of the beam can be computed the same way. For the beam positions,
angles, and energy, conventionally we calculate the helicity correlated difference

instead, such that
p1+ps— (P2 + p3)
2 7

Ap="H (5.2)

in which p; is a generic symbol for any of these beam parameters measured in an
MPS. For all these quantities, the helicity uncorrelated (straight) averages within a
quartet are computed as well.

The libraries of the ROOT package (an object-oriented analysis framework) [Bru97],
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Figure 5.1: The data flow diagram of the G° replay engine.

developed at CERN, are dynamically linked to the analyzer, so that the data can be
stored in the form of histograms and “trees” for further analysis. For each quartet,
the detector yields, asymmetries, and the helicity uncorrelated and correlated beam
parameters are filled into the histograms and “trees”.

The ROOT histograms and trees provide a convenient means for diagnosis.
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However, they take significant disk space, and further data extraction is rather inef-
ficient from the computation point of view. Therefore, for each quartet, the running
averages of a quantity ¢ and ¢?, (¢) and {(¢?), up to this quartet are computed. This
is performed on the detector yield and asymmetry of each time bin, as well as the
beam parameters (helicity-correlated and uncorrelated).

At the end of the run, the mean of ¢ is simply the running average (¢), and
the uncertainty of the mean (assuming a normal distribution) is calculated as

(¢®) — (@)’

o(q) = m: (5.3)

in which Nggr is the total number of good quartets of this run. Note that we have
assumed equal statistical significance of the measurements in individual quartets.
This assumption can be justified by noting that during a given run, the beam current
typically is maintained at a constant level to less than 2%, and the low current events
due to the beam trips are removed by the beam current cut and the “trip recovery”
cut. We will elaborate further on the statistical property of the data in Sec. 5.2.2.

The correlation slope, ({;—1;, between the detector yield Y and a given beam
parameter p, is also computed by keeping the running average (Y x p). The detailed
procedure of calculating the slope will be discussed in Sec. 5.3.3.

At the end of the replay of each run, the means and uncertainties of the
yields, asymmetries, beam parameters, as well as the correlation slopes of this run

are written into the MySQL database, which serves as a reduced data set for further

analysis.

5.2 Overview of the G° Data

Before a detailed discussion of the physics analysis, it is appropriate to present
an overview of the data and their quality. In the next two sections, some represen-
tative raw data of G° will be shown, followed by a discussion of the statistical

properties of the data.

114



5.2.1 GY Data: Time-of-Flight Histograms of Yield and Asymmetry

As mentioned, the raw data of G° primarily consist of the time of flight spectra
of the yield and asymmetry. The physics analysis will be focusing on extracting the
elastic asymmetries from the raw measurements. For future reference, let us take a
snapshot of the raw data. In Fig. 5.2, typical time of flight histograms of the yields
and asymmetries measured by the French and NA electronics are displayed. The
pion and elastic proton peaks are located at about 12 ns and 23 ns in the plots,
respectively. The inelastic proton bump is located between the pion and elastic
peaks, with a tail that extends underneath the elastics. The following particle ID

cuts are made along the time of flight spectra as shown in the figures:

e proton cut: a window around the elastic proton peak — detectors 1 through
14: 4.25 ns (17 bins) for the French and 5 ns (5 bins) for the NA, detector 15:
6.25 ns (25 bins) for the French and 7 ns (7 bins) for the NA;

e pion cut: a window around the pion peak — 4.25 ns (French), 5 ns (NA);
e inelastic cut T: the region in between the pion and proton cuts;

e cutl/2: regions inside the inelastic cut. Cut2 is a 2.25 ns (French) or 3 ns
(NA) window preceding the proton cut, and cutl is another window preceding

cut2 with the same size;

e cut3: a window right behind the elastic proton peak, with the same size as

the proton cut;
e total: the entire 32 ns spectrum.

Due to different timing resolutions, these cuts are not 100% consistent between the
two sets of electronics. They are used primarily as nomenclatures for qualitative

discussions.

tThe inelastic cut, cutl, and cut2 are undefined for detector 15, where the pion peak is very
close to the elastic proton peak.
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Figure 5.2: An ezample of the raw data collected by the French (a) and NA (b)
electronics (detector 11). The yield (solid line) and asymmetry (data points with
error bars) histograms are overlaid, and various PID cuts are indicated in the plots.
The asymmetries are corrected for the beam polarization (~0.737), but are blinded
by a factor of 0.8056 (see the beginning 10{65’ec. 5.3).



5.2.2 Statistical Properties of the Data

If the asymmetry measured in each individual quartet has the same statistical
weight, the distribution of the asymmetries should behave as a pure random distri-
bution with a perfect Gaussian shape. In Fig. 5.3, the quartet-by-quartet asymmetry
of the proton peak in octant 7 detector 8 throughout the entire experiment is his-

togrammed. One sees that the asymmetry is distributed cleanly with no side tails.

Proton Asymmetry Octant 7 Detector 8 of the Entire Experiment

X2V = 84.2/74

Quartets

Width =3618 ppm

17 M quartets

10?

10

H

|
20000
Asymmetry(ppm)

[ \ \
-20000 -10000 0 10000

Figure 5.3: The distribution of the measured quatet-by-quartet proton asymmetries
of octant 7 detector 8 during the entire experiment and the Gaussian fit.

Let us assume the beam current is a constant and neglect the small helicity
correlated asymmetry so that the physical scattering rate is the same for both he-
licity states. For each measurement period (1/30 s), the measured particle counts
should be Poisson-distributed. For large numbers of counts, the Poisson distribu-
tion with average N counts is equivalent to a Gaussian distribution with a standard
deviation of v/N. In other words, the width of the measured counts in each helicity
state satisfies

W(NT) =W(N") =VN, (5.4)

tFor clarity, we have used the W(z) to denote the width or standard deviation of a distribution,
and reserved o(z) as the uncertainty of the mean of a distribution.
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The asymmetry in each quartet is

_ N+ Ny — Ny — Ny
~ N+ Nj+N; +N;’

(5.5)

in which N;i" (N;), NJ- (N, ) are the particle counts measured in first and second
positive (negative) helicity states in a quartet, respectively. Since each MPS is an

independent measurement, one can simply propagate W(N') and W(N ) to get

1
W(Agzpected) = \/ﬁ . (56)
In principle, one could compare the width of the measured asymmetry with W(AY, ..icq)-

However, the deadtime loss introduces more complications. If a measurement is
made with a deadtime loss factor fg..q, such that the measured counts N, is related

to the true count N as

Nm = (]_ - fdead)Na (57)

in which fgeqeq Will be shown to be o N in Sec. 5.3.1. Even if one makes a perfect

correction to the deadtime loss such that

N,
N,=—"T" =N, 5.8
1_fdead ( )

it is still apparent that the uncertainty of N. will be larger than /., since one
has to pay the price of accuracy for the loss of information due to deadtime. The
calculation of W(N,) can be found in [Coa92|, which gives an approximate relation

for small fj.qq that

W(NC) = \/ﬁc\/ 1+ fdead . (59)

This leads to an expected width of the deadtime corrected asymmetry

c Vv 1+ faea
W( ezpected) = ﬁ (510)

In our analysis, the distribution of the proton asymmetry of each detector is fitted
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with a Gaussian as shown in Fig. 5.3, and the observed width, W(A,;s), is com-

pared with W(A¢ ) given by Eqn. 5.10, using values of fgeqq as determined in

expected
AO S .
Sec. 5.3.1.3. In Fig. 5.4, M is plotted for all detectors. One sees that
W(Aewpected)

the observed and expected widths agree well, which demonstrates that the mea-
sured uncertainty of the asymmetry is dominated by the statistical fluctuation of

the scattering events.
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Figure 5.4: The ratio of the observed and statistically expected proton asymmetry
widths of all detectors. Different colored markers represent the measurements in
different octants, with the code given in the legend. Figure courtesy of B. Guil-
lon [Gui05].

Despite the nice results shown above, one problem was discovered in the French
electronics. As discussed in Sec. 5.2, the proton cut there contains 17 time bins
(0.25 ns/bin). The mean and width of the asymmetry in the proton cut can be
computed in two different ways, and they are found to disagree. First, one can
integrate the yield in all 17 bins to get the proton yield, compute the proton asym-
metry quartet by quartet of this yield, and find its mean and width (method A).
Alternatively, one can compute the asymmetry and find its measured width bin by

bin, and then make a weighted average to get the expected proton asymmetry and
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width as
foa
A = =1 W(4y)*

= W) = , (5.11)
;W(Am

in which A; and W(A;) are the measured asymmetry and its width in time bin i
(method B).

If the measurement of each time bin 7 is independent, the widths of the proton
asymmetries obtained using the two methods should agree. However, as mentioned
earlier, W(A,) calculated using method B is found to be ~20% larger than that
given by method A in the French electronics. Also there are strong correlations of the
yields and asymmetries among different time bins within the proton peak [Han05].
The origin of this is not completely understood, but it has been strongly suspected
that the electronic noise present in the French time-encoding TDCs can cause a
modulated jitter to the widths of the time bins. A simulation of the French elec-
tronics has identified that the resulting intrinsic jitter of the TDC is of the order
100 ps [Mar05p]|. Since the total width of the 128 bins of a given spectrum is fixed at
32 ns, a jitter of the width of any bin will introduce correlations among all time bins.
In [Cov04], the author presented a dedicated simulation to look into the impact of
this type of timing jitter. The study indicates that if there was a periodic timing
jitter of ~50 ps, with a modulation frequency between 1-10 kHz, it would reproduce
the observed correlation.

Consequently, the uncertainties of bin-by-bin asymmetries in the French elec-
tronics cannot be treated as independent uncertainties. On the other hand, the
uncertainty of the proton peak (obtained using method A) is insensitive to the
internal TDC jitter, as substantiated by the simulation in [Cov04]. This can be
understood from the fact that the proton cut encloses more than ~ +3 half-widths
of the elastic peak, hence the variation of the yield inside the cut is negligible if cut
boundaries jitter by ~50 ps. The uncertainty of the proton peak calculated using

[4

method A will also be referred to as the “proton peak uncertainty”. It will be used
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in Sec. 5.3.6 to evaluate the statistical uncertainty of the elastic asymmetry.

To estimate the systematic uncertainty due to this bin correlation effect, we
compare the values of the proton asymmetries (averaged over the entire experiment
and over all French detectors) calculated using methods A and B; the results given
by the two methods differ by 0.14 ppm. The same comparison made on the NA
data leads to a tiny difference of 0.0005 ppm. The differences of methods A and B
in the NA and French data are averaged, and % of that is assigned as the systematic

uncertainty due to this effect, which leads to
U(Abinfcorrelation) = 0.035 ppm. (512)

This is a global uncertainty assigned to final asymmetries of the entire data set. It
has been corrected for the beam polarization (see Sec. 5.3.4), but is blinded by a
blinding factor of 0.8056 (see the beginning of Sec. 5.3) to be consistent with the
discussions in the remainder of this chapter.

To investigate whether there exists a long term systematic drift in the asym-
metries, the data are broken down into different sets, according to the state of
the insertable halfwave plate (see Sec. 4.2.1.2). Plotted in Fig. 5.5 are the average
asymmetries of the proton cut of detector 9 from different data sets during the en-
tire experiment. The corrections to the deadtime (Sec. 5.3.1) and the leakage effects
(Sec. 5.3.2) have been made on these data. The error bar on each data point is the
measured “proton peak uncertainty” described for method A above. The data sets
are arranged in chronological order. As one can see, the average asymmetry clearly
flips sign when the state of the halfwave plate changes. The statistical agreement of

the asymmetries from different sets is excellent.
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Asymmetry of the Proton Cut, Detector 9
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Figure 5.5: Asymmetries of the proton cut of detector 9, in ppm, divided into data
sets. The blue circles (red squares) are the data with the insertable halfwave plate
(IHWP) inserted (retracted). For data sets before 22, each represents a continuous
period with a given IHWP state. In order to have comparable statistical precision on
each data point, the last 3(4) short running periods with IHWP inserted (retracted)
are grouped to form data set 22(23). The stepwise pattern of the data reflects the
alternating insertion/retraction of the IHWP (about once every three days). The
average asymmetry over the entire run s indicated by the amplitude of the dashed
step. Data are corrected for the beam polarization (~ 0.737), but are blinded by a
factor of 0.8056 (see the beginning of Sec. 5.3).

5.3 Corrections to the Raw Asymmetries

In Fig. 5.6, a flow diagram of the analysis procedure is shown. The data correc-
tion procedure will be presented in the order in which the corrections were applied .
To avoid human bias, the raw asymmetry A,,, and the helicity correlated beam pa-
rameters are first multiplied by a global blinding factor ¥ fy;,4 = 0.8056, followed by
a series of instrumental corrections, for the electronics deadtime, the leakage asym-
metry in the beam, that due to the helicity correlated beam properties, and the
beam polarization. A correction is subsequently made to remove the background
contamination underneath the elastic peak, followed by a small electromagnetic ra-

diative correction to the elastic asymmetry A.. The corrected asymmetry is then

tTwo exceptions are the corrections for the helicity correlated beam properties and the residual
deadtime, which are applied after the background correction.
tThis blinding factor had been encrypted until the end of the analysis.
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unblinded, which gives the physics asymmetry. The procedure to extract the strange

form factors from the physics asymmetry will be presented in Chapter 6.
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Figure 5.6: The flow diagram of the analysis procedure. See text for details.

Unless otherwise specified, all asymmetries in the remaining part of this chap-

ter are blinded by fying = 0.8056.

5.3.1 Deadtime Correction

All counting electronics have some degree of deadtime. The electronics will not
respond during a time period 7 following a hit that triggers the electronics, where
T is a characteristic deadtime of the electronics. For a flat and Poisson distributed
rate R, the average probability of at least one hit occurring during the window 7 is
1 — e % which is precisely the average “dead” probability of the electronics fieqq-
Therefore one writes

fdead =1- e_RT y (513)
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and the measured rate r can be expressed as
7= (1~ faeaa) R (5.14)
At the limit that RT < 1, fgeqq is simply
fdead = RT . (5.15)
If the true rate carries helicity correlated asymmetry, Eqn. 5.14 becomes
r==1— fr.)BT,  fia = RET, (5.16)

resulting in

A~ (1- M) x Ap (5.17)

in which A, and Ap are the asymmetries carried by the measured (uncorrected)
rate r and the true rate R. The false asymmetry thus introduced, — fseaq X Arg,
is a directly consequence of the fact that fi.q is helicity correlated. For G° a
typical value of fgeeq ~10%. Therefore, understanding the deadtime and making
corrections for it is an essential step in understanding the systematics of the G°
experiment. It is important to note that the correction needs to reflect the helicity
correlation of fj.qq. Thus in our analysis, the correction is made on the measured
rate MPS by MPS.

In this section, the deadtime correction of the NA electronics will be discussed
in detail. The principle of the deadtime correction for the French electronics is very

similar, therefore only the differences will be highlighted.

5.3.1.1 North American Deadtime Correction

Only the front-back detector coincidences are collected by the time-encoding
electronics (see Sec. 4.2.4.1). However, both the CFDs and MTs have an intrinsic

deadtime, therefore not only the coincidences but also the singles contribute to
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the deadtime loss. The situation is further complicated by the 32 ns pulsed beam
structure, which results in a non-uniformly distributed rate in time.

In general, measuring a coincident hit in time bin ¢, requires that at least one
true hit occurs in time bin 7, and the electronics is alive. Therefore the probability

of measuring a hit , P! | can be written as
Py, = (1= Piii = Piad) Pl (5.18)

in which P and P59 are the “dead” probability of the electronics due to coinci-
dead dead y

dences and to singles, respectively, and P is the probability of at lease one true hit

in bin 7. The true hits should be Poisson distributed, therefore we expect
Pl =1—¢fm (5.19)

in which R; and 7; are the true rate and the width of time bin 7. On the other hand,
P! is related to the measured rate in bin 4, r;, with

m

The intrinsic deadtimes of the CFDs and MTs are roughly 30—40 ns. For a
1 MHz of rate, this corresponds to a ~3.5% loss. Taking into account the G° beam
structure, one realizes that after a hit, the meantimer is recovered in the middle of
the next pulse, as illustrated in Fig. 5.7. In principle this effect can be corrected if
the deadtime of each meantimer is known accurately. However, with 256 channels
this is impractical. As discussed in Sec. 4.2.4, the so-called next-pulse-neutralization
(NPN) is implemented into the electronics as a remedy, whose scheme is illustrated
also in Fig. 5.7.

Based on the design of the NPN, let us consider P first. Ignoring the
singles, the electronics is dead in bin ¢ if there is at least one hit in the previous

pulse, or there is a hit measured within one of the earlier i— 1 bins of the same pulse.
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Next Pulse Neutralization

MT Deadtime :

| | H 32ns%|

Hit

Figure 5.7: The scheme of the next-pulse-neutralization (NPN). Once a hit occurs,
the encoding electronics is disabled in the remaining period of the same pulse, as
well as the next pulse.

The probabilities of these two cases are denoted as P, and P, respectively, and
Pdcgég = Ppre + P;ar : (5.21)

Note that Py, and P! . are additive, because they are not independent probabilities,

ar
i.e., a measured hit in an earlier bin in the current pulse requires that there was no
hit in the previous pulse. One should also note that the NPN is implemented in
such a way that P, is determined by the occurrence of the true hits and P?,, is
determined by the measured hits. For example, consider three consecutive pulses.
If the busy latch of the second pulse is set due to a hit in the first pulse, then no
hits can be measured in the second pulse. But the busy latch of the 3rd pulse can
still be set if there is a true hit in the 2nd pulse, even though we do not measure it.
On the other hand, if the current pulse is not dead and a hit is measured anywhere

between bin 1 and bin ¢ — 1, bin ¢ of the same pulse is dead [Cla02p]. With this

precaution, we can write

Ppe=1—¢e X0 (5.22)
1—1 1—1

Péar = Zprlycz = Zrka . (523)
k=1 k=1

Again, the probabilities P¥ here are additive since they are not independent.
Besides the NPN, additional deadtime is introduced by the single hits — low
energy hits which do not fire both MTs. The NA electronics does not have dedicated
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scalers to count these hits, but they can be determined by analyzing the Fastbus

data. Naively, one can sort the single hits into
- CFD singles, a CFD fires but the corresponding MT does not;

- MT singles, one of the MT fires, but the other one of the same detector does

not.

However, this simple sorting leads to double counting. For example, a hit that fires
the front-left CFD and both back CFDs would be counted as both a CFD single, as
well as a back MT single f . To avoid this, one has to sort the hits into all possible
single/coincidence combinations. There are in total 15 different combinations, which
can be represented “geometrically” by a 4 x 4 table shown in Table 5.1. “FL”, “FR”,
“BL” and “BR” in the table are the abbreviations for front-left, front-right, back-left
and back-right CFDs, respectively. The (1,1) cell of the table corresponds to no hits
in any of the CFDs, therefore should be ignored. For the rest of the cells, each repre-
sents a unique type of hit. The four-fold coincidence rates of “FL/BL/FR/BR” has

FL/BL | FL/BL/FR | FL/BL/BR | FL/BL/FR/BR
BL BL/FR | BL/BR | BL/FR/BR
FL FL/FR FL/BR FL/FR/BR
n/a FR BR FR/BR

Table 5.1: The 4 x 4 table which sorts the hits in terms of “geometry”. See text for
details.

been dealt with in the time-encoding and NPN. Now let us sort the remaining 14 cells
into three categories: the rates in “FL/FR”, “FL/BL/FR” and “FL/FR/BR” (blue
cells) are sorted into a front meantimer singles rate, R, and similarly “BL/BR”,
“FL/BL/BR” and “BL/FR/BR” (pink cells) are summed into a back meantimer
singles rate Ry. The rates in the rest of the slots are treated as the CFD single
rates Rs. Therefore for a given point in time ¢, the “dead” probability is simply the

tSee nomenclature of the CFDs and MTs in Sec. 4.2.4.
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sum of the three probabilities of having at least one hit within the deadtime window

preceding ¢ T
Py = (1 —e By 4 (1 — e Bom) 4 (1 — e Fom) (5.24)

in which 7¢, 7, and 75 are the deadtimes of the front meantimer, back meantimer
and CFD single hits, respectively. Eqn. 5.24 would contain no subtlety if the single
rates are distributed flat in time. In reality this is untrue — singles are mostly pions
and photons, which have shorter flight time than the protons. Therefore a single hit
would “shadow” the proton in the same micropulse. Hence, although the intrinsic

deadtime of the CFDs and MTs are roughly 30-40 ns, the effective deadtime due to

the singles that the proton “feels” is the length of the micropulse, 32 ns ¥. Moreover,
in the NA electronics, the front meantimer single hits also trigger the NPN, therefore
on average, the front meantimer causes a deadtime of ~48 ns. These two values of the
singles deadtime have been substantiated by a detailed simulation of the electronics

chain [Bis04]. Therefore we have

Th =Ty =32 ns, 7t =48 ns. (5.25)

In principle, for each given run, one could replay the Fastbus data first to
obtain the singles rates, then make another replay to apply these singles rates to
correct for the deadtime loss of the coincidence rates. In practice, the singles rates
exhibit stable and almost linear relations with the beam current. These relations
are calibrated using a few runs at different beam current. Then during the normal
replay, the singles rates are simply calculated MPS by MPS based on the calibration

and the measured beam current.

tIn principle, the single rates appeared on the right-hand side of Eqn. 5.24 should be the true
single rates, whereas those in the 4 x 4 table measured by Fastbus contained deadtime losses due to
the CFDs, MTs and Fastbus TDCs. This second order inconsistency was omitted in our treatment
nevertheless.

tStrictly speaking, this statement is valid only to the proton regions, however it is applied
throughout the whole spectrum as an approximation.
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Applying Eqns. 5.21-5.24, Eqn. 5.18 can be written out explicitly as

i1
rim= 1= (1—e  Z8%) =N "pym — Pind | x (1—e 7)) (5.26)

k=1
in which P39 is given by Eqn. 5.24. This equation relates the true rates R; with the

measured rates r; and the singles rates. To avoid confusion with the later defined

first order expansion, let us define a full deadtime factor Fj..q such that
ry = (1 - Fdead)Ri ) (527)

and note that Fy..4 is a complicated function of the true, raw and the singles rates
as implied by Eqn. 5.26.
It is useful to cast Eqn. 5.26 into a more intuitive first order relation. Using

e —-1—x, Eqn. 5.26 becomes

i = (1 - fgead - fc;Zad - fgead) RZ ) (528)
i—1

fgead = Z RiTi + Zrm s (529)
k=1

fieas = a7 + Ry, (5.30)

fiead = RsTs, (5.31)

and fi..40 fir.a and fi..q are the first order fractional deadtime loss due to the
coincidences, the MT singles and the CFD singles.

Were the true spectrum R; known, it would be straightforward to use Eqn. 5.26
to compute the measured spectrum r;. Going the other way is much more difficult;
generally there is no analytical solution. However, R; can be solved numerically via
an iterative procedure for which a flow diagram is shown in Fig. 5.8. In the first
iteration, f° = 5% and R} = %ﬁri are taken as a guess of the deadtime loss and
the true rate, respectively. Eqn. 5.26 is applied to this spectrum to calculate the

measured spectrum, r} (the superscript is the index of the iteration). The deadtime
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Figure 5.8: The flow diagram of the iteration used in the NA deadtime correction to
calculate the true rate. See text for details.

2
R}
measured spectrum r;, and the difference between them, A, divided by the lifetime

loss is then updated in this iteration as f' =1 — Then 7} is compared with the
1 — f' T, is then applied to correct the “true” spectrum R}, which goes into the
next iteration. This procedure is performed recursively until the nth iteration, in
which the difference between r;* and the r; becomes “negligible”. R} is then taken
as the the corrected true spectrum.

Let us elaborate on the exit condition of the iteration — how small should |A|
be? Eqns. 5.14 and 5.17 imply that if a correction is made on the rate to a precision
of € ¥, such that

Reorr = (1 — €f4ead) R, (5.32)

A is the difference between r; and r?*, and the difference between R; and R} is expected to be
larger by a lifetime correction.

INote that this implies that the correction is made on the two helicity states separately with
equal precision.
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then the corrected asymmetry would be

Acor'r = (1 - 6fdead)AA . (533)

In other words, if the rate is corrected to one percent, the corrected asymmetry
is good to one percent, which is satisfactory. In reality, however, the corrected
asymmetry in a certain time bin is also correlated with the correction of the rate in
other bins, due to the complicated entanglement in Eqn. 5.26. The realistic situation
is studied with a simulation [Liu02], in which a typical G° rate spectrum (with
typical asymmetry) was used as the “true” spectrum, which was then corrupted by
Eqn. 5.26. Then the corrections were made iteratively and different exit conditions
were tested. It was found that the corrected asymmetry of each time bin was good

to 1% if

%y <01%, (5.34)

in which () denotes a time-average over the entire spectrum. This is therefore
adopted as the convergence condition in the analyzer. For a typical G° spectrum,
this convergence condition is met in three iterations. The corrected rate spectra are

then used to compute the asymmetries.

5.3.1.2 French Deadtime Correction

The French deadtime correction uses the same principle as that in the NA
electronics. In the French electronics, however, P,.. (Eqn. 5.22) depends only on

the measured rates [Arv01], therefore

Ppre = Z TiT; . (535)

This simplifies the correction considerably, i.e., R; can be directly solved as

Ri=—In|1- o . (5.36)
L= D reThe + D pmy ThTh — P;ead,i
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Note that in the French case, the deadtime loss due to the singles, Pj, , ; is evaluated

bin by bin, which we will elaborate on a bit later. There are two additional technical
subtleties associated with the French NPN deadtime. First, the French NPN is not
naturally ended at the end of the spectrum (32 ns or the 128th bin); typically it
is at the 110th bin and is different for each board. This is the so-called “upstream
cutoftf”. Second, each DMCH board also has a “downstream cutoftf” located early
in the spectrum, typically the 20th bin. If a hit is made between the upstream and
downstream cutoffs, two subsequent pulses will be disabled. The two cutoffs are
calibrated for each DMCH board and loaded into the analyzer, which are taken into
account when computing the NPN deadtime.

The French electronics has scalers associated with each CFD and MT, therefore

the CFD singles and MT singles can be approximately determined by

Ry crp = Z Rcpp — 2 X Z Ry,

Ry vt = Z Ryt — 2 X Rpycn, (5.37)

in which Rcpp, Ryt and Rpycn are the total rates measured in CFDs, MTs and
time-encoding electronics, respectively. However as discussed in the previous section,
this naive evaluation leads to double counting. Therefore a more sophisticated
Fastbus analysis is made. This analysis takes into account the shape of the ToF
spectrum of the singles, as well as possible double counting. The analysis culminated
into two effective deadtimes as a function of bin number 4 ', 7cpp; and 7y, which
contain the effect of the time of flight shape of the singles, as well as a scaling to

remove the double counting. 7cpp; and 7ur; are loaded at the beginning of the

tIn fact this analysis computes another tiny loss corresponding to the MT single hits during
the NPN period [Bat04]. Its discussion will be omitted here.
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replay. Then at each bin 4, P ,; is computed as [Bat04]

Pjeadi = Perp,i + Py, (5.38)
Pcrp,i = Terp,i X Bscrp (5.39)
PMT,i = TMT,i X RS,MT: (5-40)

MPS by MPS. The French correction is then performed using Eqn. 5.36.

5.3.1.3 Results of the Deadtime Correction

Simplified relations between the raw and the true rates/asymmetries are given
at the beginning of Sec. 5.3.1 in Eqns. 5.14 and 5.17. Since R ;l—gfb, where [, is
the beam current, the measured asymmetry Ag is a sum of the physics asymmetry
Aphys and the charge asymmetry Ag. It is always desirable to take out the effect of

the fluctuation of the beam current to first order. Normalizing both the measured

and true rates in Eqn. 5.14 by the beam current, we have

Ym = (1 - fdead)Y;ta fdead = RT, (541)

where Y, = ILI, and Y, = IE; are the normalized raw and true detector yields,
respectively.

Since the true scattering rate R scales with the beam current, the measured
normalized yield falls off linearly with beam current. This is perhaps the most

obvious effect of the deadtime, and fzeqq can be “measured” as a (dimensionless)

slope:
day 40 pA

= x 42
fdead d[b X Y(I(,ZO) (5 )

The average four-fold coincidence and the single rates (summed over the single rates
in the 4 x 4 table (Table 5.1) that contribute to fgeqq are listed in Table 5.2. If one
takes 7 ~ 50 ns for the coincidences and 7 ~ 30 ns for the singles, fjeqq is estimated

to be ~10%, and the coincidences and singles contributed roughly 40% and 60% of it.
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NA French
Detector  4-fold (MHz) singles (MHz) | 4-fold (MHz) singles (MHz)
1 0.69 1.1 0.65 1.6
2 0.90 1.3 0.86 1.8
3 0.93 1.2 0.91 1.9
4 0.84 1.2 0.76 1.2
5 0.90 1.1 0.83 1.7
6 0.97 14 0.90 1.8
7 1.0 1.2 0.99 1.6
8 0.90 1.6 0.87 1.5
9 1.0 1.5 0.98 1.7
10 1.0 2.0 1.0 2.0
11 1.1 1.7 1.0 2.1
12 0.90 2.5 0.84 2.3
13 0.76 1.7 0.70 2.8
14 0.80 2.6 0.73 2.9
15 0.85 2.2 0.77 3.7
hybrid 14 0.86 5.8
hybrid 15 0.92 7.4

Table 5.2: The average rates of the four-fold coincidences and singles per detector.
The four NA and French octants are averaged separately.

As an example, the normalized proton yields of North American detector 8 measured
at a few different beam currents are plotted against the beam current in Fig. 5.9(a).
The black open circles represent the raw measured yield. The pink solid squares
and the blue open squares represent the yield corrected with the coincidences only,
and that corrected by both the coincidences and the singles, respectively. One sees
that coincidences and singles contribute comparably to the deadtime loss, and after
the full correction, the dependence of the normalized yield on the beam current is
largely removed. We will elaborate on the systematic uncertainty due to the residual
slope in Sec. 5.3.1.4.

Although the correction has reduced the yield slope, one should not stop at
this point. As illustrated by Eqn. 5.17, the real issue of the deadtime is that it

introduces a helicity correlated loss, which is not reflected in the average yield.
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Figure 5.9: The proton yield vs. beam current (a) and asymmetry vs. charge asym-
metry (b) for NA detector 8. The black open circles, pink solid squares, and the
blue open squares are the raw yields, yields corrected for the deadtime due to the co-
incidences, and the yields corrected for both the coincidences and singles deadtime,
respectively.
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Similar to Eqn. 5.17, Eqn. 5.41 can be cast into asymmetries as

fdead
Ap = Aphys — m(/lphys + Aq), (5.43)

of which A,, and Ay, are the asymmetries carried by Y;,, and Y;. One should note,
first of all, that both the charge asymmetry and the physics asymmetry contribute
to the false asymmetry through the deadtime. Secondly, this equation suggests that

we can measure fg.,q by measuring the correlation between A,, and Ag, i.e.,

aA’4m _ _ fdead
a"4Q 1— fdead '

(5.44)

In Fig. 5.9(b), a correlation plot of A,, and Ag for North American detector 8 is
shown, with the same color code as that of Fig. 5.9(a). In these measurements,
the charge asymmetry of the beam was adjusted by the rotatable halfwave plate
(see Sec. 4.2.1.2) to introduce large enough variation of the charge asymmetry. One
clearly sees that the large correlation between A,, and Ag disappears after one
applies the full deadtime correction.

fdeaq measured through the yield slope and the asymmetry slope are in good
agreement. Table 5.3 shows the raw and deadtime-corrected asymmetry slopes for
the proton cuts for the NA, French and hybrid (see Sec. 4.2.4.2) detectors. After the
correction, the asymmetry slope of the NA detectors is negligible, and the French

detectors have a ~ —2.5% residual slope remaining.

5.3.1.4 Residual Deadtime and the Systematic Uncertainty of the Cor-
rection

To examine the residual false asymmetry for the proton peak due to the
residual asymmetry slope, let us consider the following simplified version of the
NA /French deadtime model (NPN + singles).

To measure an elastic hit at time ¢ in the proton peak, it is required that there

are
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NA French
Detector raw (%) corrected (%) raw (%) corrected (%)
1 —8.4(0.4) —0.5(0.3) ~10.1(0.4) —2.2(0.3)
2 —9.3(0.3) 0.3(0.3) ~11.6(0.3) ~2.2(0.3)
3 ~9.9(0.3) 0.2(0.3) ~12.8(0.3) ~2.5(0.3)
4 —9.3(0.4) 0.1(0.3) 10.2(0.4) —2.3(0.3)
5 —9.8(0.3) ~0.3(0.3) ~11.1(0.4) —2.4(0.3)
6 —9.9(0.3) 0.6(0.3) ~12.0(0.4) —2.4(0.3)
7 ~10.9(0.3) ~0.1(0.3) ~13.0(0.3) ~2.5(0.3)
8 ~11.5(0.4) —0.8(0.3) ~11.6(0.4) ~1.9(0.3)
9 ~11.0(0.4) ~0.1(0.3) ~13.3(0.4) ~2.5(0.3)
10 —11.6(0.4) 0.1(0.3) ~14.1(0.4) —2.6(0.3)
11 ~12.1(0.4) ~0.2(0.4) ~15.0(0.4) ~3.0(0.3)
12 ~10.5(0.4) 1.6(0.4) ~13.4(0.4) —2.5(0.4)
13 ~10.2(0.5) (0.4) ~13.9(0.5) ~3.2(0.4)
14 ~13.1(0.5) 0.4(0.4) ~16.8(0.5) —3.8(0.4)
15 ~12.8(0.4) (0.3) ~19.6(0.4) —4.2(0.4)
hybrid 14 —34.7(0.5) —5.3(0.5)
hybrid 15 —37.7(0.5) 6.3(0.4)

Table 5.3: The raw and deadtime-corrected asymmetry slopes, dAFPD , for the proton
cuts of different detectors. All slopes are in %, and the values m parentheses are
their statistical uncertainties.

e 10 coincidence pion hits in this and previous beam pulses (7, = 64 ns);

e no coincidence inelastic proton hits in this and previous beam pulses (7;;, =

64 ns);
e 1o coincidence elastic proton hits in the previous beam pulse (7, = 32 ns);

e 1o single hits occur in a 32 ns window preceding ¢ (7, = 32 ns).

The regions before the pion peak and after the elastic peak have small rates, and

are therefore neglected. To first order, this leads to

Ym,p:(1_fdead)y;7:(1_f7r_fin_fp_f5)y;;, (545)
f7r = RyTx , fm = RinTin , fp = Rpra fs = RsTs , (546)
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in which Y, , and Y, are the raw and the deadtime-free yields in the elastic peak,
and R;, Ri,, R, and Ry (fr, fin, fp and fs) are the rates (fractional yield losses)
due to the pion, inelastic, elastic and single hits, respectively.

Similar to Eqn. 5.43, Eqn. 5.45 easily leads to a relation in terms of the asym-

metries:

fw(Aw + AQ) + fm(Am + AQ) + fp(Ap + AQ) + fS(As + AQ)

Am,p:Ap_ l_fw_fin_fp_fs

. (5.47)

One realizes that the deadtime correlates the measured asymmetry in the proton
peak with the physics asymmetries along the entire time of flight spectrum. Without

the correction, the slope for the measured asymmetry is

a14m,p:_ f7r+fin+fp+fs
aAQ 1_(f7r+fin+fp+fs)‘

(5.48)

For the corrected asymmetry, we define a multiplicative “precision” coefficient ¢,
such that e =0 and 1 corresponds to a perfect correction and no correction, respec-

tively. Then the corrected asymmetry can be expressed as

fa(Az + AQ) + fin(Ain + Aq) + [o(Ap + Ag) + [5(As + Ag)

1_€(f7r_fin_fp_fs) ’ (549)

Acp=Ap, —¢€

Note that here we choose a global € for simplicity, although it could be different for
different types of hits. Under this assumption, the corrected slope can be expressed

as
a14c,p _ 6(.f7r+fm+fp+fs)

0Ag  1—e(fot fin+ fo+ [s)

Therefore, based on the corrected slope in Table 5.3, € can be computed for each

~—€(fat fin+ o+ [s) (5.50)

detector.

Eqn. 5.49 shows explicitly the consequence of an imperfect deadtime correc-
tion: the corrected asymmetry has a residual false asymmetry due to the charge
asymmetry, as well as the physics asymmetry along the time of flight spectrum.

The linear regression correction (which will be discussed in Sec. 5.3.3) on the he-
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licity correlated beam properties will further remove the piece due to the charge
asymmetry, so we will ignore Ag in the remainder of this discussion. What remains

is a false asymmetry due to the physics asymmetries

_€f7rA7r + fmAm + prp + fsAs
1 _e(fw_fin_fp_fs)
~ _e(fwA'/r + fmAm + prp + fsAs) - (551)

Afalse = Ac,p - Ap =

In Table 5.4, the residual false asymmetries of the French detectors are summa-
rized. For the coincidence hits, the values of A listed in the table are the deadtime
corrected asymmetries, and those of f’s are computed based on the corrected rates
in individual PID cuts. The total singles rates are evaluated by the summed single
rates from the 4 x 4 table (Table 5.1), from which we calculate f;. The asymme-
tries of the singles are evaluated with the SDMCH scaler data — the rates of the
CFD and MT singles are computed for each helicity state using Eqn. 5.37 (despite
the ambiguity of the double-counting), after which the asymmetries are computed.
In Fig. 5.10 the asymmetries of CFD and MT singles are shown. The MT singles
asymmetry vs. the detector number shows a similar trend as the coincidence pion
asymmetry. On the other hand, the CFD singles exhibit ~+5 ppm asymmetry for
detectors below 6, which might be threshold related. The weighted average of the
asymmetries of the CFD and MT singles is taken as Ay in Table 5.4.

CFD singles asymmetry vs FPD number MT singles asymmetry vs FPD number
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Figure 5.10: The asymmetries of the CFD and MT singles calculated from the
SDMCH scaler data vs. the detector number. The asymmetries are corrected for
the beam polarization, but blinded by a factor of fuing = 0.8056.
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Detector | fr fin fo [s A A, A € Afaise
1 0.00 0.01 0.02 0.05|—53.1 —12.5 —1.8 —2.9| 0.26 | 0.13(0.08)
2 0.01 0.02 0.03 0.06|—28.1 —10.6 —1.5 —1.0| 0.20 | 0.09(0.08)
3 0.01 0.02 0.02 0.06|—25.1 —10.0 —2.7 0.9 | 0.22 | 0.09(0.12)
4 0.00 0.02 0.02 0.04|—-21.7 —11.5 —2.3 0.9 | 0.28 | 0.08(0.10)
5 0.01 0.02 0.02 0.06|—12.1 —-2.7 29 | 0.24 | 0.03(0.11)
6 0.01 0.02 0.02 0.06| —8.1 -3.3 2.0 | 0.21 | 0.04(0.09)
7 0.02 0.02 0.03 0.05| —4.9 —-34 25 | 0.22 | 0.02(0.08)
8 0.02 0.02 0.02 0.05| —3.3 —4.7 1.5 | 0.18 | 0.02(0.04)
9 0.03 0.02 0.02 0.06| —3.8 -5.0 0.9 | 0.20 | 0.01(0.03)
10 0.03 0.02 0.02 0.06| —3.9 —-6.4 04 | 0.20 | 0.00(0.01)
11 0.03 0.02 0.02 0.07| —4.1 —5.2 —0.6| 0.23 | —0.00(0.02)
12 0.03 0.01 0.02 0.07| —4.9 —-4.9 —0.9| 0.20 | 0.01(0.02)
13 0.02 0.01 0.01 0.09| —7.6 —4.2 —0.6| 0.24 | 0.03(0.01)
14 0.02 0.01 0.01 0.09| —9.6 -34 —0.6| 0.28 | 0.07(0.07)
15 0.02 0.01 0.02 0.12|—-12.5 —-8.0 —1.2| 0.25 | 0.13(0.17)

hybrid 14 {0.03 0.01 0.01 0.18| —9.9 —-1.1 —0.6| 0.22 | 0.06(0.06)

hybrid 15|0.02 0.01 0.02 0.24|—13.3 —5.7 —1.2|-0.22 | —0.16(0.25)

Table 5.4: The French deadtime losses and the asymmetries of various types of hits,
the residual slope factors €, and the resulting false asymmetries Agqse calculated
using Eqn. 5.51. Columns fr, fin, fp and fs (Ar, Ain, A, and A;) represent the
measured deadtime losses (asymmetries) of the pions, inelastic and elastic protons,
and the singles.
All asymmetries are in ppm, corrected for the beam polarization, but blinded by a
factor of foiina = 0.8056.

The statistical uncertainty of Ay, contains 3 components:

The uncertainties of Agqse are in parentheses in the last column.

e the uncertainty of the measured asymmetries of individual types of hits;

e the uncertainty of the deadtime fraction (f).

We estimated this as the dif-

ference between Eqn. 5.48 and the measured asymmetry slope without the

correction. The difference is found to be less than 10% of f for most of the

detectors;

e the uncertainty of € based on the the statistical uncertainty of the corrected

asymmetry slope, as shown in Table 5.3.
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The combined uncertainty is ~0.01 ppm, and is dominated by the statistical uncer-
tainty of the measured asymmetries of individual types of hits. However, as hinted
earlier, there is a caveat in the above evaluation: we have made the assumption
that the deadtime losses due to individual types of hits are equally under- or over-
corrected (by a global €). This could be untrue in reality, and the impact can be
estimated by assuming that either the singles or the coincidences are 100% respon-
sible for the residual slope. The resulting half differences of the two evaluations
is of the order of ~100% of Ajyse, and are listed in parentheses of the last col-
umn in Table 5.4. Clearly they dominate the systematic uncertainty of the residual
correction.

The last two rows in Table 5.4 deal with the hybrid data (NA detectors 14
and 15 plugging into the French electronics, see the end of Sec. 4.2.4.2). There is no
Fastbus information available for these channels. But based on the raw asymmetry
slope in Table 5.3 and the measured coincidence rates, we estimate according to
Eqn. 5.48 that their values of the singles loss fraction f; are roughly twice as high as
their French counterparts (due to the difference in thresholds). We further assume
that their singles asymmetries are the same as measured by the SDMCH scalers.
Then the evaluation of Ajqse and d A s4,. follows the exact same procedure as above.

The residual NA asymmetry slopes are very close to zero; naively one would
expect the residual Ajfq. to be also very small. The reality is more subtle. As
mentioned earlier, the singles rates in a given MPS are calculated according to the
beam current based on an empirical parameterization, and the correction is applied
to each helicity state. This implementation ensures that Agfqs. due to Ag will
be corrected, but the contamination due to the physics asymmetry of the singles
remains .

Therefore, the residual uncorrected false asymmetry of the NA detectors should

be calculated as

Afa,lse ~ _e(fﬂ'Aﬂ' + fmAm + prp) - fs X As ~ _fs X As . (552)

tThis is unlike the French case, in which we have shown that (1 — €) of this effect has been
corrected by using the singles rates measured simultaneously with the coincidence data.
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In Table 5.5 the false asymmetries of the NA detectors are summarized. The
asymmetries of the singles measured by the French SDMCH are taken as the singles
asymmetries for the NA detectors (A;). The uncertainty of this assignment is esti-
mated by using the relative difference of the pion asymmetries between the NA and
French detectors, since the pions and the singles both are low pulse-height events.
The singles loss fraction, f, is again computed using the summed single rates from
the 4 x 4 table (Table 5.1). For completeness, we computed Ajq . using the full
expression of Eqn. 5.52, although the terms due to the coincidences are small. Fi-
nally, the uncertainty of Ay, are computed by propagating the uncertainties of
the measured asymmetries, and those of f’s and e. Attributing the residual slopes
solely to either the coincidences or the singles does not make too much variations
to Afaise, since the residual slopes are small for the NA; the systematic uncertainty
due to this variation is therefore neglected. The uncertainties of Ay, are listed in
parenthesis in the last column in Table 5.5; they are dominated by the uncertainty
due to the assignment of the NA singles asymmetry mentioned above. One realizes
that the uncertainty of Ayy,. is again of the order of ~100% of A fgse.

As a note of caution, the above estimate of the false asymmetry is made on the
measured asymmetry in the proton cut, but not on the background corrected elastic
asymmetry. On the other hand, the elastic events should have exactly the same
deadtime loss as the background events inside the proton cut, since the electronics
can not tell whether a hit is elastic inside the same cut. Therefore it follows that
the residual false asymmetries of the elastic asymmetries are exactly the same as
those in Tables 5.4 and 5.5. The correction to residual Ajfq;e is therefore made
after the background correction (Sec. 5.3.6), and for simplicity we assigned 100% of
the correction as the systematic uncertainty of this residual correction. It shall be
treated as a point-point (uncorrelated from Q2 bin to Q? bin) systematic uncertainty

in the final uncertainty budget.
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Detector | fr  fin fp [ A Ain Ay A € Afaise
1 0.00 0.01 0.02 0.03|-32.3 —79 —1.1 —29| 0.14 | 0.12(0.04)
2 0.01 0.02 0.03 0.04|—-244 —64 —0.4 —1.0|—-0.06| 0.03(0.02)
3 0.01 0.02 0.02 0.04|-21.7 —6.6 —0.1 0.9 | —0.04 | —0.04(0.02)
4 0.01 0.02 0.02 0.04|-16.4 —80 —24 0.9 | —0.00|—0.04(0.02)
5 0.01 0.02 0.02 0.04| 08 —-6.0 —1.8 29 | 0.06 |—0.10(0.11)
6 0.01 0.02 0.02 0.04| 01 —-14 —-27 2.0 |-0.11|-0.10(0.10)
7 0.01 0.02 0.03 0.04| —2.0 4.6 —42 25 0.02 | —0.10(0.06)
8 0.01 0.02 0.02 0.05| —6.0 10.6 —3.9 1.5 | 0.16 | —0.08(0.07)
9 0.02 0.02 0.02 0.05| —2.6 14.2 —43 0.9 0.02 | —0.04(0.02)
10 0.02 0.02 0.02 0.06| —5.6 22.3 —-3.5 0.4 |—0.02|—-0.02(0.03)
11 0.02 0.02 0.02 0.05| —6.0 25.0 —3.4 —0.6| 0.03 | 0.03(0.03)
12 0.03 0.01 0.02 0.08| —5.7 27.8 —3.4 —0.9|—-0.28| 0.08(0.05)
13 0.02 0.01 0.01 0.05| —8.1 29.3 —1.2 —0.6|—0.09| 0.04(0.02)
14 0.02 0.01 0.01 0.08|-11.3 189 —-0.1 —0.6|—0.09| 0.05(0.03)
15 0.02 0.00 0.02 0.09|-14.2 14 —-58 —1.2|—-0.41| 0.04(0.03)

Table 5.5: NA deadtime losses and the asymmetries of various types of hits, the
residual slope factor €, and the resulting false asymmetries Ayqse calculated using
Eqn. 5.52. The arrangement of the columns is the same as that of Table 5.4. All
asymmetries are in ppm, corrected for the beam polarization, but blinded by a factor
Of fbli’nd = 0.8056.

5.3.2 Leakage Correction

The G° beam bunches are separated by 32 ns to facilitate the time-of-flight
measurements. On the other hand, the electron beams to Halls A and B are pulsed
with 2 ns separation between bunches. In Fig. 5.11, the time structures of the
beams to the three halls are illustrated. During the experiment, it was realized
that there was ~50 nA of the 499 MHz beam leaking into Hall C. Although small in
current, the charge asymmetry of the leakage beam turned out to be quite significant
(~600 ppm), and it was not stable over time. The beam charge monitors in the hall
measured the integrated beam charge every 1/30 s, so they were only sensitive to the
combined average current of the G° and leakage beams. This resulted in a significant
time-of-flight dependent false asymmetry, which needed to be corrected.

The correction of the leakage effect was carried out using the rate and the
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G° Hall A  Hall B

o

O ns 32 ns 64 ns

Figure 5.11: An illustration of the JLab beam structure delivered to Halls A, B and
C during the G° running period. The beams of Halls A and B are pulsed with a
repetition rate of 499 MHz, whereas the G° beam is pulsed at 31.25 MHz.

asymmetry measured in the “forbidden” regions (the so-called “cut0”): very early
and late regions on the time-of-flight spectrum. A detailed description of the leakage
problem as well as the correction procedure is given in Appendix A. Here, only the

final results will be presented. The correction to the elastic A, of all Q2 bins is
Aleuk = Ae,corr - Ae,raw =0.57+0.11 ppm, (553)

with 0.11 ppm being the global systematic uncertainty. Note these values have been
corrected for the beam polarization, but they are still blinded by the blinding factor
(0.8056).

5.3.3 Correction to Helicity Correlated Beam Properties

The detector yield is proportional to the scattering cross section and the ac-
ceptance; both have dependence on the beam properties, e.g. the incident beam
positions, angles, and the energy. Generally, we can write the change of the yield
oY, as the product of the detector sensitivities and the change of n different beam

parameters, i.e.
— Y
NEY 55 0P (5.54)
m=1 m

with Y =Y — (YY) and 0P,, = P,, — (Py,) being the change of the yield and the

beam parameter P,, away from their means. Therefore, if the beam parameter is
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helicity correlated with a difference

AP,=P/ - P, (5.55)
it leads to a false asymmetry
— 1 9Y
A = ———AP,,. .
false mz_:l 27 8Pm m (5 56)

In the experiment, AP,, were monitored continuously with the beam monitors.
Therefore, the key to remove the false asymmetry is to determine the correlation
slopes, % One should note that a given parameter might be correlated with the
others. A standard multi-dimensional linear regression technique was thus used to
evaluate the slopes by taking into account the correlations.

Let us consider that we make large number of measurements N, and in each
measurement the detector yield and the beam parameters are denoted as Y* and
P!, where the superscript 4 is the index of the measurements. To simplify the
notation, we rewrite the correlation slope as or. = (). The goal of this analysis
is to determine C,, based on these N measurements, with the assumption that the

parent distribution is

8Y = CudPp. (5.57)

C,. can be determined via the least-squares method, with x? defined as

(m = Cm(spjn)
= (’(’;.)2 : (5.58)

1

in which ¢¢ is the uncertainty of Y =" CndP, in measurement i. The best values
of C,, are those that minimize 2. Therefore, C,, is determined with the constraint

that
02
oC,,

=0, (5.59)
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which leads to a set of n equations:

> (if)’i ((Wi — Zcmap,;) =0. (5.60)

1

If one further assumes that all N measurements share the same statistical

weight, i.e., 0° = o, then Eqn. 5.60 can be simplified to

(5P6Y) =Y Cu(SPi6Py) (5.61)

in which we have replaced Z with (), the straight average of N measurements. Let

7

us define
[ 5PsY) ) (PGP (SPWPy) - - - (o)
(0P50Y) (0P 0P)) (6Py0Py) - - - Co
? = ,/\<_/l> = ,E) =
\ (§P.6Y) ) (5P,6P)) (5P,6P,) - - - \ Cn
(5.62)
Then Eqn. 5.61 can be cast into a compact matrix form
T=MT. (5.63)

Clearly it is a set of n linear equations with n unknowns (Cl,), therefore C,, can

simply be solved by inverting ﬁ :
C=M"17¢. (5.64)

The slopes thus obtained are independent in the sense that they characterize how
fast the yield changes with a given parameter, if we keep all the other parameters

fixed at their means.
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As a side note, a common trick used to compute the average product of the

deviations of any two independent quantities  and y is the following:

(6zdy) = ((z —T)(y — 7))

= (zy —ay =Ty + T Y) = (zy) — (&)(v) - (5.65)

During the event by event processing, the running averages of x, y and zy are kept
track of, and (6xdy) is computed at the end of the replay. The elements in ? and
./\<_/l> are both obtained this way.

For completeness, let us discuss the statistical precision of the slopes. The sta-
tistical uncertainty of C,, is calculated based on the curvature matrix of x? [Bev92].

The curvature matrix, (E), is computed in this context as

1 0%y? SPioP; 1 1
=-—" = " = 0POP,) = ——=M 5.66

Q 2 aClaCk ; ; (0_1)2 02/N< l k> 0'2/N lk » ( )
in which we have again used the assumption that ¢* = o. The error matrix, T), is

the inverse of the curvature matrix,

e=w1=2 M, (5.67)

N
and the diagonal elements of the error matrix are the squares of the uncertainties
of the individual free parameters C,,, including the correlations among C,, [Bev92,
Jam94], and the off-diagonal elements are the covariance among the parameters.
Since H is known, an evaluation of o would yield ‘€’. o is the average uncertainty
of 6Y — >  Cp0P, in each measurement, therefore it is natural to take it as the

standard deviation of 6Y — >~ Cp,0P,;,. Therefore we have

2 2
o? = N 1_ - Z (W’ - Zm: cmp,;) ~ % 3 (51”' — zm: cm(sP:'n> . (5.68)

1
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After a bit algebra, this leads to

0 = (6Y?) =2 Cou(0PndY) + Y > CiCH{OPIP;)

m l k
= <6Y2> -2 Z Cmé.m + Z Z CleMlk: ) (569)
m l k

which, combined with Eqn. 5.67, will give the error matrix.

The calculation of the slopes and their uncertainties discussed above are im-
plemented in the replay engine. The set of the beam parameters are chosen to be
(z,y, 05,0y, Ey, Q), the horizontal and vertical beam positions and angles, and the
beam energy and charge. The beam charge is included here, since an imperfect
deadtime correction or an offset of the pedestal of the charge monitor would lead
to a residual dependence of the yield on the beam current. The beam position and
angle on the target are projected based on the two strip-line beam position monitors
(“GOB” and “G0”), roughly 5 meters upstream of the target, separated by ~2.5 me-
ters. The change of the beam energy is estimated using the x position of the beam
measured by a beam position monitor (“3C12”) at the dispersion point in the Hall
C arc, with a calibration of 1%/4 mm [Yan03]. The linear regression is made with
each set of PID cuts (protons, pions, cut1/2/3, etc) for each individual detector. At
the end of the replay of each run, the slopes and their uncertainties are computed,
which then are written into the database. In principle, one could make a second
pass replay, by taking the slopes computed in the previous pass, and correcting the

yield (MPS by MPS) as

N pi _ (Pn)), (5.70)

YVi=Y! — —
C m — aPm(m

with the superscript ¢ being the index of the MPS, after which the false asymmetry
should be removed. In practice, the actual correction to the beam parameters is
made after the background corrections (see Sec. 5.3.6) — the average slopes of the
proton cuts and AP, are taken to compute Ay, using Eqn. 5.56, which then gets

applied to the background-corrected elastic asymmetry.
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One should note that in the extreme case where two of the beam parameters are
100% correlated, ./\<_/l> would become a singular matrix, which could not be inverted.
In reality, due to the noise of the device this is never the case. However, if the
two parameters are too strongly correlated one should consider eliminating one. A
correlation matrix among the six beam parameters measured in a typical run is
shown in Table 5.6. We note that the correlations between these parameters change
with time, since they are very sensitive to how the beam is tuned. In this particular
run, one observes a strong correlation between z and 6, (they are both computed
using the beam z positions on “GOB” and “G0”), which is no surprise. Similarly
since the beam energy change is estimated based on the beam x positions in the arc,
one also expects that it is correlated with the x position on the target. However,
the y and 6, measured by the same two monitors are not strongly coupled, implying
that they are controlled independently. Despite the correlations, this matrix is non-

singular enough to be inverted, and we are able to get six independent correlation

slopes.

x Y 0s 0y Ey Q
x 1 0.12 090 -—-0.38 0.51 0.01
y | 0.12 1 025 0.26 —0.07 0.02
0, | 090 0.25 1 —-0.23 0.61 0.01
0, | —0.38 0.26 —0.23 1 —-0.22 -0.07
E, | 051 —-0.07 061 —0.22 1 —0.20
Q | 0.01 0.02 0.01 —-0.07 —-0.20 1

Table 5.6: The correlation matriz of the six beam parameters in a typical run.

In Fig. 5.12, the raw and corrected (Eqn. 5.70) proton yield of octant 2 detector
3 vs. the six beam parameters in a typical run are shown. One sees that the linear
regression analysis determines the yield slope quite accurately; the dependence of
the corrected yield on the beam parameters are largely removed.

The statistical uncertainties of the slopes are usually very small, since in an

hour-long run there are large number of independent measurements (~100,000).
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Figure 5.12: The raw (black open circles) and slope-corrected (blue solid squares)
proton yields vs. beam parameters (x,y, 0y, 0y, Ey, Q) for octant 2 detector 3 in run
19870.

However, the run-by-run fluctuations of the slopes (especially those associated with
the positions and angles) are much larger than their corresponding statistical un-

certainties, implying that the systematic effects, such as the beam halos, change the
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sensitivities of the detectors. Nevertheless, if one averages the slopes over a long
enough period to suppress the short term systematic fluctuations, the expected sen-
sitivity of the spectrometer is observed. In Fig. 5.13, the proton yield sensitivities
of all eight octants on detector 8 to the beam y position are plotted against the

run number during the entire production run. Each data point on the figure is an

FPD 8 dY/dy/Y vs. run of each octant
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E r, : ; ,, !
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Figure 5.13: v ou = yield, y = vertical beam position] in %/mm for the proton
Yy

peak in all eight octants of detector 8 vs. the run number during the entire production
run period, with each data point being an average value over 100 runs: [black solid
circles = octant 1, red solid square = octant 2, green open circles = octant 3, blue
open squares = octant 4, yellow solid circles = octant 5, pink solid squares = octant
6, light blue open circles = octant 7, emerald open squares = octant 8.

average slope over 100 runs (~100 hours), with the uncertainty being the standard
deviation of the distribution of the run-by-run slopes divided by 1/100. Clearly,
different octants exhibit different sensitivities, which is expected from their geomet-
rical placement. For example, among all octants, %g—}y/ of octant 1 and octant 5
are the largest but opposite in sign, which is consistent with the fact that octant 1

and 5 are the very top and bottom octants. Furthermore, the longer term stability

of the slopes appears to be reasonably good. For example, the variation of octant 5
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is ~ £+ 0.1%/mm, roughly +20% of the average slope of this octant.

To demonstrate the (geometrical) sensitivity of individual octant to the beam

» - 10Y . . .
positions more explicitly, the average — —— during the production run period is

Y 0y
plotted against the average ® angle of the acceptance of each octant (with & = 0

being the z or horizontal direction) in Fig. 5.14. The uncertainty of each data point is

1
v vs.®, FPD 8

“'a 1a
< K

—— Measured, NBM
—s— Measured, CoilMod

}{i} . —— Simulation

50 100 150 200 250 300
<®> acceptance of each octant (deg)

10Y

Figure 5.14: v 6 [Y = yield, y = vertical beam position] in %/mm of detector 8

vs. the average ® of each octant from different data sets and their sinusoidal fit. The
black solid circles and the blue open squares are the experimental slopes determined
using the natural beam motion (NBM) and the coil modulation (CoilMod). The pink
open circles are the same slopes determined from a GOGEANT simulation.

chosen to be 0.1%/mm, based on the fluctuation of the slopes seen in Fig. 5.13. One
sees that the slopes sit nicely on a sinusoidal curve, and if one averages over all the
eight octants, the slopes of different octants will largely cancel. This demonstrates
the advantage of having an azimuthally symmetric spectrometer. One should note
that the slopes are computed using the “natural beam motion”, with a typical range
of motion of ~ 0.1 mm. In another so-called “coil-modulation” running mode, the
beam positions were steered in a grid-like pattern, with a range of the beam position

motion of ~ 1 mm, which has a larger lever arm to determine the correlation slopes
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with respect to the beam positions and angles. The slopes determined during the
coil-modulation are overlaid in Fig. 5.14. The detector sensitivities have also been
studied with the GOGEANT simulation [GOGEA99, Han04], of which the results
are also overlaid. The agreement among the three sets of results is excellent. The
octant-by-octant yield slopes to other beam position and angle parameters can be
found in [Nak0ba, Nak05]. They also agree with the geometrical expectation.

In Table 5.7, the slopes (averaged over all 8 octants and all detectors) are

listed. For each detector, the uncertainties of the slopes are conservatively taken

Slope Value Uncertainty
Parameter value
L2 (% /mm) 0.12 0.05 s () .
¥ 5 (%/mm) —0.02 0.04 Ay (um) i
nm
+ 2 (%/mrad) ~1.6 0.9 A8, (nrad) s
. (nra
%g—;;(%/mrad) 0.08 0.4 A6, (urad) 151
nra .
LOY (07 /\eV) ~0.002 0.02 !

AE (eV) 29 + 4
2.3 x 1074(NA)
o (%/nC) 8x10°° Ag (ppm) —0.14 +0.32
—1.5 x 1073(FR)

<l
NE

Table 5.7: Left table: the average slope for all octants and detectors. The last

row, the charge slope have been separated into the NA and French octants

Y 8Q’
to reflect their different residual deadtimes. Right table: helicity correlated differ-
ences/asymmetries of individual parameters defined in Eqn. 5.55 (calculated quartet

by quartet and averaged over the entire run).

as the standard deviation of the slopes over all runs, the inverse square of which is
used as the Weight when computing the grand averages and uncertainties over all

1
detectors. For — v 90 Q the NA and French octants are averaged separately. To make

contact with Sec. 5.3.1, we note that

190Y 1 0A

— T (40 pA X o §) = 71
X (40 pA X =5 5) oAy (5.71)

Y 0Q
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and ?g—g in the table are in good agreement with the residual asymmetry slopes
of 0% (NA) and —2.5% (French) (see Table 5.3). For reference, the average helicity
correlated beam parameters and uncertainties of the entire experiment are also listed
in the right part of Table 5.7.

Using Eqn. 5.56 and the values in Table 5.7, the overall false asymmetry is
Afaise = —0.005 £ 0.011 ppm . (5.72)

In the actual analysis, Afqse is computed detector by detector, and the correction
of the residual Ay, is also made detector by detector, after the background cor-
rection [Nak05].

Lastly, one should note the conceptual similarity of correction of the beam
properties and the deadtime correction. To first order, the deadtime correction
is equivalent to making a linear regression correction on the yield with one beam
parameter (beam charge). However, in the deadtime correction, the correlation

aYy . . .
slope — is calculated a priori based on a model of the electronics, whereas here

the co?rglation slopes are determined empirically with a linear regression analysis.
Furthermore, a distinct feature of the deadtime is that it correlates the measured
asymmetry with the physical asymmetry itself, whereas the false asymmetry dis-
cussed in this section is correlated with the asymmetry of the beam parameters

only.

5.3.4 Beam Polarization Correction

The correction of the raw asymmetry due to the beam polarization is simply
Acorr = —5— (573)

where A,., and A, are the raw and corrected asymmetries, respectively, and P,
is the polarization of the beam.

The longitudinal polarization of the electron beam was measured with a Mgller
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polarimeter in Hall C. The setup of the polarimeter and the principles of the beam
polarization measurement have been described in Sec. 4.2.1. The measurements
typically occurred about once every three days before and after the change of the
state of the insertable halfwave plate.

The beam polarization as measured over the entire production run is summa-

rized in chronological order in Fig. 5.15. The top (bottom) plot shows the polariza-
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Figure 5.15: The beam polarization versus date, broken down into data sets according
to the state of the insertable halfwave plate: “in” (top) and “out” (bottom). In each
data set, the measured values are subgrouped according to the configuration of the
injector and the polarized source, and constant fit is made on each group. The
open data points in the plots represent the polarization when beam was transversely
polarized. The value near the top of each plot is the grand average of all polarization

measurements for this given state of the insertable halfwave plate. Figure taken from
[Phi05].

tion measured with the insertable halfwave plate inserted (retracted). One can see
that the polarization is fairly stable and on average is ~74% [Phi05]. The measured

values of the polarization are broken down into subsets according to the configura-

155



tion change of the polarized source and the injector, and the average polarization
in each set is assigned to the corresponding range of G° data runs. The average
polarization during the entire experiment, weighted by the G° production data col-

lection, is 73.73%, slightly different from the straight averages shown in Fig. 5.15.

The asymmetries and their uncertainties measured by the G° detectors are corrected
with Eqn. 5.73 run by run.

One noteworthy point is that the raw asymmetries were computed based on
the helicity bit (the polarity of the Pockels cell). To determine the true helicity of the
beam on target, the state of the insertable halfwave plate and the beam transport
need to be taken into account. The sign of the true beam helicity relative to the
helicity bit was determined via the Mgller measurement, and is reflected by the sign
of P, in Eqn. 5.73.

The evaluation of the systematic uncertainty of the beam polarization has
been summarized in [Phi05]. The overall systematic uncertainty is 1.32% (frac-
tional), which is dominated by the uncertainty (1% fractional) when extrapolating
the polarization measured at 2 pA to the nominal running current at 40 pA. The
statistical uncertainty of each beam polarization measurement is typically 0.3%,
which is negligible compared with the systematic uncertainty. This 1.32% (frac-
tion) uncertainty is assigned as a global systematic uncertainty to the final physics

asymmetries.

5.3.5 Physics Background

Unless otherwise specified, the asymmetries in the remainder of Chapter 5 are
corrected for the leakage and the beam polarization, but are still “blinded” by the
encryption factor (fying = 0.8056).

In this section (Sec. 5.3.5), we shall discuss the behaviors of the background
in various aspects and explore its physics nature. Although it is an important
ingredient to understand our measurement, this discussion is not directly used in the
asymmetry analysis and correction procedure. For clarity, the correction procedure

for the background will be presented separately in Sec. 5.3.6.
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5.3.5.1 Decomposition of the Background Yield

The G° spectrometer separates 71 and elastic protons by their different time
of flight from the target to the detector. Particle identification, used for diagnostics,
can be made by combining the information of the time of flight (measured by TDCs)
and the energy loss in the scintillators (measured by ADCs) in the Fastbus data. In
Fig. 5.16(a), a typical two dimensional plot of events as a function of pulse-height (in

ADC channels) and flight time for a given detector is shown. A four-fold coincidence
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(a) Full LH? target. (b) Dummy Al target.

Figure 5.16: Energy loss (in ADC channel) vs. time of flight for four-fold coinci-
dence events with LH2 target (a), and the aluminum frame target (b). The particle
tdentification is explained in the text.

between four phototubes of a front-back scintillator pair is required for the hits in
the plot and the y axis is the sum of the ADCs of all four tubes of the same detector.
The energy loss of the 7 in the scintillator is given by the minimum ionizing energy.
In Fig. 5.16(a), these hits correspond to the cluster at early time of flight (< 10 ns)
with low ADC amplitude (< channel 15000). The protons, whose ionization energy
loss scales with 1/32, deposit much more energy than the pions. The thick cluster in
Fig. 5.16(a) centered around 19 ns and ADC channel 21000 corresponds to the elastic
protons hits. The fading vertical band above it corresponds to pileup (more than
one hit occurred in the ADC integration gate). The inelastic protons are (counter-
intuitively) faster than elastic protons of the same detector due to the optics of the

spectrometer (see Sec. 4.2.3), therefore they have shorter flight time and deposit less
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energy, corresponding to the continuous band between the pions and elastic protons.

To illustrate the particles produced by the target aluminum cell walls, a sim-
ilar pulse-height vs. time of flight plot is shown in Fig. 5.16(b), for a run with the
dummy Al frame target (see Sec. 4.2.2). One observes a faint band after the band
of the inelastic and quasi-elastic protons. As substantiated by a GEANT simula-
tion [HF04, Bre04], this corresponds to deuterons knocked out from the aluminum
target. The “kink” around 29 ns corresponds to the minimum kinetic energy re-
quired to penetrate both the front and back scintillators; deuterons slower than that
are stopped in the back scintillator. One should note that for the regular liquid hy-
drogen target, the rate of the deuterons from the thin Al target windows is very low
and can be practically neglected in the data.

We have taken two independent approaches to determine the background (or
the “non-elastic”) component underneath the elastic peak. They shall be discussed

in turn next.

Background Yield Determination I: Empirical Approach

The first approach is an empirical determination. The background contains
the inelastic protons from the target vessels (aluminum cells and helium gas) and the
inelastic protons from the hydrogen. It is desirable to separate the two. Naively, the
empty target measurement would give the inelastic yield from the target vessels. The
situation is complicated by two facts: 1) there exists non-negligible gaseous hydrogen
(GH2) in the empty target (the target thickness of GH2:Al in g/cm? is ~ 1:2); 2)
the contribution of the aluminum cell windows in the full target is enhanced due to
the additional photon radiation from LH2. The yields from the LH2 (“full”) target
(19 K, 1.7 atm) and the GH2 (“empty”) target (28 K, 2.2 atm) can be decomposed

as:

Y = Yup + Yin + Yexit,fun

Y;%mpty =Yup + Y;gh + Yexit,empty . (5.74)
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In these two relations, Y, represents the yield arising from the target components
upstream of the hydrogen volume, i.e., the helium cell entrance window, the helium
gas, and the hydrogen cell entrance window; it is common to both the full and empty
targets t. Y}, and the Y, are the elastic and inelastic rates arising from the liquid

and gaseous hydrogen, respectively, and should scale with their densities as

Y _

Y,

t= (5.75)
g g

For static LH2 and GH2 at 28 K, this ratio is ~33. However, gaseous hydrogen in
the loop is circulating rapidly and can not be treated as static gas, hence its density
can not be simply predicted from the ambient temperature and pressure. Therefore
Pen is empirically determined by taking the ratio of the yields of the (background
subtracted) elastic peak with LH2 and GH2 (at 28 K) targets, and it is ~ o= of py,.

The inelastic yields (from He gas, hydrogen and aluminum) arise from both the
photo-nuclear and electro-nuclear (or virtual photon) reactions. The probability of
the photo-nuclear reaction scales with the real photon flux and the photo-production
cross section. The (real) Bremsstrahlung photon flux created in different materials
is characterized by the radiation length X,, the mean distance a (high-energy) elec-
tron travels in the material for losing all but 1/e of its energy due to Bremsstrahlung
radiation [PDGO04]. For this reason, the real photon flux ®, is usually expressed as
the thickness of the radiator in the unit of X,. Note that for the same type of mate-
rial, X scales with the inverse of density. For an electron beam incident directly on
a target, on average one half of the target can be regarded as the radiator [Tsa74].
The reaction probability of the electro-nucleus reaction can be treated similarly;
under the equivalent photon approximation (EPA), it scales with ®., the equiva-
lent virtual photon flux, and the photo-production cross section. With a beam of

~1 GeV, ®, is on average ~2.9% [Kos02] . Therefore, the measured inelastic yield

tThe helium gas will have some slight density change from the LH2 temperature (~19 K) to
the GH2 (~28 K); we shall neglect this small difference here.

tAs a matter of fact, ®, can be estimated from our data [Roc04] by comparing the inelastic
yield from the aluminum dummy target (the flyswatter) with and without the tungsten radiator.
The results agrees very well with 2.9%.
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can be written as §

Y = y((I)7 + (I)e) X ttgt , (576)

in which ) is some constant proportional to the photo-production cross sections and
the acceptance, and fyg is the thickness of the target.

The yields coming from the 3 mil exit window in the full and empty targets
are denoted as Yexi fun and Yexit empty; Tespectively. As mentioned earlier, real pho-
ton fluxes from the liquid and gaseous hydrogen volumes scale inversely with their

densities. Therefore, we write Yot fun and Yexit empty as

Yoxit,full = V(Pup + P + Pexit/2 + Pe) X texit

Yvexit,ernpty = y(q)up + @(I)lh + (I)exit/Q + (I)e) X texit ) (577)

Plh

in which &, and ®, are the real photon flux from the upstream target components
and liquid hydrogen, respectively. ®ey;/2 is the flux from half of the aluminum exit

window. Combining Eqns. 5.74, 5.75 and 5.77, we have

Y — Yempty = ( - @) Yin+Y < - @) Qi X Fexit - (5.78)
Pih Pin

Another constraint comes from the measurement made on the flyswatter target
(see Sec. 4.2.2). The tungsten (W) radiator was used to enhance the photon flux |
(see also Sec. 4.2.2). As in Eqn. 5.77, the measured yield with the flyswatter and

with W can be written as
Yistw = V(Pw + g2 + @) X 1 (5.79)

in which ®w and @y, are the real photon flux from the tungsten and one half of

the flyswatter, and t¢ is the thickness of the flyswatter. Combining Eqns. 5.78 and

$Note that this relation holds for thin target, i.e. for ttgt much less than the radiation length
of the target material.

tThe direct events from the tungsten were mostly outside the acceptance and are therefore
neglected.
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5.79, we get

1
Yih - E (Y}ull - Y:-zmpty - a}/}s+w) (580)
with
Pgh Lexit B
—1- P = . 5.81
P Pl ts Pw + Pgsp0 + @ (5:81)

The thicknesses of different target components have been described in Sec. 4.2.2. For
reference, their values and the corresponding real photon flux (in units of radiation

length) are summarized in Table 5.8.

He window GHe entrance window LH2 exit window FS W
t (cm) 0.018 16 0.023 20 0.008 0.076 0.0085
@, (%) 0.20 0.08 0.26 2.31 0.09 0.86 2.43

Table 5.8: The thickness of different target components and the real photon flux in
units of radiation length.

Using Eqn. 5.80, the yield (elastic and inelastic) purely from the liquid hydro-
gen can be extracted. Clearly the contributions from the aluminum cells and the

GHe, Yon nyd, can be extracted as

Yoon—hyd = Yrun — Yin - (5.82)

In Fig. 5.17, the measured Yj,; and the extracted Vi, and Ypon nyq are overlaid for
four different detectors.

Since Ynon—nyq is determined by subtracting two “large” values, the uncertainty
is treated with care. We assigned an 1% (fractional) uncertainty to Y, Yempty and
Yis due to time bin width variation, spectra misalignment, deadtime and charge nor-
malization, a 10% (fractional) uncertainty to o due to the precision of the thickness
of the exit windows and the flyswatter, and the photon flux, and 0.4% ~ % — % as
the uncertainty for 5. Despite the relatively large uncertainty underneath the elastic
peak, Yion—hya appears to contribute less than 40% of the inelastic background, and

the remaining more than 60% background arises from the inelastics from hydrogen.

Besides the approach presented above, there are other experimental approaches
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Figure 5.17: The total measured yield of the full target (black), the yield purely from
the hydrogen (blue), and the inelastic yield from the aluminum target windows and
gaseous helium (pink) for four typical detectors.

to determine the contribution from the target windows. For example, the contribu-
tion of electro-production from the three windows can be obtained cleanly with the
empty target measurements performed at two temperatures: the difference between
the two measurements gives the combined contribution from GH2 and GHe, from
which one can extract the contribution from the three windows (mostly through
electro-production). Also, the thickness of the exit window was 11 mil during the
engineering run and was thinned to 3 mil in the production run; the difference
implies the contribution from the exit windows. A detailed analysis of the decom-
position of the contributions from the cell windows, and separation of the photo-
and electro-productions is documented in [Gui04]. Nevertheless, one should note,
that using the experimental data would not allow a separation of the elastic and

inelastic yields from the hydrogen itself.

162



Determination of Background Yield II: Monte Carlo Simulation

Another approach to decompose the yield is to use a GEANT-based simula-
tion [GEA94]. The GOGEANT package is a customized GEANT Monte Carlo simu-
lation program with the G° spectrometer geometry and magnetic field map [GOGEA99].
Particle generation is made with a uniform sampling in the initial phase space at
the reaction vertex. The inelastic reaction probability, multiplied by the volume of
the phase space for particle generation, is stored as the weight of the event. The
tracking of the particles is handled by GEANT and once a good hit is recorded by
a detector, the information of the hit, e.g., the event weight, initial momentum and
angle at the vertex, and the particle flight time are stored. Since the detector rate
is proportional to the integral of the cross section over the acceptance, it can be

calculated as . _
> " weight’

R=CL
N, thrown

: (5.83)

in which £ is the luminosity factor, Nip,ouwn is the total number of generated events,
and 3" weight’ is a summation of the event weight over all detected hits.

The inelastic protons arise from photo- and electro-production processes. As
mentioned earlier, their reaction probabilities can be computed with the real or
virtual photon flux, folded with photo-production cross section. More details of
the rate computation are given in Appendix B.2, where the hyperon Monte Carlo
is discussed. Here we will limit ourselves only to the general methodology. As an
example, for the inelastic process of v+ p — p + 7°, the energy of the photon E,
and the outgoing angles of the proton 6, and ¢, are uniformly sampled. Then the

event weight can be calculated as

d
weight = F,eal(Ey)ﬁ(E,,, 0,) $in(6,) Appase (5.84)
P
. . ) do, .
in which T';.y(F,) is the Bremsstrahlung photon flux, E(EV’GP) is the photo-
P

production cross section, Aypese is the volume of the phase space in which the events

are generated, and sin(f),) is the Jacobian between d€2, and df,d¢,.

163



The Bremsstrahlung photon flux, I';¢q(E,), defined as the number of photons
per incident electron per unit photon energy and material length, can be computed
with the formulation in [Mat73]. Under the forward peaking approximation, the
virtual photon flux is given in [WT82], which can be treated in exactly the same way
as the real photon flux. A slightly different version of the virtual photon spectrum
as a function of E, and @Q? is given in [Dre92], in which case the photon is no
longer along the direction of the incident beam, and vector rotations are needed in
computing the lab kinematics of the outgoing particles.

do.
The photo-production cross section d#(E% 6,) from the aluminum windows

and GHe is calculated from the model by Li;htbody and O’Connell [LOC88|. This
model decomposes the inelastic y-nucleus scattering into quasi-free knock-out, quasi-
deuteron scattering, and A resonance. In Fig. 5.18, the measured spectra purely
from the target cells T are overlaid with those from the electro-production simulation
(inelastic protons only). Note that these are the rates computed from the simulation
directly with no additional empirical scaling factors. The agreement between the
MC and data is good for lower numbered detectors. For detectors above 10, the
simulation under-predicts the rate. As a side note, the flat and low rate background
observed above detector 7 are from deuteron knockout from the aluminum, a process
which is not included in the event generator; they “wrap-around” and make a flat
background also at the early time-of-flight region.

For the inelastic protons and pions from the hydrogen, three different models
are implemented: MAID [MAIDO03], A-resonance in LB&OC [LOC88] and a gener-
ator developed at Orsay [Mor01, Arv03]. MAID is a unitary isobar model for single
pion photo- and electro-production on the nucleon developed at Mainz [MAIDO03].
It is applicable for photon energies below 1 GeV, corresponding to a maximum in-
variant mass (W) of ~1.7 GeV of the v —p system. Therefore, we extrapolated with
a constant cross section for W > 1.7 GeV in our MC. However, the G° acceptance,

especially that of the higher numbered detectors, favors the inelastic protons with

tFrom the empty target measurement, the contribution from GH2 and GHe is obtained by
taking the difference of the spectrum with two different temperatures, from which one could deduce
the contribution (mostly electro-production) from the three aluminum cells.
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Figure 5.18: The experimental (black) and simulated (red) yield spectra from the
target aluminum windows for detectors 3, 7, 11 and 15.

W >2 GeV, a region where the prediction of MAID is unreliable.

The LB&OC model of A excitation takes a simple form [LOC88]. How-
ever, comparing with MAID2003, it was found that the LB&OC underpredicts
the total cross section of the A resonance by ~ 30%, but over-predicts the non-
resonant background and higher resonances by a factor of three or more. There-
fore, the original LB&OC model was modified to fit the total cross section given
by MAID2003 [Han04b], after which the rates predicted by the two models are in
agreement (see Fig. 5.19).

The Orsay generator [Mor01, Arv03] was developed based on a photo-production
generator for the Graal experiment, which models the pion photo-production from
the threshold up to 4 GeV [Cor94]. So in terms of applicability, the Orsay generator
is the most suitable for G°. However, the Orsay generator was found to significantly
underpredict the 7% rates in G° [Han0O4c]; it was therefore only used for inelastic
proton generation.

To compare the three models, in Fig. 5.19, the extracted pure hydrogen spec-
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tra, as determined from Eqn. 5.80, are overlaid with the simulated hydrogen inelastic
spectra from the three models for four selected detectors. The pions in all three sim-
ulated spectra are generated by the same LB&OC generator. For the proton rates in
the inelastic region, all three generators give reasonable agreement for lower detec-
tors up to 6. For detectors above 6, both LB&OC and MAID over-predict the yield,
whereas the Orsay generator agrees better with the data. We note that all three
models predict that the background yield collapses rather rapidly within the elastic
peak region. However, looking closely at the cut3 regions (defined in Sec. 5.2), one
realizes that all three generators under-predict the yields there f, as well as the yield
in detector 16. Since the simulations fail to reproduce the data in these “supere-
lastic” regions, there is good reason to question the reliability of their predictions
underneath the elastic peak.

To summarize, the background yield decomposition has been made using two
approaches — the empirical one based on G° calibration measurements and the
Monte Carlo simulation based on independent cross section parameterization. The
background due to the target cells and GHe are well understood. However neither
approach sheds light on how to decompose the elastic and inelastic yields from the

hydrogen.

5.3.5.2 Behavior of the Background Asymmetry

Besides the inelastic yield contamination underneath the elastic peak, it ap-
pears that the background also carries a non-negligible asymmetry. As an overview,
in Fig. 5.20 the octant averaged asymmetries vs. time of flight measured by the NA
and French octants are overlaid with the measured French yield spectra for all 16
detectors. First of all, the trends of the asymmetries measured from both sets of
the electronics are in agreement, which strongly rules out the possibility that the
background asymmetries are due to electronic artifacts. Secondly, the asymmetry

exhibits an interesting evolution with time of flight. The asymmetries measured

tThe tails in cut3 are not the electromagnetic radiative tail — the radiative tails of the G°
proton spectrum are toward the earlier time of flight, or higher Q2. See discussions in Sec. 5.3.8.
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at the pion peak are large and negative in the lowest detectors, and approach zero
for higher numbered detectors. There is a positive asymmetry peak, starting from
the “dip” between the pion and inelastic peaks in lower detectors, which “moves”
gradually toward the inelastic and elastic peaks in the higher numbered detectors.
From the shape of the background asymmetry of detector 16, one can imagine that
in detectors 12 to 15, the bump of the inelastic background asymmetry continues
into the elastic peak. Third, the evolution of the background asymmetry from cut2
to cut3 regions (defined in Sec. 5.2) of a given detector is smooth. This allows one
to make fits in order to evaluate the background asymmetry underneath the elastic
peak, which will be elaborated on in Sec. 5.3.6.1. Furthermore, the change of the
background asymmetry is progressive across successive detectors, which implies that
the underlying physics is smoothly varying in nature. This important feature will
be used in the background correction procedure for detector 15 in Sec. 5.3.6.2.
The asymmetry of the pion peak is of less relevance to the elastic proton
asymmetry, since it has practically no contamination in the far-away elastic peak
except for the small deadtime effect discussed in Sec. 5.3.1.3. Its negative sign is
consistent with the parity violating asymmetry of, e.g., the electro-production of the
A [Muk98]. The large negative pion asymmetry observed in the lower detectors could
also be a threshold artifact (the discriminator threshold sits in the middle of the
pulse-height distribution of the pions). The positive background asymmetry is again
of little relevance for the elastic peak except for detectors 12 and above. Various
possibilities were considered to understand the origin of the positive background
asymmetry. The first candidate was the aluminum target windows. However, the
measured asymmetry in the inelastic cut (defined in Sec. 5.2) for GH2 and the
dummy aluminum targets give consistently negative asymmetries, as depicted in the
left panel of Fig. 5.21 . To explore the effect of a slight misalignment of the beam
spin direction, in the right panel of Fig. 5.21, the asymmetry in the inelastic cut for

the full LH2 target with the incident electron beam transversely polarized is plotted

tThere are some differences in the asymmetry between the empty target and the aluminum
frame target, possibly due to the existence of the GH2 in the empty target, as well as the different
proportions of the photo- and electro- productions in the empty and frame targets.
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Figure 5.20: The average asymmetry of the NA (pink) and French (black) octants
vs. time of flight for all 16 detectors. The y scale of the asymmetry is from -100
to 100 ppm. Asymmetries are corrected for beam polarization, but blinded by the
blinding factor (0.8056). The French yield spectra (violet histograms) are overlaid
with scales on the right of the plots.
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Figure 5.21: Left figure: the asymmetries of the inelastic cut with the empty target
(open circles) and the aluminum frame target (solid squares) for detectors 1 through
14. Right figure: the asymmetries in the same cut for the LH2 target with the beam
transversely polarized. All asymmetries are corrected for the beam polarization, but
are blinded by the blinding factor (0.8056).

against the detector number. The positive background asymmetry observed with
longitudinally polarized beam is not observed here, from which we conclude that
the background asymmetry is really due to some parity violating process, instead of
an instrumental artifact.

In Fig. 5.22, the measured asymmetries of cut2 (see definition in Sec. 5.2),

averaged over detectors 1 through 14, are plotted against the octant number. The

Cut2 asymmetry (sum all rings) vs octant, 3-Pass/4-Pass
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Figure 5.22: The asymmetries in cut2, averaged over detectors 1 through 14, plotted
against the octant number:[black open squares = 3-pass, red solid circles = 4-pass].
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data are split into two sets, with a 3-pass electron beam for one and 4-pass for the
other, and their asymmetries are overlaid in the figure. The electron polarizations
in Hall C for the 3-pass and 4-pass beam are opposite to each other due to the
different spin precessions during the transport (see Sec. 4.2.1.2). On the other
hand, the detector asymmetry is calculated based on the helicity bit, which sets the
polarity of the Pockels cell in the source with no knowledge of the beam transport
(see Sec. 4.2.1.2). Therefore, one expects that the asymmetries for the 3-pass and
4-pass beams exhibit a sign change. This is clearly shown in Fig. 5.22, confirming
that the background asymmetries are indeed correlated with the beam spin. One
striking feature, as one notes from the figure, is that the background asymmetry
exhibits variations from octant to octant. One should not draw conclusions based
on the overall difference between the NA (1, 3, 5 and 7) and French (2, 4, 6 and 8)
octants, because their definitions of cut2 are different (see Sec. 5.2). Nevertheless,
even among the four French octants, octant 4 differs from the other octants far
beyond the statistical allowance. The background asymmetries in NA octants 1 and
3 also appear to be different from those in octants 5 and 7 .

Both the positive asymmetry of the inelastic region and the octant-by-octant
variation can be plausibly explained by hyperon production and decay. The hyper-
ons (the A, ¥* and X%), can be produced in electron-proton scattering and a large
fraction of the polarization of the incident beam is transferred to them [Car03].
The hyperons subsequently decay through a weak interaction process, with the de-
cay particles carrying a large parity violating asymmetry. As substantiated by a
detailed Monte Carlo study, a small fraction of these decay particles make it into
the detectors through rescattering, generating a large background asymmetry. The
details of a Monte Carlo study of the hyperons are presented in Appendix B; one
shall see there that the simulation reproduces the measured positive background
asymmetry qualitatively. However, the accuracy of the Monte Carlo is limited due

to unmeasured parameters in the model, in particular, the transferred polarization

tThe disagreement within the NA octants can hardly be observed with the statistics of a single
FPD, but shows up when one combines all FPDs together.
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of the ¥t and X° and the cross sections of these hyperon productions with high
enough invariant mass. Therefore, the correction of the background is made by
fitting/interpolating the measured data (see Sec. 5.3.6), instead of relying on the
simulation. With regard to the octant-by-octant variation of the background asym-
metry, it could result from some small azimuthally asymmetric placement of the
collimators (since the rescattering is responsible for kicking the hyperon daughter
particles into the acceptance), or the octant-by-octant variation of the discriminator
thresholds. In any case, it is clear that separate background corrections have to be

made for individual octants.

5.3.6 Background Correction to the Elastic Peak

For a given time of flight bin ¢, the measured yield Y;,(t) consists of the elastic
yield Y,(t) and the background yield Y;(¢). The measured asymmetry, A,,(¢), can
then be expressed as a weighted average of the elastic asymmetry A.(¢) and the

background asymmetry Ay(t) as

Ap(t) = (1 — fio(t)Ac(t) + fo(t)Ab(2), (5.85)

where f,(t) = is the fraction of the background in the measured yield. The

Yo (2)
general procedure of the background correction is to determine Yj(t) and Ay(?)
through fits or interpolations, then the elastic asymmetry can be extracted from

Eqn. 5.85.

5.3.6.1 Two-step Fits: Corrections to Detectors 1 through 14

For detectors 1 through 14, the background correction is made by using a
two-step fit procedure. Since the elastic peaks in these detectors are prominent and
narrow, the measured yield around the elastic peak can be fitted as a Gaussian
peak on top of a polynomial background, from which one determines the back-
ground yield fraction f,(¢). To fit the measured asymmetry, we assume that the

elastic asymmetry is constant as a function of ¢, and the background asymmetry is

172



a polynomial function in . Based on these, a fit of the measured asymmetry will

lead to a simultaneous determination of the elastic and background asymmetries.
The results of the two-step fits to the yield and asymmetry for a typical de-

tector are shown in Fig. 5.23. The yield fit is displayed in the left panel. The
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Figure 5.23: An illustration of the two-step fits for octant 6 detector 8. In the
left figure, the measured yield spectrum (black histogram) and the fit (red dashed
curve) are shown. Also overlaid is the fitted background yield (binned into the blue
histogram). The measured asymmetry spectrum (black data points) and the fit to it
(red curve) are shown in the right figure. The blue curve is the fitted background
asymmetry.

uncertainty of the yield in each bin is dominated by systematics such as the change
of detector efficiency and the timing variations. The uncertainty for the bins inside
the elastic peak is assigned to be 2%, according to the ~2% rate variation of the
peaks in different octants. For a given time bin away from the peak, the uncertainty
is assigned by scaling this 2% fractional uncertainty as if it were purely statistical.
For example, if the yield of the elastic peak is 1.6 kHz/uA per bin, and a time bin
in the inelastic region is 0.2 kHz/uA, then the fractional uncertainty of this bin is
assigned as 2% x %. In the example shown in the figure, a quadratic function is
chosen for the background yield, and the fit is performed within a range of +4 ns
around the elastic peak, with the resulting fit of the total yield displayed as the red
curve. The x? of the yield fit using this procedure is usually quite reasonable. The
fraction of the background yield underneath the elastic peak, f;(¢), is computed by
first “binning” the fitted background function into time bins, as illustrated by the
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blue histogram in the figure, then dividing the latter by the measured total yield,
instead of the fitted total yield. This eliminates some model dependence of the back-
ground fraction. The measured asymmetry is then fitted with Eqn. 5.85 by taking
f»(t) obtained in the first step, and the resulting fit is displayed as the red curve in
the right panel of Fig. 5.23. Also overlaid is the fitted background asymmetry (blue
curve), which has been chosen to be quadratic in ¢ in this example.

In our fitting procedure, the background asymmetries of different octants are
assumed to be different, based on the observations from Fig. 5.22. On the other
hand, the physics dictates that all eight octants should share the same elastic asym-
metry. This constraint is enforced in the asymmetry fits. One can relax this con-
straint and fit the elastic asymmetry separately for individual octants, and then
make an average. The results of the latter method are in excellent agreement with
the former.

For the two lowest French detectors (1 and 2), the evolution of the background
asymmetry right after the elastic peak is not smooth, which is not observed in the
corresponding NA detectors. The situation is illustrated in Fig. 5.24, from which
one can see that the polynomial fits are not able to capture the rapid change of the
asymmetry on the right side of the peak. The origin of this is unclear, but we shall
regard this as an artifact, and simply adopt the fitted background asymmetry in
these detectors.

French Detector 1 French Detector 2

Y(kHz/pA/0.25ns)
Y(kHz/pA/0.25ns)

Foris 1 AP Lo _ A T TI TT. Lo
6 8 10 12 14 16 18 20 22 24 26 6 8 10 12 14 16 18 20 22 24 26
ToF(ns) ToF(ns)

Figure 5.24: Measured yield and asymmetry spectra in French detectors 1 and 2.
The red and blue curves are the fits to the measured and background asymmetries.
Notice the dips of the measured asymmetry right after the elastic peaks.
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Various orders of polynomials have been used to parameterize the background
yield and asymmetry. The best parameterization for the background yield is chosen
as the lowest order polynomial that gives a reasonable x? of the fit. The x? of the
asymmetry fit, on the other hand, appears to be insensitive to the choice of the
parameterization of the background asymmetry. Therefore, we compare the elastic
asymmetries obtained from various polynomial models of the background asymmetry
and choose the one that gives the result in the middle of the spread as the best fit. In
Table 5.9, the best fit parameterizations of the yield and asymmetry are summarized

for individual detectors. The values of the elastic asymmetry obtained from the best

detector yield fit asymmetry fit

1—11 | Gauss + pol2, [—4,4] ns Ag(t)=const, Ay(t)=pol2, [-4,4] ns

12 Gauss + pol2, [—4,4] ns A (t)=const, Ay(t)=pol2, [-7,6] ns
[—4,4] ns A (t)=const, Ay(t)=pol2, [-7,6] ns

14,19] ns | A.(t)=const for each of the two Q* bins

19,27] ns Ap(t)=pol3, [14,27] ns

13 Gauss + poll,

Y Gauss + polb, |
Gauss + poll, |

Table 5.9: The best fit parameterizations for the yields and asymmetries for different
detectors. “polN” stands for the Nth order polynomial. The notation [t1,ts] gives
the range of the fit relative to the centroid of the elastic peak. For example, if the
elastic peak is located at 20.8 ns, [—4, 4] ns indicates a fit range from 16.8 to 24.8 ns.

fits are summarized in Table 5.10. Tt is comforting to note that the results from an
independent analysis [Gui05], by employing a simultaneous fit to both the yield and
asymmetry spectra, are in good agreement with the two-step results presented in
Table 5.10.

Let us reserve the notation fy(t), A, (t) and A,(t) for the background yield
fraction, and the measured and the background asymmetries as a function of ¢, and

reuse fp, A, and A, to denote the average of these quantities within the elastic
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detector | Q? A, A, Ay fo o(Ampear) Ostat(Ae)  X2/V
1 0.122 -1.29 -1.14 -2.62 0.089 0.32 0.37 158/136
2 0.128 —-0.80 —-0.87 —0.03 0.096 0.29 0.34 191/136
3 0.136 —-1.31 —-1.27 —-2.06 0.106 0.30 0.35 120/136
4 0.144 —-250 —-1.99 -5.99 0.111 0.31 0.37 133/136
5 0.153 —-2.21 —-1.80 -5.13 0.116 0.30 0.36 151/136
6 0.164 —-2.99 -—-2.23 -8.11 0.124 0.30 0.36 140/136
7 0.177 —-3.96 —-3.25 —7.89 0.124 0.29 0.35 120/136
8 0.192 —4.24 -3.47 —-9.43 0.128 0.33 0.40 135/136
9 0.210 —-4.72 —-3.88 —10.5 0.130 0.32 0.39 142/136
10 0.232 —-4.83 —-4.66 —6.10 0.138 0.33 0.41 145/136
11 0.262 —4.11 —4.43 —-2.61 0.144 0.33 0.41 119/136
12 0.299 —-3.97 —6.35 8.18 0.151 0.37 0.47 211/228
13 0.344 —-2.54 —-7.52 20.02 0.179 0.41 0.54 233/228
14 0.410 -2.15 —-8.83 27.61 0.186 0.41 0.55 343/368

Table 5.10: The measured asymmetry A,,, the elastic asymmetry A,, the background
asymmetry Ay, and the background yield fraction f, from the best two-step fits for
detectors 1 through 14. The parameterizations of the yield and asymmetry fits are
summarized in Table 5.9. Q? is the four-momentum transfer in units of (GeV/c)?.
0(Am peak) 15 the statistical error of An, by treating the proton peak as a single bin,
and the statistical uncertainty of Ae, 0siat(Ae), is computed with Eqn. 5.92. The
x2 per degree of freedom of the asymmetry fits are listed in the last column. All
asymmetries and uncertainties are in units of ppm, and are blinded by the blinding
factor (foina = 0.8056). fy is dimensionless.

proton cut. The uncertainty in the elastic asymmetry is

o?(A)) + 0%(Ag) + 0%(A3) + A,

o(Am)
I

|Am - Ab|0
(1= fp)?

Jo
L—fp

g

(fs) 5

(As),

(5.86)
(5.87)

(5.88)

(5.89)

in which o(4;)(i = 1,2, 3) arise from the uncertainties of the measured asymmetry

o(An), background yield fraction o(f), and background asymmetry o(Ay), respec-

tively. It is important to note that in this two-step procedure, the uncertainties of f;,
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and Ay are not independent, and a change in f, will lead to a correlated change in fit-
ted A, due to the strong physical constraint that A, (t) = constant. This correlation

is reflected in the term A, which can be formally expressed as [Bev92]

0A, 0A,
0fs 0A

Jo(Am — Ap)

A=2 —(1_fb)3

cov( fy, Ap) = —2 cov(fy, Ap) , (5.90)

in which cov(fy, Ap) is the covariance between f, and A,. We shall later evaluate
this term via a Monte Carlo simulation.

Let us first make some remarks about the nature of the four terms. o(4;) is a
purely statistical uncertainty, since it results from the measured uncertainty of A,,.
The uncertainty of the background fraction, o(f;), is dominated by the systematic
(model) uncertainty ' of the background yield, therefore o(As) can be regarded as
a purely systematic error. For the uncertainty of the background asymmetry o(A4;)
in Eqn. 5.89, however, both the statistical and systematic components of o(A,),
Ostat(Ap) and ogy5(Ap), contribute significantly. So o(As) can be decomposed into
a statistical and systematic piece, ogq(As) and osys(As). Tstat(Ap) arises from the
counting precision of the background events underneath the elastic peak, which is

related to o(A,,) as
1

ﬁ()’

whereas o04s(Ap) is the uncertainty due to a specific choice of the model of the

Gstat(Ab) = (Am) ) (591)

background asymmetry. A is an intrinsic feature of the procedure, therefore should
be combined into the systematic uncertainty. Taking these all into account, o(A,)

can be separated into statistical and systematic components as

0*(Ae) = 0hu(Ad) + 02, (AL, (5.92)
con(d) = 7V11_+J{”U(Am) , (5.93)
Ooys(Ae) = \/02(,42) +02,(Ag) + A (5.94)

tThe “systematic uncertainty” in this context refers to be the model dependent value, which
may be different for each spectrum or each data point.
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Guided by Eqns. 5.92, 5.93 and 5.94, different components of the uncertainties
are evaluated in the following four steps.

First, the statistical uncertainty ogq:(Ae) is evaluated. A naive approach
would be to take it as the uncertainty of A, given by the asymmetry fit. However,
besides the statistical precision of the measured asymmetry, the fit uncertainty also
depends on the precision of the asymmetry measured in the side bands, since a
functional form has been assumed for the background asymmetry in the entire fit
range. One additional subtlety arises from the bin correlation effect in the French
electronics, which implies that the measured uncertainty in each bin can no longer
be treated as independent (see discussions at the end of Sec. 5.2.2). Due to these
complications, it is difficult to interpret the uncertainty given by the fit. Instead, we
start from the “proton peak uncertainty”, calculated by treating the proton peak
as a single bin (see Sec. 5.2.2), and use Eqn. 5.93 to compute 044 (Ae). The values
of the proton peak uncertainty and oy (Ae) are summarized in two columns in
Table 5.10 for individual detectors.

Secondly, o(A3) (the uncertainty due to the uncertainty of background yield
fraction f;) and A (the correlation term) are evaluated using a Monte Carlo simu-
lation. The allowable range of the background yield is conservatively defined as a
parallelogram with flat top and bottom, and two slopes starting from the mid-point
of the elastic cut, as displayed in Fig. 5.25. The background yield given by various
polynomial fits and the GOGEANT simulation are also overlaid in the figure. One
sees that this parallelogram encloses the entire range of these models, except for
the yield predicted by GOGEANT on the right side of the elastic peak, which is
unphysically off. In the Monte Carlo program, large numbers of random points are
generated within the parallelogram. Each point is connected to the left and right
corners of the parallelogram by two straight lines, beneath which the area is used as
a model of the background yield, and applied simultaneously to all eight octants of
the same detector. For each copy of this background yield, the measured asymmetry
is fitted with Eqn. 5.85 by assuming a quadratic background asymmetry A,(¢). The

distribution of f,, Ay, and the covariance between them can then be determined,
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from which one can calculate o(A;) and A. This procedure is performed on all 14
detectors, and a strong correlation between f, and A, is observed in all detectors.
The values of 0(A,) and A are listed in Table 5.11 for each detector. One sees that
A is negative for all detectors (except detector 10). This observation demonstrates
the stability of the two-step fit, i.e., the correlation between f;, and A, always tries to

reduce the variation of the elastic asymmetry, compared to that due to the variation

of f, alone.
French detector 13, various Y, models
< 0'5:
= -
5 045E — GOGEANT
< 04 — pol1 fit
T 0.35F
> = .
03E — pol3 fit
025? ---- Model bounds
0.2;—
0.15; --------------
0.1k
0.05F-
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Figure 5.25: The parallelogram boundary of the allowable background yield Yy(t)
(dashed), and various models of Yy(t): [blue = GOGEANT, red = 1st order polyno-
mial, light green = 2nd order polynomial, pink = 3rd order polynomiall. The solid
black histogram with a peak is the measured yield spectrum. For the background
yield, the best GOGEANT model (See Sec. 5.8.5.1) is the LB&OC model [LOCS8S8]
for detectors 1 through 6, and the Orsay model [Mor01, Arv03] for detectors above
6.

Next, we evaluate o,,;(A3) by making variations of the background asymmetry
Ap(t). In this step, the background asymmetry is assumed to be different orders
of polynomial functions in ¢, and the ranges of the fits are also varied, while the
background yield is fixed at its best fit value (see Table 5.9). The upper and lower
bounds of the background asymmetry underneath the elastic peak are constructed
as shown in Fig. 5.26. One side is defined as a straight line connecting the values

of the background asymmetry +3 ns from the elastic peak given by the 2nd order
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detector 0(As) (ppm) A (ppm?)
1 0.0414 —0.0011
2 0.0107 —0.0003
3 0.0327 —0.0031
4 0.1027 —0.0125
5 0.0937 —0.0130
6 0.1639 —0.0338
7 0.1524 —0.0158
8 0.1761 —0.0353
9 0.1877 —0.0348
10 0.0613 0.0054
11 0.0387 —0.0065
12 0.6704 —0.2142
13 0.8686 —0.2852
14 0.9822 —0.4792

Table 5.11: 0(As) and A determined from the simulation using the background yield
bounded by the parallelogram in Fig. 5.25. All 8 octants averaged. See text for
details.

polynomial fit (bound 1), and the other side is a kink defined by the two lines
tangential to the fit of the background asymmetry in the side bands (bound 2).
Unlike the boundary of the background yield, for some detectors the polynomial
fits can exceed these bounds, since the behavior of the background asymmetry in
the side bands are not as well constrained as that of the yield. Nevertheless, for
detectors 12 and above, where the background asymmetry exhibits a clear positive
bump, bounds 1 and 2 indeed enclose the range of all polynomial fits.

Osys(As) is estimated based on the distribution of the elastic asymmetries
obtained via all models of the background asymmetry above (including bounds 1 and
2). For individual detectors, the half spreads of the elastic asymmetries are tabulated
in the column “spread/2” in Table 5.12. Since our choices of various models of
Ap(t) are somewhat arbitrary, simply using the half spread as o,y5(As) would be
too model-dependent. Therefore the distribution is remade by weighting the values
of the elastic asymmetry by the x? probability of the corresponding fit. For most
of the detectors, the outliers (e.g., bounds 1 and 2 for higher numbered detectors)
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Figure 5.26: The measured asymmetry spectrum in octant 6 detector 13 (black data
points) and the fit to the data (red curve). The fitted quadratic background asymme-
try is overlaid (blue curve). The boundary of the background asymmetry is defined
by the pink dashed (bound 1) and light blue dot-dashed (bound 2) lines.

are highly suppressed by their low fit probabilities. The standard deviations of the
weighted distribution of the elastic asymmetries are also listed in Table 5.12, and,
as expected they are always less than the unweighted half spreads. The average
between the two is taken as a conservative estimate of 0,,s(As).

According to Table 5.12, 04,5(As3) does not vary smoothly in detectors 2 and 3,
compared with the adjacent detectors 1 and 4. On the other hand, the general trend
of the background asymmetry from cut2 to cut3 (see definitions in Sec. 5.2) does
not look very different for these 4 detectors, except for the dips in cut3 measured in
French detectors 1 and 2 (see Fig. 5.20). To help reduce the fluctuation of oy,,(A3)
due to the limited statistical precision of a single detector, the measured asymmetry
spectra of these four detectors are combined. The same model variation of the
background asymmetry is then made on the combined spectrum, and the resulting
half spread of the elastic asymmetries among all models is ~ 0.17 ppm, comparable

with the average of o,,,(A3) for these four detectors (first four rows in Table 5.12).

181



Detector | spread/2 (ppm) weighted std. dev. (ppm) 0sys(As) (ppm)
1 0.23 0.16 0.20
2 0.09 0.05 0.07
3 0.12 0.06 0.09
4 0.37 0.19 0.28
5 0.31 0.22 0.27
6 0.37 0.24 0.31
7 0.25 0.17 0.21
8 0.24 0.15 0.20
9 0.30 0.16 0.24
10 0.34 0.20 0.27
11 0.17 0.09 0.13
12 0.38 0.25 0.32
13 0.77 0.33 0.55
14 0.77 0.29 0.53

1—-14 0.17 0.17

Table 5.12: An evaluation of 04,s(As) based on the distribution of the elastic asym-
metries associated with various models of the background asymmetry Ay(t). Column
“spread/2” is the half spread between the mazimum and minimum values of the
elastic asymmetry among all models of the background asymmetry. The weighted
standard deviation is obtained by weighting the elastic asymmetries by the x? proba-
bilities of the asymmetry fits. Column o4ys(As) is taken as the average of the former
two. The last row gives the half spread of the elastic asymmetries when the model
variation is made on the combined spectrum of detectors 1 through 4.

This value is tabulated in the last row in Table 5.12 and is assigned as a common
0sys(Asz) shared by these four detectors.

Lastly, the systematic uncertainty of A, o,,s(Ae), is obtained by combining the
results in Tables 5.11 and 5.12 using Eqn. 5.94, and their values are summarized later
in Table 5.13. In general, the systematic uncertainty increases with detector number.
The curious small value of the uncertainty for detector 11 can be understood from the
fact that its background asymmetry at both sides of the elastic peak evolves linearly
(see Fig. 5.20), and the fitted background asymmetry underneath the elastic peak
is quite small.

0ys(Ae) obtained above could be correlated from detector to detector, if there
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is a common bias in our assumption of Y,(t) or A,(t). It is therefore desirable to
evaluate the global component in the total systematic uncertainty. The evaluation
is made by looking for global change of the elastic asymmetries in different detec-
tors when the functional form of Yj(t) or A,(t) is changed globally. The detailed
procedure is as follows.

For 0(As), the functional form of Y;,(¢) is varied globally between the 1st, 2nd
and 3rd order polynomials. In general, the 1st and 3rd order polynomials give the
least and most negative values of A., respectively. The average of A, given by the
three models is used as a reference value. Then for all 14 detectors, the fractional
difference between A, from a given model and the reference value are histogrammed.
In Fig. 5.27, the histograms associated with the 1st, 2nd, and 3rd order polynomial

fits are displayed in gray, blue and green colors, respectively. The pink histogram
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Figure 5.27: An illustration of the procedure to evaluate the global uncertainty in
0(As). The 1st, 2nd, and 3rd order polynomial models of the background yield are
considered. The pink histogram is the distribution of the fractional differences of the
elastic asymmetry given by any one of the three models relative to the average of the
three for detectors 1 through 14, with a width wyy. The individual distributions of the
fractional differences for the 1st, 2nd, and 3rd order polynomial fits are displayed as
the gray, blue and green histograms, respectively. The distributions associated with
the 1st and 3rd order polynomial fits are separated by Wpoi1 poi3-

gives the sum of the former three, hence its width w,; reflects the overall systematic

uncertainty. The distributions associated with the 1st and 3rd order polynomial fits
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(gray and green histograms), as expected, are separated by a gap Wy poi3, Which
represents the global change of the elastic asymmetry if the background yield of all
detectors is changed from one end to the other end in the “model space”. The ratio
of %wpoll,polg to wy is 0.58, which is used as an estimate of the ratio of the global
component of o(As) to o(Ay) itself.

We treated o4,(As3) in a similar fashion. In general, the 1st and 3rd order
polynomial fits of A,(¢) lead to the most and least negative values of A, for detectors
below 11, and the other way around for detectors above 11. The change at detector
11 is expected, since the background asymmetry crosses zero at this detector from
negative (below detector 11) to positive (above detector 11). Let us denote A,
obtained from the 1st, 2nd, and 3rd order polynomial models of A,(t) as Apan,

Apoi2, and Apys, respectively. Apyo is chosen as the reference value, and the relative

|Apol3_Apol2‘ and |Apoll_Apol2|

o) o, are computed. Note that we have taken the
po po.

differences
absolute values of these quantities to eliminate the ambiguity of the sign change of
pol37Ap012‘

the background asymmetry at detector 11. In Fig. 5.28, the values of 4 Ao
po.

are plotted against W for the 14 detectors f. The correlation coefficient
po

|Ap013_Apol2| and |Apoll_Apol2|

n
betwee |Ap012| |Apol2|

, based on the 14 data points in the figure, is
0.45. Therefore, 0.45 x 045(A3) is used as an estimate of the global uncertainty in
Osys(As) [Bev92].

Since the ratio of the global to overall uncertainty is ~ 0.50 for both ¢(As) and
0sys(Az) ¥, we simply assign 0.5 x 04s(4,) as the global systematic uncertainty for
all detectors, and the remaining portion as the point-point systematic uncertainty,
ie.,

0%b(A,) = 0.50 X 0gys(Ae)

sYs

OP(A) = VT = 0.5020,5(Ac) = 0.87 X 0ays(A,) (5.95)

To summarize, the background corrected elastic asymmetry and the uncer-

tDetector 14 has no valid poll fits, so we used the value associated with bound 1 (see Fig. 5.26)
instead.
IThe global /point-point separation of A has been omitted.
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Figure 5.28: An illustration of the procedure to estimate the global uncertainty in
osys(As). The y (z) azis is the fractional difference (as absolute value) of the values
of the elastic asymmetry between the 3rd (1st) and 2nd order polynimial fits of the
background asymmetry. The correlation coefficient, r, between the y and z is taken
as an estimate of the fractional global systematic uncertainty in oyys(As).

tainty budget for detectors 1 through 14 are listed in Table 5.13. For reference, the
average @2, the measured asymmetry A,,, the background yield fraction f;, and the
background asymmetry A, within the elastic proton cut (defined in Sec. 5.2) are

also listed.

5.3.6.2 Interpolation across Detectors: Correction for Detector 15

The focus of the background correction of detector 15 is the same as all other
detectors — one needs to know both the background yield and asymmetry. The
difficulty arises from the fact that detector 15 has a wide (~ 6.25 ns) elastic peak due
to the optics of the spectrometer discussed in Sec. 4.2.3. Therefore a simple fit to the
yield or asymmetry over the time of flight by assuming some functional form of the
background is difficult to justify. A well-grounded determination of the background
contributions has to resort to the measurements from other detectors. In this section,
we shall combine the background yields and asymmetries in detectors 12, 13, 14 and

16 to determine the corresponding values in detector 15, and subsequently to obtain
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FPD (Q%) | Ac  Ostat Osys O’f;;pt ogé‘;b A, I Ay

1 0.122]-1.14 0.37 0.17 0.15 0.086|—1.29(0.32) 0.089 —2.62(1.74)
2 0.128|—-0.87 0.34 0.17 0.15 0.085|—0.80(0.29) 0.096 —0.03(1.60)
3 0.136|-1.27 0.35 0.16 0.14 0.082|—1.31(0.30) 0.106 —2.06(1.43)
4 0.144]-1.99 0.37 0.16 0.14 0.082|—2.50(0.31) 0.111 —5.99(1.36)
5 0.153|—1.80 0.36 0.26 0.23 0.13 |—2.21(0.30) 0.116 —5.13(2.06)
6 0.164|-2.23 0.36 0.30 0.26 0.15 | -2.99(0.30) 0.124 —8.11(2.19)
7 0.177|-3.25 0.35 023 0.20 0.11 |—3.96(0.29) 0.124 —7.89(1.48)
8 0.192|-3.47 0.40 0.19 0.6 0.094|—4.24(0.33) 0.128 —9.43(1.36)
9 0.210|-3.88 0.39 0.24 0.21 0.12 | —4.72(0.32) 0.130 —10.50(1.61)
10 0.232|—4.66 0.41 0.36 0.31 0.18 | —4.83(0.33) 0.138 —6.10(1.69)
11 0.262|—4.32 0.41 0.11 0.094 0.055|—4.11(0.33) 0.144 —2.61(0.77)
12 0.299|-6.35 0.47 0.58 0.50 0.29 |—3.97(0.37) 0.151 8.18(1.80)
13 0.344|-7.52 0.54 0.88 0.76 0.44 | —2.54(0.41) 0.179 20.02(2.52)
14 0.410| —8.83 0.55 0.88 0.76 0.44 | —2.15(0.41) 0.186 27.61(2.32)

Table 5.13: A summary table of the background correction for detectors 1 through
14. {Q?) is the average four-momentum transfer in units of (GeV/c)®. Ae, Ostar
and ogys are the elastic asymmetry and its statistical and systematic uncertainty
due to the background correction. Columns o2, P* and aﬁé‘;” represent the point-
point and global components in the systematic uncertainty. A,,, f», and Ay are the
measured asymmetry, the background yield fraction, and the background asymmetry.
The wvalues in parentheses in columns A,, and A, are the statistical uncertainty
of A, and the model uncertainty of Ay, respectively. The asymmetries and their
uncertainties are in units of ppm, and are blinded by the blinding factor (fuing =

0.8056). fy is dimensionless.

the elastic asymmetry. The systematic uncertainties from this procedure will also

be discussed.

Determination of the Background Yield of Detector 15

First, let us take a close look at the behavior of the fitted background yield in
detectors 12 through 14, which have been determined in Sec. 5.3.6.1, and the pure
background yields measured in detector 16. For a physical comparison, the time of

flight spectra are shifted relative to that of detector 15, such that a constant time
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of flight slice on the shifted spectra in these detectors corresponds to a continuous

band in proton (p,#) phase space, as illustrated in Fig. 5.29. The shifts required for

proton (p,0) map, FPD 12-16, 5000A
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Figure 5.29: An illustration of the constant time-of-flight bands for detectors 12
through 16 in the proton (p,0) space, after applying the time shifts in Table 5.14.
See detailed explanations of the (p,0) map in the caption of Fig. 4.13.

individual detectors are summarized in Table 5.14. The realigned background yield

Detector 12 13 14 15 16
Shift(ns) 1.75 1.0 0.25 0 —0.25

Table 5.14: Required time shifts for detectors 12 through 16 so that a constant time
of flight slice on the shifted spectra lie on a smooth band in (p,0). A positive shift
moves the spectrum to higher time of flight and vice versa, e.q., a +1 ns shift moves
a peak previously located at 20 ns to 21 ns.

spectra are displayed in Fig. 5.30. So far, the proton yields in these detectors do
not exhibit a clear trend: the spectra for detectors 12 through 14 contain bumps,
which do not exist in detector 16. Furthermore, there is a cross over between the

yields in detectors 13 and 14.
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Shifted background yields, FPD 12,13,14,16
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Figure 5.30: Background yield spectra of detectors 12, 13, 14 and 16, with shifts
in Table 5.14 applied. FEvents between 11 and 16 ns are dominated by pions, and
inelastic protons dominate the region at larger ToF.

The situation is changed drastically after one takes out the varying acceptances
of these detectors. The acceptance function, A(i, t), is defined as the probability of a
proton passing through the spectrometer and making a hit in time bin ¢ of detector
i. It can be determined via the GOGEANT simulation [GOGEA99] by generating

protons isotropically at the target in momentum and solid angle, and it follows that

N(i,1)

N, thrown

A(i,t) = : (5.96)

where Nyprown is the total number of generated protons and N(i,t) is the number
of hits in detector 7, time of flight bin . Then, an acceptance-corrected background

yield of detector 7 can be computed as

Tifi,t) = o)

x A(15,1), (5.97)

in which both Y;(4,t) and A(4,t) have been shifted according to Table 5.14. The
resulting spectra of Y;(i,t) are plotted in Fig. 5.31, and one observes that Y, (i, )
now exhibits a clear hierarchy with respective to the detector number. Furthermore,

as illustrated in Fig. 5.32, Y;(i, 1) of each time of flight bin ¢ can be parameterized as
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Interpolated detector 15 background
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Figure 5.31: Acceptance-corrected background yield spectra, fﬁ,(i,t), for detectors
12 (pink), 18 (green), 14 (blue), and 16 (black). See text for explanations. The
dashed histogram is the measured yield in detector 15. The gray band represents the
systematic uncertainty of the detector 15 background yield, estimated as the half gap
between Yy(14,t) and Y (16,1).

a linear function with respect to detector number 7. Since the acceptance function of
detector 15 has been multiplied in }7},(2, t), the linearly interpolated value of f/},(z =
15,t) is readily taken as the background yield for detector 15.

Linear fits of Y of constant ToF vs FPD number
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Figure 5.32: f/b(z, t) for selected values of t, fitted linearly against the detector number
1.

In Fig. 5.33, the result of the above procedure is displayed in pink data points.
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Also overlaid are the background yield determined from a few alternative procedures.
The red data points represent a variation of the above approach, in which Y;(15,1)

is determined by simply averaging the neighboring detectors, i.e.,
V3(15,1) = 0.5 x Y3(14,1) + 0.5 x Y3(16,1). (5.98)

The blue data points represent, the results from an interpolation procedure in the
(p, 8) space as follows. Based on the background yields in Fig. 5.30 and the detector
acceptance, the differential cross section of inelastic protons is formally determined,
followed by an interpolation of the resulting cross section in (p,6) across the ac-
ceptance of detector 15. The interpolated cross section is then used as an event
generator in GOGEANT to calculate the background yield in detector 15. One sees

that the results from the three interpolation methods are in good agreement.

Detector 15 background, various models
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Figure 5.33: Background yield of detector 15, determined using different approaches,
and the +1o error band. The approaches and the error band are explained in the
text.

It is desirable to find a simpler parameterization for the background yield in
detector 15. As a first trial, the measured yield of detector 16 ' is scaled by 1.3.

The resulting spectrum is displayed as the green dashed histogram in Fig. 5.33.

One sees that this simple parameterization captures the scale and trend of the

tNote this is the raw measured yield with no acceptance correction.

190



interpolated background, although some discrepancies exist in the time of flight
range from 17 to 20 ns. The dashed green histogram is therefore corrected by an

empirical multiplicative spectrum M(t), i.e.,
Y,(15,4) = M(t) x 1.3 x Y (16,1). (5.99)

The solid green histogram in Fig. 5.33 represents the modified spectrum, which is
now in excellent agreement with the interpolated results. Due to its simplicity,
Eqn. 5.99 will be used as the best model of the background yield for detector 15.

The systematic uncertainty of the background yield in detector 15 is assigned
as one quarter of the difference between Y (14,t) and Y;(i,t). Put differently, in the
context of the interpolation procedure, the values of }N/},(z, t) at i =14.5and i = 15.5
are taken as the upper and lower bound of Y;(15,¢). The £10 (or “£0.5 detector”)
error band thus determined is displayed in Figs. 5.31 and 5.33. As can be seen in
Fig. 5.33, the spread of various models is well covered by the error band. The span
between the upper and lower bounds is +12%, +13% and +9% (fractional of the
background yields themselves) for the three @? bins (see definitions in Table 5.15),
respectively.

So far the discussion has been restricted to the French electronics, for which
the timing resolution is 0.25 ns per bin. The timing resolution of the NA electronics
is 1 ns per bin, which makes the ? separation difficult. On the other hand, the
so-called hybrid data (signals from NA detectors 14 and 15 plugging into the French
electronics, see Sec. 4.2.4.2) have 0.25 ns timing resolution, so they will be used in
the following analysis. As with the French electronics, Eqn. 5.99 is used to determine
the background yield in the NA detectors. However, the yield of the NA detector 16
is not measured by the hybrid electronics. The solution for this is to take the raw
NA spectrum (1 ns-binned) for detector 16 and split it into 1/4 ns bins, by assuming
linearly varying yield within each 1 ns bin. This is a very good approximation for a
monotonic spectrum as that of detector 16.

For the following asymmetry analysis, the elastic peak of detector 15 is divided
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into three Q2 bins. The definition of the three Q2 bins is summarized in Table 5.15.

(@*)(GeV /c)? time of flight cuts (ns)
0.788 [16.5, 18.5]
0.631 [18.5, 20.0]
0.511 [20.0, 22.75]

Table 5.15: The definitions of the three Q* bins of detector 15.

Determination of the Background and Elastic Asymmetries of Detector 15

Let us now focus on the determination of the background asymmetry. As with
the background yield determination, we attempt to look for an evolution of the back-
ground asymmetry A,(t) across different detectors. A,(t) of detectors 12, 13, and 14
have been obtained through the two-step fitting procedure, with the parameteriza-
tion of Ay(t) shown in Table 5.9. For detector 16, the measured asymmetry is fitted
by a 4th order polynomial within the range from 14 to 29 ns. For the background
asymmetry beyond the fit ranges, the measured asymmetries in these detectors are
taken. To improve the statistical precision, the measured asymmetries from octants
2, 6, and 8 are first combined, upon which the two-step fit is then made. Octant
4 is fitted separately since its background asymmetry appears to be very different
from the rest (see Fig. 5.22). After proper timing shifts (see Table 5.14), the fitted
background asymmetries of detectors 12, 13, 14 and 16 are displayed in Fig. 5.34.
Once again, a progressive change of the background asymmetries in these detectors
is observed.

Therefore, similar to the treatment of the background yield, a linear interpo-
lation is made on the background asymmetries for each time bin vs. the detector
number. The interpolated values with the “detector coordinate” at 15 is taken natu-
rally as the background asymmetry. To be precise, let Ay 263(i, t) be the interpolated
background asymmetry of detector i, obtained based on two-step fits to the com-

bined spectra of octants 2, 6, and 8, and A, 4(7,t) be that based on those of octant

192



Apg(t) octant 2,6 and 8 Abkg(t), octant 4
~50p 50
1<y E g E
;:g;-;lg é_ +"'*+*+* +++++++++ \5;40;_ T ﬂ * +++++H+H+++++++++
3 # g <30 Wﬁ f
3 Lt Hy : T 1
o T o HT Wl "
3 i Hith 1) E 1
ogﬂ{f*ﬁ "y ok ki ++++HM *ﬂﬂ
_lo&ﬁ* — FPD 12 _10){. ﬂm ﬂﬂ i
20b — FPD13 20! ﬂﬂﬂ%
F E ﬂ
-30F -30F i
-40F — FPD 16 -a0f |
592716 I8 20 22 24 26 ST 16820 22 24 26
ToF(ns) ToF(ns)

Figure 5.34: Fitted background asymmetries of detectors 12, 13, 14 and 16. Fits are
performed on the combined spectrum of octants 2, 6, and 8, and that of octant /,
separately. The error bars on the curves are the uncertainties propagated from the
uncertainties of the fit parameters, so on the same curve they are highly correlated.

4. Apoes(i = 15,1) is used as the best fit of the background asymmetry of detector
15 for all seven octants except octant 4. For octant 4, Ay 4(i = 13, 1) is taken as the
best fit instead, since A, 4(i = 15,¢) fails to reproduce the measured asymmetry in
the pure background region above 23 ns (see Fig. 5.35). The measured asymmetries
and the best fits of the background asymmetries of individual octants are displayed
in Fig. 5.35. Note that for each octant, the interpolated background asymmetry is
shifted by a small amount (~<1 ns) in order to optimize the agreement between
the measured and interpolated asymmetries in the side bands.

The background asymmetry can also be fitted using the second step of the
two-step fit procedure (Sec. 5.3.6.1), by taking the interpolated background yield
determined earlier. Like before, the background asymmetry is once again modeled
as a polynomial function in ¢, and the fit range is chosen to be from 14 to 27 ns. The
best parameterization, judging from the values of the x? of the fits, is a 3rd order
polynomial. The fits of A,(t) for individual octants are also overlaid in Fig. 5.35 in
dashed curves.

Having determined the background yield and asymmetry, the elastic asym-

metry can be readily extracted. The elastic asymmetry in each Q? bin is assumed
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Figure 5.35: The best fit (green curves) and the £1o error bands (light gray bands) of
the background asymmetries from the interpolation procedure for all 8 octants. The
best fit of the background asymmetry is determined via the interpolation procedure:
Apa(i = 13,t) for octant 4, and Apses(i = 15,t) for all other seven octants. See
text for explanations. The black data points are the measured asymmetries. Also
overlaid are the interpolated background asymmetries for detectors 14 (pink curves)
and 16 (blue curves). The red dashed curves are the background asymmetry obtained
from the two-step fits (by assuming a 3rd order polynomial functional form).

to be a constant for all eight octants, and then the measured asymmetry A,,(t) is
fitted according to Eqn. 5.85 bin by bin, from which one obtains the three elastic
asymmetries. The interpolated background asymmetries, and the fits to the mea-
sured data are displayed in Fig. 5.36 for all eight octants, and the values of the
elastic asymmetries in the three ? bins are summarized in Table 5.16. As a check,
the same analysis is performed but by making the elastic asymmetry float for each
individual octant. The averages of the resulting asymmetries over all eight octants
are identical to that obtained earlier, and the statistical agreement among different
octants is excellent [Liu05]. For comparison, the elastic asymmetries obtained using
the two-step fit procedure are also given in Table 5.16.

To quantify the agreement between measured asymmetry data and the fit (pink

curves in Fig. 5.36), the values of the reduced x? of the fit were calculated within two
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Figure 5.36: The measured asymmetries (black data points), interpolated background
asymmetries (green curves), and the fits to the data (pink curves) for individual
octants of detector 15. The three Q? bins are separated by vertical blue dashed lines.

wide range narrow range

X2/ v Prob X%/ v Prob
Interpolation | —24.45, —15.87, —13.57 | 489.2/439 4.9% | 192.5/197 57.8%
Two-step fit | —23.81, —15.34, —12.94 | 423.9/407 27.2% | 179.9/197 80.3%

Model A.; (ppm)

Table 5.16: A summary of detector 15 elastic asymmetries, and the fit qualities
for the interpolation and the two-step approaches. Column A.; contains the elastic
asymmetries of the three Q* bins, as defined in Table 5.15, in order of decreasing
Q?. The wide and narrow ranges correspond to [14,27] ns and [16.5,22.75] ns,
respectively, and the column “Prob” gives the x? probability of the fits. Asymmetries
are blinded by the blinding factor (0.8056).

ranges: a wide range ([14,27] ns), or a narrow range of the defined elastic Q* cuts
([16.5,22.75] ns). Since the interpolated background asymmetry is pre-determined,
the only free parameters of the fit are the three elastic asymmetries, so the number

of degrees of freedom v is computed as

v = number of bins — 3. (5.100)
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The qualities of the fit within the two ranges are summarized in Table 5.16, and
for comparison, those from the two-step procedure with a 3rd order polynomial
background asymmetry are also shown in the table. One observes that in general,
the quality of the fit using the interpolation method is worse than that using the two-
step procedure. This is expected, since the interpolated asymmetry does not have
equally sufficient flexibility as a polynomial fit to optimize the agreement between
the data and the fit. On the other hand, unlike the two-step fit, the interpolation
procedure employs physical constraints from other detectors, therefore the results
from it are far better grounded.

The assignment of the systematic uncertainty of the background asymmetry
follows a very similar procedure as that of the background yield. To be conservative,
we start with a “41 detector” uncertainty: the interpolated asymmetries at detectors
14 and 16 are taken as the lower and upper bounds of the background asymmetry
for all octants other than 4. Then, for octant 4, since the best fit is chosen as
the interpolated values at detector 13, quite different compared to other octants,
therefore the full width of the error band are conservatively set as the difference
between the interpolated background asymmetries for detectors 12 and 15 instead.
Finally, we slightly enlarge the error band such that it also covers the variation
when the background asymmetry is shifted by 4+0.5 ns. The resulting +1¢ error
bands are overlaid with the best fit for different octants in Fig. 5.35. On average, the
difference between the interpolated and the two-step fitted background asymmetries

is well covered by the error band.

Systematics due to the QQ? separation

The definition of the three ? bins in Table 5.15 are somewhat arbitrary. To
investigate whether there is any complication arising from this specific choice of the
division of the time of flight spectrum, we systematically divide the whole elastic
peak into 1, 2, 3, 4, and 5 bins according to Table 5.17, and repeat the background
correction procedure discussed above.

The elastic asymmetries obtained via different sets of ? binnings are shown
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Q? bin ToF cuts (ns) Q%)

15.0 [16.5, 22.75] 0.60
15.1 [16.5, 19.75] 0.70
15.2 [19.75, 22.75] 0.515
15.1 [16.5,18.5] 0.788
15.2 [18.5,20.0] 0.631
15.3 20.0,22.75] 0.511
15.1 [16.5,18.0] 0.817
15.2 [18.0,19.5] 0.675
15.3 [19.5,21.0] 0.546
15.4 [21.0,22.75] 0.480
15.1 [16.5,17.75] 0.834
15.2 [17.75,19.0] 0.717
15.3 [19.0,20.25] 0.593
15.4 20.25,21.5] 0.510
15.5 [21.5,22.75) 0.469

Table 5.17: Various sets of Q? binning for detector 15. (Q?) is the average four-
momentum transfer of the elastic events in a given cut, in units of (GeV/c)?.

in Fig. 5.37. Linear fits are made to individual sets of elastic asymmetries against
the values of %, which are also overlaid in Fig. 5.37. Summarized in Table 5.18
are the qualities of the fits to the measured data associated with different sets of
@? binnings, and the corresponding slopes and offsets of the linear fits in Fig. 5.37.
Clearly the fits with only one and two (? bins are much less favored; they simply
do not have sufficient resolution to reflect the variation of the elastic asymmetry.
On the other hand, the fit qualities (to the measured data) are comparable for the
three, four and five @? bins, and the behavior of the resulting elastic asymmetries
are in excellent agreement. This shows that the elastic asymmetries obtained with
our definition of ? bins in Table 5.15 correctly capture the underlying variation of

the elastic asymmetry vs. Q2.
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Figure 5.37: The elastic asymmetries obtained from the interpolation method, with
different sets of Q? binnings, plotted against the values of Q* with linear fits. See
Table 5.17 for definitions of the Q? bins. Asymmetries are blinded by the blinding
factor (0.8056).

#of Q*| x?/v  Probability A.(Q?=0.6) ij;
1 248/199 1.0% —16.09(0.51) n/a
2 219/198  14.6% —16.22(0.51) —29.84(5.55)
3 192/197  58.7% —16.38(0.51) —36.74(5.15)
4 191/196  58.7% —16.47(0.51) —38.50(5.14)
5 198/195  42.7% —16.42(0.51) —35.25(5.09)

Table 5.18: Results of detector 15 elastic asymmetries associated with various sets
of Q* binnings. The x?/v represents the x? per degree of freedom of the fit to the
measured asymmetry (see the pink curves in Fig. 5.36), computed within the range
from 16.5 to 22.75 ns. The corresponding x* probabilities are summarized in the
next column. The offsets and the slopes of the linear fits to the elastic asymmetries
against Q? are listed in the last two columns. Asymmetries are in units of ppm, and
are blinded by the blinding factor (0.8056).

Systematic Uncertainty of the Elastic Asymmetries

As with that of detectors 1 through 14, the systematic uncertainty of the
elastic asymmetry of detector 15 has two sources, the systematic uncertainties due

to the background yield (0(A;)) and asymmetry (osys(As)) (see Eqn. 5.94). But
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unlike the two-step fit procedure, here the determination of the background yield
and asymmetry are independent of each other, therefore f, and A, are completely
decoupled and the correlation term A in Eqn. 5.94 is no longer present.

In principle, the uncertainty of the elastic asymmetry can be determined by
employing error propagation as in Eqns. 5.88 and 5.89, or by evaluating the spread
of elastic asymmetries when setting background yield and asymmetry at the upper
and lower bounds (Figs. 5.33 and 5.36). Here, instead of the above two methods, a
simple Monte Carlo simulation is used to allow more sophisticated model variations.
In the simulation, the background yield is varied within the upper and lower bounds
with a random scaling variable common to all 8 octants. To mimic the possible
misalignment of the background yield spectrum relative to the measured spectrum,

a random timing jitter is introduced with a variance of 0.5 ns octant by octant.

The background asymmetry is also varied with a random scaling variable within the
error bands. However, since the background asymmetry of octant 4 is sufficiently
different from the others, an independent scaling variable is used for octant 4. The
standard deviation of the distributions of the resulting elastic asymmetries give the

overall systematic uncertainties, and they are summarized in Table 5.19.

(Q%) (GeV/c)* o(As) (ppm)  04ys(4s) (pPPm)

0.788 1.79 2.30
0.631 0.88 1.15
0.511 0.87 1.44

Table 5.19: The Monte Carlo (see text) results of the overall systematic uncertainties
of the elastic asymmetries for the three Q? bins in detector 15 due to the uncertainties
of the background yield and asymmetry. Uncertainties are blinded by the blinding
factor (0.8056).

The uncertainties of the three Q? bins from the above procedure are nearly
100% correlated, since the systematic variation of the background yields and asym-
metries in the three bins are almost fully dictated by a single degree of freedom
(a scaling variable). It is desirable to introduce more realistic variations beyond

scaling and separate the point-point and global uncertainties. Let us consider the
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background asymmetry first. A reasonable variation should lie (statistically) within
the prescribed error band, be continuous in ¢, and have a negative curvature (positive
bump) within the fit range. Guided by these, a quadratic background asymmetry
function with varying curvature and end-points is chosen, which contains three de-
grees of freedom, apparently more versatile than a scaling variation. The Monte
Carlo simulation is thus modified to choose the values of the background asym-
metry randomly at the end-points (16.5 and 22.75 ns) according to the width of
the error band. The curvature of the quadratic function is chosen randomly within
[—2.,—1.5] ppm/ns’ for octant 4, and [—1,—0.5] ppm/ns for the others . For
demonstration purposes, 20 copies of background asymmetries with such variation
are plotted in Fig. 5.38. The correlation coefficients between the elastic asymmetry
in each individual Q? bin and the average of the other two are computed. These co-
efficients are found to be ~0.7, with the value for the middle Q? bin higher than that
for the two bins on either side * . This suggests an equal division of the point-point

and the global systematic uncertainties (in quadrature) for o,,,(As).
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Figure 5.38: An illustration of 20 copies of Ay(t) generated by a quadratic model
with varying end points and curvature for octant 5 of detector 15.

A similar treatment is applied to the background yield. As a modification to

tThe range of the curvature is determined empirically by the magnitude of the curvature of the
background asymmetry from the two-step fits.
1This is expected since the middle (2 bin is in direct contact with the other two.
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the global scaling variation, the values of Y;(¢) at the boundaries of each Q? bin, i.e.
16.5, 18.5, 20.0, and 22.75 ns, are chosen randomly based on the width of the error
band, and then connected with straight lines. The same variation is applied to all
8 octants 8. The resulting correlation coefficients of the elastic asymmetries among
various bins appear to be ~0.5, less than those for the background asymmetry.
Nevertheless, to be conservative, an equal division of the point-point and global
systematic uncertainties of o(A,) is again adopted.

The separation of the global and point-point uncertainties discussed above
is fairly model dependent and the allowable variations for both A(t) and Yj(?)
are certainly not unique. However, one expects that the systematic uncertainties
of detector 15 are more globally correlated than those of detectors 1 through 14,
not only because the three Q? bins come from the same time of flight spectrum,
but also due to the fact that the interpolation procedure relies on the fits of other
detectors. In this regard, the equal division of the global and point-point systematic
uncertainty in quadrature for detector 15 is quite reasonable as compared with the

0.50 global fraction being assigned to lower detectors (see Eqn. 5.95).

Results

The elastic asymmetries of the three Q? bins of detector 15 and their uncer-
tainty budgets are summarized in Table 5.20. For reference, the average measured
asymmetry A,,, the background yield fraction f;, and the background asymmetry
A, within each Q2 bin are also tabulated. Similar to the treatment of the statisti-
cal uncertainty of detectors 1 through 14 (Eqn. 5.93), to avoid the bin correlation
effect (Sec. 5.2), the statistical uncertainty of the elastic asymmetry is determined
by treating each Q bin as a single time bin, then correcting for the background

dilution, deadtime, and the beam polarization using

_ Joia V1t o
Ostat(Ae) = NS T, V1 + facad - (5.101)

$Note this is different from the variation of background asymmetry, in which octant 4 is varied
separately from the others.
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In this expression, fp, ~ 0.737 is the average polarization of the beam, N, and
fo are the total number of protons and the background yield fraction within each
Q? bin, and fgeeq is the deadtime loss factor measured by the asymmetry slope
(see Eqn. 5.44 and Table 5.3). The factor \/1 + fyeqa arises from the loss of the
statistical precision due to the existence of the deadtime (see the discussions which
leads to Eqn. 5.10). Note that Eqn. 5.101 is slightly different from the treatment
for detectors 1 through 14 in Sec. 5.3.6.1, where the “proton peak uncertainty”
was taken in Eqn. 5.93 to calculated o(Agq;). Here we use the (deadtime modified)
counting statistics relation to calculate the expected statistical precision of the mea-
sured asymmetry in a given Q? bin, since the “Q? bin asymmetry” (by grouping
all time bins in a given Q? cut as a single bin) was not implemented in the replay
engine. Nevertheless, as shown in Fig. 5.4, this counting statistics estimate is a
good approximation. Note also that we have blinded o44:(Ae) by foiina = 0.8056
here, just so that it is consistent with other blinded values in the table. The over-
all systematic uncertainty o,,s(Ae) is obtained by combining the values of o(A,)
and o,y(A3) in Table 5.19. The point-point and global systematic uncertainties
ol P'(A,) and o9 (A,) are obtained by equally dividing oy,(A.) in quadrature.
For a quick comparison with the theory, the values of the non-vector-strange asym-
metry Ayys (multiplied by the blinding factor 0.8056), are listed in the last column.

The detailed calculation of Axys will be presented in Sec. 6.1.

Discussion

To help digest the results in Table 5.20, we shall seek to address the question:
“To what degree do our data differ from the non-vector-strange asymmetries?”.

Let us first consider the statistical compatibility. According to Table 5.20, the
difference between our best fit values of A, and the non-vector-strange asymmetries
Apnvys is statistically significant. Another way of demonstrating this is to compare
the qualities of the fits to the measured data, when setting the elastic asymmetries
at their best fit values, or fixing them at the non-vector-strange values. In both

cases, the interpolated background asymmetries are used. The values of the )2
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<Q2> Ae O stat (Ae Osys (Ae) Og);;pt U%zb Am fb Ab ANVS

0.788|—24.45 1.49 291 2.06 2.06|—10.20(0.76) 0.399 12.61(4.70)|—28.01

0.631|—15.87 0.89  1.45 1.02 1.02| —7.85(0.65) 0.197 25.41(4.81)|—19.95
(

0.511|—13.57 0.72 1.68 1.19 1.19| —4.67(0.53) 0.191 32.92(6.57)|—14.43

Table 5.20: The elastic asymmetries and their uncertainty budgets for the three
bins of detector 15. (Q?) is the average four-momentum transfer in (GeV/c)?. A,
Ostat(Ae) and ogys(Ae) are the elastic asymmetry and its statistical and systematic

uncertainties. The columns o¥ P and agllj;b represent the point-point and global

components in the systematic uncertainty. A, f», Ay and Anvs are the measured
asymmetry, the background yield fraction, the background asymmetry, and the “non-
vector-strange” elastic asymmetry. The values in parentheses in columns A,, and Ay
are the statistical uncertainty of A,,, and the model uncertainty of Ay, respectively.
All asymmetries and their uncertainties are in units of ppm, and are blinded by the
blinding factor (fuina = 0.8056). f, is dimensionless.

between the fits and the data are computed within the range from 16.5 to 22.75 ns.
The best fit gives a x? of 192.5 with 197 degrees of freedom, as have already been
shown in Table 5.16. The non-vector-strange “fit”, on the other hand, increases the
X% by 31.3 from the best fit, corresponding to a likelihood (in the space of three
elastic asymmetries) of ~ 107° relative to the best fit. Therefore, in the absence
of systematic uncertainties, the non-vector-strange asymmetries would be highly
disfavored.

One further notices from Table 5.20 that even with the systematic uncertainties
taken into account, the non-vector-strange asymmetries still differ from the elastic
asymmetries beyond the 1o level. One might be concerned about the possibility
that our treatment of background asymmetry was biased, and as a result, Ayys
could not be corroborated. This concern can only be addressed in the context of the
best knowledge we have on the background asymmetry. The background asymmetry
in detector 15 is not only constrained by what is measured in its side bands, but
also more strictly constrained by the progressive (linear) change of the background
asymmetries along the “detector coordinate” in detectors 12 up to 16. In this regard,
taking the best fit as the values of the interpolation with the “detector coordinate”

at 15 is an unbiased choice, and the “+1 detector” error band (see Fig. 5.35) is a
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natural, if conservative, assignment.

For demonstration purposes, the average background asymmetry in each (?
bin is recalculated by setting the corresponding elastic asymmetry at Ayys. The
results are shown as the pink data points in Fig. 5.39 octant by octant. Also overlaid
in the figure are the =1 detector error bands of the background asymmetry. As one
can see, although there exists fluctuations from octant to octant, in general the
recalculated non-vector-strange background asymmetries lie outside the error band,
particularly at the middle @? bin. This visually demonstrates that the non-vector-

strange asymmetry is much less favored by our data.
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Figure 5.39: The interpolated background asymmetry (green curve), its £1 detector
error band (light gray band), and the required background asymmetry when demand-
ing Ac = Anvs (pink data points). The time of flight ranges of the three Q* bins are
indicated by the blue dashed lines. All asymmetries are blinded by fuing = 0.8056.

To summarize, we have discussed the background correction for detector 15.
Both the background yield and asymmetry are evaluated using an interpolation
across detectors 12, 13, 14 and 16. The elastic peak is divided into three @? bins,
and the elastic asymmetry in each bin is extracted. Based on the interpolation
procedure, the systematic uncertainty of the background yield is assigned as “+0.5

detector”, and the that of the background asymmetry is estimated conservatively as
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“+1 detector”. The elastic asymmetries appear to be different from the non-vector-

strange values by more than 1o.

5.3.6.3 Special Treatment: the High Q2 Bin of Detector 14

As a consequence of the optics of the spectrometer (see Sec. 4.2.3), detector
14 has two elastic peaks: the main peak with Q% =0.41 (GeV/c)?, and a secondary
one located at earlier time of flight with an average four-momentum transfer of
1.0 (GeV/c)?. The situation for the high @ point is similar to that of detector
15: the NA electronics do not have enough resolution. Therefore the French and
hybrid data will be used in the analysis. The result of the main elastic peak has
been presented in Sec. 5.3.6.1. Let us now take a closer look at the second elastic
peak. The yield spectrum of detector 14 is displayed in Fig. 5.40. The main and
the secondary peaks are located at 16.5 and 22 ns, respectively. As summarized in
Table 5.9, the fit of the yield is broken down into two ranges — the tail of the pion
and the second elastic peak (from 14 to 19 ns) is parameterized with a 5th order
polynomial background plus a Gaussian peak, and the main elastic peak (from 19
to 27 ns) is fitted with a Gaussian distribution plus a linear background. The fitted
elastic yield in the second peak is only 54% of that predicted from the GOGEANT
simulation, or alternatively, (GOGEANT-Fit)/Fit = 84%. Since the elastic events
in this peak are at the very edge of the acceptance, the discrepancy could be due to
the difference between the geometry in the Monte Carlo and the true physical setup.
We shall treat the systematic uncertainty due to this difference later. The fit of the
asymmetry is made by assuming that the elastic asymmetry A, in each Q? bin is a
constant, and the background asymmetry A,(t) within the entire range between 14
and 27 ns is a polynomial function. The asymmetry fit of octant 7, with a 3rd order
polynomial background asymmetry, is plotted in Fig. 5.41. Table 5.21 summarizes
the values of the two elastic asymmetries and the fit qualities when using various
orders of polynomials for A(t). The fit quality is not very sensitive to the choice
of the polynomial model for Ay(t). Therefore for the second elastic peak, instead of

choosing a best fit, we take a straight average of the elastic asymmetries obtained
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from the fits with A,(¢) being the 2nd, 3rd, 4th and 5th order polynomials. The
result is

A, = —30.56 ppm, (5.102)

which is still blinded by funa = 0.8056.

octant 7 detector 14 yield fit octant 7 detector 14 asymmetry fit
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Figure 5.40: The yield spectrum of oc-
tant 7 detector 14. The fit is performed

Figure 5.41: The asymmetry spectrum
of octant 7 detector 14. The elas-

in two ranges: a Gaussian peak with a
bth order polynomial background from
14 to 19 ns, and a Gaussian peak
with a linear background from 19 to
27 ns. The red curve is the fit to the
total measured yield and the blue his-
togram is the fitted and then binned
background yield distribution.

tic asymmetry in each Q? peak is as-
sumed to be a constant. The back-
ground asymmetry is assumed to be a
3rd order polynomial within the entire
range from 14 to 27 ns. The red and
blue curves are the fits to the measured
and background asymmetries, respec-
tively.

Ay(t) (ppm)  Acpmain (PPm)  Acgng (ppm)  x?/v probability
pol2 —8.82 —32.80  352.4/376  81%
pol3 —8.83 —32.36  343.3/368  82%
pold —8.86 ~29.69  333.8/360  83%
pol5 ~9.00 —27.38  331.1/352  78%

Table 5.21: The corrected asymmetries of the two elastic peaks of detector 14, Ac main
and Aeona, obtained from the two-step fits using various polynomial models of the
background asymmetry Ay(t). The values of the x* per degree of freedom of the fits
and their probabilities for different models are also tabulated. The asymmetries are

As with all other @? bins, the statistical uncertainty of the elastic asymmetry

206



for the second peak is evaluated based on counting statistics using Eqn. 5.101, with
the background dilution, deadtime and the beam polarization taken into account.
Within a £2 ¢ window around the elastic peak, the background yield fraction f,
is ~ 78%, and the deadtime fraction fg.qq is ~ 20% based on the asymmetry slope

(see Sec. 5.3.1.3). These lead to
Ostat(Ae) = 5.83 ppm, (5.103)

which is blinded by the blinding factor (0.8056).

The evaluation of the systematic uncertainties of the second elastic peak is
a combination of the procedures described in Sections. 5.3.6.1 and 5.3.6.2. The
systematic uncertainty due to the uncertainty of f;, o(As), and the correlation term
A, are evaluated with the Monte Carlo described in Sec. 5.3.6.1. The uncertainty
of the background yield fraction is estimated as follows. The octant to octant
variation of the fitted elastic yield Y, is ~12%, which can be used as an estimate
of the (fractional) uncertainty of Y.. On the other hand, as mentioned earlier, Y,
predicted from the GOGEANT simulation is higher than the fitted value by ~ 84%,
so ~ 42% is another reasonable estimate of the uncertainty of Y,. An average of
these two estimates, 27%, is therefore taken as the fractional uncertainty of Y,
which leads to f, = 78 & 6%. Therefore, in the Monte Carlo, f, is varied from the
best fit with a single random scaling variable within +6% (statistically), from which
0Ay and A in Eqns. 5.88 and 5.90 can be evaluated. The result (blinded by the
factor of 0.8056) from this procedure is

Vo?(Az) + A =5.72 ppm. (5.104)

For the model uncertainty due to the background asymmetry, o (As), in-
stead of using the spread among various polynomial fits, on a trial basis we conser-
vatively use the “+1 detector” uncertainty, similar to the procedure for detector 15
in Sec. 5.3.6.2. The “41 detector” error band gets further modified by a +0.5 ns

timing jitter. The background asymmetries and their error bands for the eight oc-
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tants are drawn in Fig. 5.42. In this figure, the error bands of octants 1 and 3 are
centered at the interpolated asymmetry of detector 16 in order to better reproduce
the measured data in the side bands. The uncertainty of the elastic asymmetry
is evaluated by setting the background asymmetry at the lower and upper bound
(simultaneously for all eight octants). The resulting model uncertainties of the back-
ground asymmetry (ogys(As)), and o4ys(As) of the two Q? peaks are tabulated in
Table 5.22.
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Figure 5.42: An illustration of a preliminary estimate of the systematic uncertainty
of the background asymmetry for detector 14 using the “t1 detector” procedure. The
pink curve is the best fit and the gray band is the “t1 detector” error band.

Q? (GeV/c)2 Usys(Ab) (ppm) Osys(A3) (ppm)
0.41 8.21 1.53
1.0 5.21 13.49

Table 5.22: A preliminary estimate of the systematic uncertainty of the background
asymmetry osys(Ap), and the resulting uncertainty of the elastic asymmetry oys(As)
using the “+1 detector” method. The uncertainties are blinded by the blinding factor
(0.8056).

In reality, the background asymmetry in detector 14 is more constrained than

that of detector 15, since both elastic peaks are narrow and the background asym-
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metries in the side bands of both peaks are directly measured. Compared with
0sys(Asz) of the main peak of detector 14 in Table 5.12, it appears that the corre-
sponding value in Table 5.22 over-estimates the uncertainty by roughly a factor of
3, implying that the error band in Fig. 5.42 over-estimate the uncertainty of the
background asymmetry by a factor of 3. Therefore, for the the second elastic peak,

we scale down the uncertainties in Table 5.22 as
1 1
Ogys(Ap) = 55.21 =174 ppm, Ogs(As) = 513.49 = 4.50 ppm. (5.105)

So the total systematic uncertainty, combining Eqns. 5.104 and 5.105 is

Oays(Ae) = /02(As) + A + 02, (4s) = 7.28 ppm. (5.106)

One expects that this systematic uncertainty is unlikely to be correlated with those
of other 2 bins, primarily because this secondary elastic peak is located at the pion
tail, which is not within the fit range for any other detector. Moreover, the values
in Table 5.21 suggest that the values of the elastic asymmetries of the two peaks
of detector 14 are not strongly coupled either, despite the fact that the fit to the
background asymmetry is a continuous function across the entire range. Therefore,
the systematic uncertainty obtained in Eqn. 5.106 is regarded as a 100% point-point
systematic uncertainty.

To summarize this analysis, the results of the second Q? peak of detector 14 is
listed in Table 5.23. The arrangement of the columns is identical to that in Table 5.13
for detectors 1 through 14. The measured asymmetry A,,, the background yield
fraction f,, and background asymmetry A, are all computed within a +2¢0 window

around the second elastic peak.

5.3.7 Determination of the Four-momentum Transfer

The determination of the mean and the uncertainty of the four-momentum

transfer (Q?) of elastic protons in each @? bin will be presented in this section.

209



<Q2> Ae Jstat(Ae) Osys(Ae) Uptipt O_glob Am fb Ab

sYs sYs

0.997 | —30.56 5.83 7.28 7.28 0 |3.39(0.96) 0.780 13.59(1.74)

Table 5.23: The elastic asymmetry and its uncertainty budget of the 2nd Q* bin of
detector 14. (Q?) is the average four-momentum transfer of the peak in (GeV/c)?.
A, 05at(Ae) and osys(Ae) are background corrected elastic asymmetry and its sta-

tistical and systematic uncertainties. The columns 0%, ?" and o9 represent the

point-point and global components in the systematic uncertainty. Am,, f», and Ay
are the measured asymmetry, the background yield fraction, and the background
asymmetry. The values in parentheses in columns A,, and A, are the statistical
uncertainty of A,,, and the model uncertainty of A,, respectively. The asymmetries
and their uncertainties are in units of ppm, and are still blinded by fying = 0.8056.
fo is dimensionless.

Two methods have been explored, both require a comparison of the experimental
data against a simulation of the spectrometer. The details of the analysis have been
summarized previously in a few documents [Bat03, Bat04, Que05, Kox05]. Only a
general description of the methodology will be given here.

The first method used the time of flight difference between elastic proton and
pion peaks (At,,) as a gauge of the magnetic field. The usage of At,, eliminated
the need of absolute calibration of timing offsets in the electronics. In principle, by
comparing the measured Aty, with what is obtained from the simulation (At$%") at
the nominal field, one can extract the offset of the actual B field from the nominal
(nominal magnet current was 5000 A). Using this actual field as the input to the
simulation allows one to determine (Q?). A ~50 ps precision of At,, will lead to a
< 0.2% and < 1% determinations of the magnetic field and four-momentum transfer
for each ? bin, respectively. However, it turns out that At,, is also quite sensitive
to the potential longitudinal and the radial offsets of the detectors. A global fit was
therefore made with the measured At,, of all detectors based on their sensitivities to
the magnetic field and the FPD positions given by the simulation. This allows for a
simultaneous determination of the field strength and the detector positioning offset.
The current of the magnet was determined in this method to be 5015+ 1 A, and
the position offsets of the FPDs were determined to range from a few mm to 1.5 cm

(detector by detector) with a precision of ~3 mm [Bat03]. The (Q?) of individual
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@Q? bins were then determined by applying 5015 A to the simulation. The impact
of the fitted position offsets to the average Q? was ~< 1%, which was used as a
conservative estimate of uncertainty of the @* [Kox05].

The second method employed the fact that elastic rates in detector 15 and
16 are very sensitive to the actual magnet field. As a function of the magnetic
current, elastic rates (based on the simulation) in these two detectors are depicted
in Fig. 5.43. The increase of the magnetic field leads to an increase of the elastic @Q?
in detector 15, which corresponds to a decrease in the cross section. On the other
hand, the elastic acceptance increases with the magnetic field f. The competing
trends of the cross section and the acceptance give rise to a bump of the detector
15 elastic rate around 4880 A (the red curve in Fig. 5.43). For detector 16, elastic
protons can be detected at a field lower than the nominal. However, when the
magnet current increases up to ~4900 A and above, elastic protons are bent outside
of its acceptance, which gives rise to the distinct plateau (with very low rates) in
the black curve in Fig. 5.43. The “theoretical” curves in Fig. 5.43 were compared
with the direct measurements (the backgrounds needed to be subtracted from the
measured rates), in which the magnet current was scanned from 4700 to 5000 A.
Based on the offsets between them, the actual magnet current was here determined
to be 5003.5 + 5 A [Kox05].

The fields extracted from the two methods were not in perfect agreement,
however within a 2 ¢ tolerance. One should note, that the second method does not
provide enough constraints to take into account the detector position offsets. There-
fore, (Q?) and its uncertainty (1%) determined by the first method were adopted.
This 1% uncertainty is uncorrelated with the uncertainty of the measured asymme-

try, but it can be translated into an effective uncertainty of the asymmetry as

0A
oers(Ag2) = aTyU(QZ) : (5.107)

Since in leading order, the asymmetry is oc Q?, the 1% uncertainty of Q? translates

TThis can be understood from the fact that at the nominal field, the (p,6,) acceptance of
detector 15 is parallel to the elastic line, which maximizes the acceptance.
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MC elastic rate in detector 15 & 16 vs magnetic current
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Figure 5.43: Elastic rates in detectors 15 (red open circles) and 16 (black open
squares) vs. the magnet current from the simulation. The data points in the figures
were read off from the same figure in [Que05].

into an 1% uncertainy in the measured asymmetry. The average four-momentum
transfers of individual @? bins (as defined below in Eqn. 5.109) have been listed in
Tables 5.13, 5.20 and 5.23.

As a final caution, let us note that the elastic asymmetry measured in each

@)? bin is an average asymmetry weighting by the yield,

@ = 1AL (5.108)
Similarly, the average Q2 in a given Q2 bin is
(@) = / Q;g(g;);i Qo (5.109)
One can make a Taylor expansion of A(Q?) around (Q?) as
AWQ) = AUQH + 5035 (@ — (@) + - (5.110)
If higher order terms in Eqn. 5.110 are ignored (“--” on the right-hand side),
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Eqn. 5.108 becomes
(A(Q%) = A(Q?)) - (5.111)

We note that for G this is a legitimate approximation due to the fact that A(Q?)
is linear with @? in leading order (see Eqn. 2.80), and that the width of the @Q?
distribution within each @? bin is small, ranging from 5% (detector 1) to 10%
(the three Q? bins of detector 15) of (Q?). Therefore, one can safely interpret the
measured elastic asymmetry of each bin as the elastic asymmetry at the average

four-momentum transfer.

5.3.8 Electromagnetic Radiative Correction

Due to the non-relativistic nature of the recoiling protons, the electro-magnetic
(EM) radiative emission from them is small. However, the radiative emission from
the incident electron changes the kinematics of the elastic reaction and therefore
makes the measured elastic asymmetry different from the tree-level Born asymmetry
without photon radiation.

The details of the EM radiative correction for G° are documented in [AN05].
For completeness, we will briefly outline the treatment here. A dedicated GEANT
simulation was developed for this purpose. The energy loss of electrons in the
target through ionization and the external Bremsstrahlung radiation is treated in
GEANT. The computation of the internal radiative correction follows the framework
of [MT69, Tsa74]. The parity violating asymmetry of the elastic events are com-
puted, based on the kinematics at the reaction vertex after the radiative emission.
This asymmetry is used for comparison with the asymmetry without the radiative
correction (or the Born asymmetry), by assuming G, = G5, = 0.

As a consequence of the radiative emission, a tail shows up in the yield spec-
trum towards the earlier time of flight of the elastic peak — this increases the
average (2 in each bin, effectively increasing the magnitude of the measured elastic
asymmetry from the Born asymmetry. To avoid confusion, let us label the radiated

asymmetry as A,, corresponding to the elastic asymmetry from the measurement,

213



and the Born asymmetry as Apy,s. The radiated and Born asymmetries are aver-
aged within the elastic cut, ~4 ns and ~5 ns for the French and NA electronics
respectively. A ratio between the Born and the radiated asymmetries is calculated

as
Aphys

R = A,

(5.112)

and in general R is slightly less than 1. R vs. Q? ! of the first 17 Q? bins is plotted
in Fig. 5.44. The radiative effect of the second @? bin of detector 14 is negligible

compared with its statistical precision, and is therefore ignored. The fractional

1.04

1.03

1.02

1.01

x 1.00

0.99

[ HH;HH;HH;HH HH;HH;HH;HH

©
©
oo

0.2 0.3 0.4 0.5 06 07 08 09
Q3(GeV/c)?

Figure 5.44: Calculated R factor defined in Eqn. 5.112 vs. Q?* for the first 17 Q?
bins of G°.

correction, 1 — R, is typically ~1% and the its uncertainty of is estimated to be
10% (of 1 — R) based on the difference of the correction factors computed in the
NA and French elastic proton cuts. Due to the smallness of the correction, the 10%
uncertainty of the correction is negligible in the final uncertainty budget.

The Born asymmetry, which is to be compared with the theory, is then

Apnys(Q*) = R x A, (5.113)

tThe average )% is computed based on the Born scattering cross section.
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5.4 Unblinded Physics Asymmetries

After all corrections described above are performed, the blinding factor (0.8056)
is divided out, and in Table 5.24, an overview of the systematic corrections which
lead to Appys is presented. For the deadtime, helicity correlated beam properties and
the radiative corrections, although the actual corrections are made detector by de-
tector, only a representative value for each is listed in the table. For the background
correction, the range of the corrections and the uncertainties are given, according
to detailed values in Tables 5.13, 5.20 and 5.23. The systematic uncertainty due
to the bin correlation effect (Eqn. 5.12), leakage (Eqn. 5.53), the beam polarization
(Sec. 5.3.4), the global component of the background correction (Tables 5.13, 5.20
and 5.23), the four-momentum transfer (Sec. 5.3.7), and a 0.01 ppm uncertainty due
to the potential transverse polarization effects are combined as the global systematic
uncertainty. All others are combined into the point-point systematic uncertainties.
Generally, the background correction uncertainty dominates both the point-point
and global systematic uncertainties, with the exception at detectors 1 through 4

and detector 11, for which the leakage correction dominates the global systematics.

Source Correction (ppm) Uncertainty (ppm)
Bin correlation 0 0.043
Electronics deadtime 0.2 0.05
Helicity-correlated beam properties 0.01 0.01
Leakage 0.71 0.14

Beam polarization 73.17% (factor) 1.3% (fractional)
Background subtraction 0.1-40 0.2-9
four-momentum transfer 0 1%
Radiative corrections 1% (fractional) 0.1% (fractional)
Transverse beam polarization 0 0.01

Table 5.24: An overview of the sizes of the systematic corrections and their uncer-
tainties.

As a summary, in Table 5.25, the final asymmetries of all 18 ? bins from this
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analysis are shown. The officially published data table will be presented in Table 6.2

later in Sec. 6.1.

Q* Aphys — Ostar 05" 09% Am Ay o
(GeV/c)> ppm  ppm ppm ppm ppm ppm 1
0.122  —154 046 024 018 —160(0.40) —3.25(2.16) 0.089
0.128 —-1.12 042 0.20 0.18 —0.99(0.36) —0.04(1.99) 0.096
0.136 —-1.57 044 0.18 0.18 —1.63(0.37) —2.56(1.78) 0.106
0.144 —-2.45 046 0.18 0.18 —3.10(0.38) —7.44(1.69) 0.111
0.153  —2.14 045 029 022 —274(0.37) —6.37(2.55) 0.116
0.164  —269 045 032 024 =371(0.37) —10.07(2.72) 0.124
0.177 =392 044 025 021 —4.92(0.36) —9.79(1.84) 0.124
0.192  —419 050 021 020 -526(0.41) —11.71(1.69) 0.128
0.210 —-4.72 049 0.26 0.22 —5.86(0.40) —13.03(1.99) 0.130
0.232 —-5.64 051 039 028 —6.00(0.41) —7.57(2.09) 0.138
0.262 —5.27 051 0.12 0.18 —5.10(0.41) —3.24(0.96) 0.144
0.299 —-7.76 058 0.63 041 —4.93(0.46) 10.15(2.23) 0.151
0.344 -9.13 0.67 0.95 058 —3.15(0.51) 24.85(3.13) 0.179
0.410 —-10.71 0.68 094 0.59 —2.67(0.51) 34.27(2.88) 0.186
0.511 —16.69 0.89 148 151 —5.80(0.66) 40.86(8.16)  0.191
0.631 —-19.84 1.11 127 1.32 —9.74(0.81) 31.54(5.97)  0.197
0.788 -30.71 1.85 256 2.61 —12.66(0.94) 15.65(5.83) 0.399
0.997 —38.01 7.24 9.03 0.64 4.21(1.19) 16.87(2.16)  0.780
Table 5.25: G° asymmetry data for individual Q* bins from this analysis. The

columns in the table are: the average four-momentum transfer Q?, the physics asym-
metry Apnys and its statistical, point-point, and global systematic uncertainties ogqs,
ol P and o9, To indicate the size of the background correction, the average raw
asymmetry A, the background asymmetry Ay, and the background yield fraction
f for each Q? bin are also listed. The statistical uncertainty of A,, and the model
uncertainty of A, are included in parentheses in the corresponding columns. All

asymmetries are unblinded.
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Chapter 6
From Physics Asymmetries to Strange Form Factors
6.1 Non-Vector-Strange Asymmetries

As presented in Sec. 2.5, the full form of the physics asymmetry that leads to

the strange form factors is
A - GrQ? 1
M 4 aral(GR)? + 7(Gh)?]
x {(e(GR)* + 7(G3)*) (1 — 4sin® Ow)(1 + RY)
— (eG%GY + 7GE,Gh) (1 + RY)

— GB (G5 +nG3,) (1 + RY)

— €' (1 — 4sin®0y)G%, G4}, (6.1)
with
G4 = —(1+ RyGET + VBREGY + 1+ RY)GY,. (6.2)
and
2 -1 P
T = —46%43 , €= (1 +2(1+ T)tan2§> , €=l +1)1—-€), n= zg%/[ .

We have also stated in Sec. 2.5 that all electroweak parameters in Eqn. 6.1 will be
evaluated under the MS renormalization scheme, with the renormalization scale set
at the mass of Z°.

Before extracting the value of G% + nGj5,, it is helpful to insert an interme-
diate step to compute a non-vector-strange asymmetry, Ayyg, with G, = G3;, =0
enforced. Some observations can then be made directly based on the difference be-

tween the measured asymmetry and Ayyg, as presented at the end of Sec. 5.3.6.2.
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With G%, = G4, = 0 applied to Eqn. 6.2, Ayyg is

e GrQ? 1
M 2ra e(Gy)? + T(Ghy)?

x {e(Gh)? + 7(Gh,)*(1 — 4sin®0y ) (1 + RY))

— (eG4GY + 7GE,Gh) (1 + RY)

— (1 — 4sin®0y ) G5,G4 } . (6.3)

Then the strange form factors, G, + nG3,, which are the goal of this experi-

ment, take a simple form:

Go 4GS, = 4720 €(Gh)? + 7(Gh,)?

- Aprys — Avs) (6.4)
Gr@ car(1 g gD e~ Avvs)

6.1.1 Parameterizations of the Electromagnetic Form Factors of the

Nucleons

Let us first introduce a “classical” parameterization of the nucleon electromag-
netic (EM) form factors. The prescription is to use the same dipole form to fit G%,,
G*, and G%,, and use the so-called Galster parameterization for G%. The dipole fit

takes the form of
1

in which G can be either G%,, G%, or G%;, * is the four-momentum transfer, and A

G(Q") =G(@Q =0) (6.5)

is the dipole mass with A? = 0.710 GeV? [Kel04]. The Galster parameterization of

the neutron electric form factor, first proposed in [Gal71], is a modified dipole fit,

n AT 1
G = B a T gy (66)

2

4M?
iz
wealth of data now available on the form factors, the dipole form no longer provides

in which 7 = with M, being the mass of the proton. However, with the

satisfactory fits. For example, the dipole fit of G%, disagrees with the data by ~ 6%
at Q2 =1 (GeV/c)? (see Fig. 6.1(a) where the ratios of the data to the dipole fit are
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shown). Therefore, we shall focus on a few more recent parameterizations in this
analysis.

The experimental determination of the nucleon EM form factors can be made
via either an unpolarized cross section measurement [Ros50], or by accessing the
polarization degrees of freedom in elastic scattering [ACG81]. Generally, the results
from the polarization measurements are more precise, especially in the region with
four-momentum transfer higher than 1 (GeV/c)?. In [Kel04], Kelly provided a simple
parameterization for all four nucleon form factors. The selected world data set for
his fits had an emphasis on the recoil or target polarization measurements. The
functional forms of G%, G%, and G, were taken to be the same, consistent with
1/Q* scaling behavior in the perturbative regime, and a Galster fit was made for
G". Friedrich and Walcher also published a coherent phenomenological treatment
for all four form factors [FW03]. The selection of their data set was similar to that of
Kelly, favoring the polarization measurements. Motivated by the pion cloud model,
these authors allowed some structure in their fits around Q% = 0.2 — 0.3 (GeV/c)?.
A parameterization of G, and G%,, based on a global fit to the world cross section
data alone, was made by Arrington in [Arr04]. The goal of Arrington’s analysis was
to shed light on the recently discovered discrepancy of proton form factors resulting
from the cross section and polarization measurements [HWDJ04]. This topic is still
under intensive investigation, but the impact of it on the parity violating asymmetry
at G° kinematics is negligible.

Comparisons of the above three parameterizations for all four form factors are
displayed in Fig. 6.1(a) over the four-momentum transfer range of G°. G%, G%,
and G%, are put on the same scale by normalizing by their corresponding dipole
fits. The data points in the plots represent Kelly’s data set [Kel04]. For Q* >
0.6 (GeV/c)?, Arrington’s fit of G%, deviates from the other two, as a result of the
disagreement between the polarization and cross section measurements mentioned
above. In Arrington’s fits, the normalization factor of each experiment was also
allowed to vary, which makes his values for G%, systematically lower than the other

two fits. The fits of Friedrich-Walcher exhibit bumps in all four form factors around
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Q* = 0.2—0.3 (GeV/c)?, as a direct consequence of their pion cloud ansatz. However,
despite the differences, the qualities of all three fits are good, and it is difficult
to make a choice from a physics point of view. Kelly’s parameterization is the
simplest and it lacks the potential bias due to the underlying physics assumption;
it is therefore adopted in our analysis.

The uncertainty of the form factor parameterization, in principle, contains two
pieces. One is statistical, calculable from the error matrix of the fit, and the other
is the systematic (or model) uncertainty associated with a specific choice of the
fit function and data set, which can be estimated from the spread among different
models. In Fig. 6.1(b), the statistical error bands calculated from the Kelly fits are
displayed, together with the fits from the other two models. One sees that for all four
form factors, the difference among models is much larger than the statistical error
band. Henceforth, we shall neglect the statistical uncertainties. From Fig. 6.1(b),
the fractional spread among the three models is estimated to be ~1.5%Q? (G%)
with @? in units of (GeV/c)?, ~1% (G%,), ~15% (G%) and ~1% (G%;). However,
naively propagating these uncertainties into G%, + nG?9, is problematic, since the
(model) uncertainties of these form factors are correlated, e.g., going from the Kelly
to the Arrington fit would on average move G%, and G%, simultaneously in opposite
directions. Therefore, in Sec. 6.2 we shall adopt the strategy of showing explicitly the
values of G, +nGY, corresponding to different sets of form factor parameterizations

to reflect this aspect of the model uncertainty.

6.1.2 Parameterization of the Axial Form Factor

As one can observe from Eqn. 6.1, the contribution of the G% term to the
parity violating asymmetry is suppressed by a factor of —1 4 4sin? 6y ~ —0.07, the
weak charge of the electron. Therefore, as mentioned at the end of Sec. 2.4, the
uncertainty of the axial form factor does not contribute much to the forward G°

measurement.
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Figure 6.1: The form factor fits for G%,, G%,, G% and G, with a range of Q* from
0.1to 1.1 (GeV/c)*. G, G%, and G%, are put on the same scale by normalizing
by their corresponding dipole fits. The experimental data in [Kel04] are displayed in
(a). Different curves in the figures represent different form factor parameterizations:
[blue solid = Kelly [Kel04], pink dot-dashed = Arrington [Arr04], and black dashed
= Friedrich-Walcher [FW03]]. The Arrington parameterization is for Gb, and G,
only. The lower figure (b) contains the same fits (but no data) with the +1o error
bands computed from the Kelly fits. 991



The tree level expression of the proton axial form factor given in Sec. 2.3.2 is

GA(Q%) = —GETHQ?) + G4 (Q7), (6.7)

and as mentioned there, GZ""°°(Q?) is a good approximation of the axial form factor

as seen by a neutrino probe. The isovector G4 ='(Q?) can be measured via charged
current quasi-elastic scattering of v(7) +n — e+ p, and the Q? dependence of G=!

is commonly parameterized in a dipole form as

G4 '(0)

O gy

(6.8)
where G1=1(0) = —ga/gv = 1.2695 £ 0.0029 is well-measured in neutron 3 de-
cay [PDGO04], and A4 ~ 1 GeV is the so-called axial mass of the nucleon. With up-
dated EM form factors of the nucleon, a recent global fit of neutrino charged current
cross section data was presented in [BBA03], resulting in a A4 = 1.001 £0.02 GeV'.
This value is adopted into our analysis.

The strange axial form factor, G%(Q?), is conventionally assumed to have the
same % dependence as GL=1(Q?). As shown in Eqn. 2.57, at zero momentum trans-
fer, G%(0) = As, which is the strange quark contribution to the nucleon spin. The
determination of As from polarized deep inelastic scattering data has been discussed
in Sec. 1.2.3, where we have emphasized the large model dependent uncertainty. In

this analysis, As (in the MS renormalization scheme) is taken to be [Arv05]
As = —0.084 =+ 0.040, (6.9)

based on two recent next-to-leading-order QCD analyses by Leader, Sidorov and
Stamenov [LLS02, LLSO03].

As discussed in Sec. 2.5, electroweak radiative corrections modify G of the

tThis is in good agreement with A4 = 1.014 £ 0.016 obtained from near threshold charged pion
electro-production data, after chiral correction of finite pion mass [BEM02].
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proton to

f = QT + 6 + Y6y

= —(1+ R} + VIRGY + (1+ RD)GY (6.10)

with the values of RL=', RT=" and R' given in Table 2.5. The SU(3) octet
(isoscalar) term Gf)(QQ), which does not contribute to the tree level expression,

now appears. At zero momentum transfer, Gf) is
2v3GW(0)=3F - D, (6.11)

in which F' and D are the baryon beta decay parameters introduced in Sec. 1.2.3,
and they can be determined by combining data from neutron and hyperon beta
decays under the assumption of SU(3) flavor symmetry. One might be concerned
about the uncertainty due to the non-exact SU(3) symmetry. However, global fits
to beta decays of all baryon octet channels show little symmetry breaking effects
on the values of F' and D (see, e.g., [Son96]). In this analysis, the value 3F — D =
0.585+0.025 from a recent global fit [Got00] is adopted. The Q? dependence of fo)
has not been measured and here it is simply assumed to have a dipole form with
the same axial mass A 4.

To summarize, the expression for G4(Q?) that enters into our calculation is

_ 3FF—D
GAQ) = |2+ B +

. RT=04+ As(1+ R Gp(Q%),  (6.12)
y

with
1

Go(@) = T gy

(6.13)

6.1.3 Summary of Parameters

For reference, in Table 6.1 we summarize the values (and in some cases also

the uncertainties) of the standard model coupling constants, electroweak radiative
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correction factors, and the parameters used in the form factor and kinematics cal-
culations. The values of a, §%, Gr, M,, i, i, and ga/gy are taken from [PDGO4].
The value of the dipole mass A? is taken from [Kel04]. Our choices for A%, As and
3F — D are discussed in Sec. 6.1.2, and the values of electroweak radiative correc-
tion factors to the weak charges (R, R, R\ RT=', R7=" and R have been

discussed in Sec. 2.5.

Parameter Value Parameter Value

o 1./137.03599976 ga/gv —1.2695
2 0.23120 3F—D  0.585(0.025)
Gr 1.16639 x 1075 /GeV? As —0.084(0.040)
M, 0.98272 GeV R, —0.045(3)
1y 2.79285 RY —0.0118(2)
[in —1.91304 R —0.0118(2)
A2 0.710 GeV?2 R%=1 —0.26(0.35)
A% 1.002(0.04) GeV R%=0 —0.24(0.20)
E, 3.030(0.001) GeV RY —0.55(0.55)

Table 6.1: Parameters (with some uncertainties in parentheses) used to calculate
G5 +nGS5,. For references see tett.

6.2 G+ nGs,

The published physics asymmetries for the 18 Q? bins in this experiment [Arm05]
are recapped in Table 6.2. Listed in the last column are the non-vector-strange
asymmetries Ayyg calculated from Eqn. 6.3 with Kelly form factors [Kel04] and
the parameters in Table 6.1. The values of the published asymmetries are slightly
different from those presented here (Table 5.25) due to three reasons. First, the
asymmetries of the first fourteen ? bins in [Arm05] were taken from the analysis in
[Nak06], where the background correction fits were slightly different from the best

fits in this work (Table 5.10). Nevertheless, as one can see, the agreement between
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2 t—pt lob
Q Aphys  Ostat Ohys?" 09 Am, Ay o Anvs

(GeV/c)> ppm ppm ppm ppm ppm ppm 1 ppm

0122 —1.51 044 022 018 —1.38(0.40) —3.69 (2.51) 0.061 —1.96
0.128 —0.97 041 020 0.7 —1.07(0.36) —4.36 (0.78) 0.084 —2.11
0.136 —1.30 042 0.17 0.7 —1.34(0.37) —5.49 (0.90) 0.085 —2.29
0.144 —2.71 043 018 0.18 —2.67(0.38) —4.05 (2.81) 0.077 —2.50
0.153 —2.22 043 028 021 —246(0.37) —6.13 (2.46) 0.096 —2.75
0.164 —2.88 043 032 023 —3.13(0.37) —7.94 (2.82) 0.100 —3.05
0.177 —3.95 043 025 020 —4.47(0.36) —9.76 (1.91) 0.110 —3.44
0192 —3.85 048 022 019 —501 (0.41) —15.39 (1.66) 0.110 —3.91
0210 —4.68 047 026 021 —5.73(0.40) —13.53 (1.99) 0.116 —4.47
0232 =527 051 030 023 —6.08 (0.41) —9.73 (2.06) 0.136 —5.23
0262 —526 052 011 017 —5.55(0.41) —5.35(0.99) 0.154 —6.31
0299 —7.72 0.60 0.53 0.35 —5.40 (0.46) 8.33 (2.25) 0.174 —7.78
0.344 -840 0.68 0.85 0.52 —3.65(0.51) 18.37 (3.11) 0.182 —9.66
0410 —10.25 0.67 0.89 0.55 —1.70 (0.51) 36.49 (2.80) 0.180 —12.74
0511 —16.81 0.89 1.48 1.50 —5.80 (0.79) 40.86 (8.16) 0.190 —17.96
0631 —19.96 1.11 1.28 1.31 —9.74 (0.94) 31.54 (5.97) 0.200 —24.77
0.788 —30.83 1.86 2.56 2.59 —12.66 (1.01) 15.65 (5.83) 0.400 —34.57
0.997 —37.93 7.24 9.00 0.52 4.21 (1.19) 16.08 (2.22) 0.780 —48.61

Table 6.2: G° asymmetry data for individual Q* bins as in [Arm05]. The columns
in the table are: the average four-momentum transfer QQ?, the physics asymme-
try Aphys and its statistical, point-point, and global systematic uncertainties Osiqs,
ag’;;pt, and ag;gb, the raw measured asymmetry A,,, the background asymmetry Ay,
the background yield fraction f,, and the non-vector-strange asymmetry Ayvys. The
statistical uncertainty of A,, and the model uncertainty of Ay are included in paren-
theses in the corresponding columns. The small differences between this table and

Table 5.25 are explained in the text.

two different analyses is excellent. Second, the residual deadtime corrections to
the NA data for the last four Q? bins in this analysis were based on the residual
asymmetry slopes measured in the hybrid electronics (last two rows in Table 5.4),

whereas in [Arm05] the asymmetry slopes of the NA detectors 14 and 15 in the last
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two rows in Table 5.5 were applied. Finally, the systematic uncertainty due to the
bin correlation effects was neglected in [Arm05], whereas it has been conservatively
included in this analysis (see Eqn. 5.12).

In Fig. 6.2, the physics asymmetries in Table 6.2 are plotted vs. the four-

momentum transfer. The inner error bar on each data point is the statistical uncer-
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Figure 6.2: Appys and Ayyg vs. Q2. The inner and outer error bars are the statistical
uncertainties, and statistical and point-point systematic uncertainties combined in
quadrature. The gray band represents the global systematic uncertainty of Aphys.
The solid curve is Anxys computed based on the Kelly form factors.

tainty, and the outer one is the statistical and point-point systematic uncertainties
combined in quadrature. The global systematic experimental uncertainty is plotted
as the gray band on the top of the figure. The solid black curve represents the non-
vector-strange asymmetry calculated using Eqn. 6.3 with Kelly form factors. As
mentioned in Sec. 5.4, the systematic uncertainties (both point-point and global) of
the data primarily arise from the uncertainty of the background correction, except
for the lowest four @? bins and the one at Q? = 0.262 (GeV/c)?, where the leakage

beam correction dominates the global systematic uncertainty. The highest Q% bin
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at ~1 (GeV/c)? corresponds to the second elastic peak in detector 14. Because in
the space of (FPD, ToF), it is far away from other elastic peaks, its background
correction uncertainty is much less correlated with that of other Q% bins, resulting
in a significantly smaller global systematic uncertainty.

Using Eqn. 6.4, the difference between A,,,s and Ayyg in Table 6.2 leads to
G% +nGY,. In Table 6.3, the values of G, +1nG3, with different form factor param-
eterizations (Kelly [Kel04], Arrington [Arr04], and Friedrich-Walcher [FW03]) are
listed. In the literature, sometimes the form factor uncertainty is combined into the
systematic uncertainty. Here we choose to show the results with different form fac-

tor parameterizations separately, and use the difference among them to indicate the

P
TGy

eGh,
factors of Kelly [Kel04]. Different components of the uncertainty of G%, + nG3, are

model uncertainty. The values of n = in the table are computed using the form
also given in Table 6.3. It contains the statistical, point-point systematic, and global
systematic uncertainties from the experimental physics asymmetry. In addition, it
also contains the model uncertainty of the non-vector-strange asymmetry, which in-
cludes the uncertainties associated with the axial form factors and the electroweak
radiative corrections, as well as the beam energy and four-momentum transfer. Note
that due to the Q? in the denominator of Eqn. 6.4, some double-counting of uncer-
tainty contributions would arise if one computes the uncertainty of Ayy s due to the
uncertainty of @* (1%) first, then propagates it into G%, + nG?%,. Instead, one must
take the full expression of G%, + nG4, and evaluate its derivative with respect to Q.
The model uncertainty of G% + nG%, in [Arm05] and what is shown in Table 6.3
differ slightly in this regard. In Table 6.4, different ingredients of the model uncer-
tainty are listed for a few representative Q% bins. As one can see, the uncertainties
due to Q% and R%=! (the “many quark” correction to the isovector axial charge in
Table 2.5) are the dominating pieces.

The results in Table 6.3 are also plotted in Fig. 6.3. The data points are taken
from the “Kelly” column, and the inner (outer) error bars are the statistical (sta-
tistical and point-point systematic combined) uncertainties. The model uncertainty

is plotted as the light green band at the bottom, and the gray band on the top

227



Q? ; GE +nGiy et OVP GIP o
(GeV/c)? Kelly Arrington F&W

0.122 0.098 | 0.037 0.037 0.036 | 0.036 0.019 0.015 0.003
0.128 0.103 | 0.090 0.089 0.089 | 0.032 0.016 0.014 0.002
0.136 0.110 | 0.074 0.074 0.073 | 0.032 0.013 0.013 0.003
0.144 0.116 | —=0.014  -0.014  —0.017 | 0.030 0.013 0.012 0.003
0.153 0.124 | 0.034 0.035 0.032 | 0.028 0.019 0.014 0.003
0.164 0.133 | 0.010 0.011 0.007 | 0.026 0.020 0.014 0.003
0.177 0.143 | —0.028  —0.028 —0.033 | 0.024 0.014 0.011 0.004
0.192 0.156 | 0.003 0.003 —0.003 | 0.025 0.011 0.010 0.004
0.210 0.171 | -=0.010  —0.009  —0.014 | 0.022 0.012 0.010 0.004
0.232 0.189 | —=0.002  —0.001  —0.006 | 0.021 0.012 0.010 0.004
0.262 0.214 | 0.038 0.038 0.035 | 0.019 0.004 0.006 0.004
0.299 0.245 | 0.002 0.002 0.002 | 0.018 0.016 0.011 0.005
0.344 0.283 | 0.033 0.033 0.038 | 0.018 0.022 0.014 0.005
0.410 0.341 | 0.053 0.052 0.064 | 0.014 0.019 0.012 0.005
0.511 0.431 | 0.019 0.017 0.035 | 0.014 0.024 0.024 0.006
0.631 0.543 | 0.060 0.056 0.078 | 0.014 0.016 0.016 0.007
0.788 0.700 | 0.036 0.029 0.049 | 0.018 0.024 0.025 0.007
0.997 0.932 | 0.076 0.065 0.082 | 0.052 0.064 0.004 0.008

Table 6.3: G% + nG3,; measured in the G° forward experiment. Columns “Kelly”,
“Arrington” and “F&W?” correspond to the values of G5, + nG5, using the form
factors of Kelly [Kel04], Arrington [Arr04] and Friedrich-Walcher [FW03]. The
uncertainties on G3,+nG3, are identical for all three models above, and are separated
into statistical (0gat), point-point and global systematic (o% ;7" and 097’ ), and model
(Omoder) uncertainties. The model uncertainties given in [Arm05] are slightly larger
than those in the last column here, due to the double-counting of Q* uncertainty in

[Arm05]. See text for details.

represents (experimental) global systematic uncertainty. One should note that both
of these uncertainties are global to all data points, and they should be combined in
quadrature. The unsmooth behavior of the experimental global band is primarily

due to the variation of the uncertainty for the background correction from detector
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Q? bin (GeV/c)? |  0.144 0.192 0.299 0.631
E, 22%x 1075 3.0x10°® 4.7x 10~ 1.0 x 105

Q? 0.0028 0.0030 0.0036 0.0038

Aa 46x 1075 7.4x10°° 0.00015  0.00038

RE=1 0.0020 0.0024 0.0034 0.0052

RL=0 0.00026  0.00032  0.00044  0.00069

RY 0.00020  0.00025  0.00035  0.00054
3F—-D 1.3x107% 1.6x107° 23x10™° 3.5x107°

As 79% 1075 9.9x 107 0.00014  0.00021

total 0.0034 0.0039 0.0050 0.0065

Table 6.4: The model uncertainty budget for G35, + nGS, for four representative @

bins. Individual rows in the table are the model uncertainties due to the uncertainties
of By, Q*, Ay, RL=', R%=0 R 3F _ D and As.

to detector (see Table 5.13). The two curves in the figures are the non-vector-strange
“zero-lines” , defined as the difference with respect to the Kelly values, corresponding
to the Arrington (pink dot-dashed) and Friedrich-Walcher (black dashed) fits. So
the effect of using different nucleon form factor fits can be visualized from the figure:
the differences between the data and the dashed “zero-lines” are the corresponding
“signals” (G%; + nG%,) for the non-Kelly models. For example, if the Friedrich-
Walcher parameterization is used instead, it will bring the data points further in

positive direction for @Q* > 0.3 (GeV/c)?.

6.3 Interpretation

6.3.1 “Zero-line” Hypothesis

Looking at Fig. 6.3, the first question one might ask is, what is the probability
that the measured data rejects the zero-line hypothesis, i.e., G, + nG3, = 07 A
somewhat related discussion for the three data points of detector 15 has been pre-
sented at the end of Sec. 5.3.6.2, and here we will put the discussion into a broader

scope. This question can be addressed by a classical x? test, i.e., if the underlying
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Figure 6.3: G5, + nG5, vs. Q? measured in the G° forward experiment. The central
values of the data points are calculated using the Kelly form factors. The inner
and outer error bars are the statistical uncertainties, and statistical and point-point
systematic uncertainties combined in quadrature. The lower green and upper gray
bands represent the model and experimental global systematic uncertainties, respec-
tively. The two curves in the figure represent the differences between the Kelly and
Arrington (pink dot-dashed), and the Kelly and Friedrich-Walcher (black dashed)
form factor parameterizations. The figure here is slightly different from the one in
[Arm05] in two aspects. First, the model uncertainty band in [Arm05] is slightly
wider than shown here due to the double-counting of Q? uncertainty of Anyg. Sec-
ond, there was a numerical error in the Friedrich- Walcher zero-line in [Arm05]. See
text for more explanation.

physics is the zero-line in that figure, what is the probability of having a random
data set drawn from it that would yield equal or smaller values of x? (with respect
to the zero-line) compared to the same x? computed from the measured data?

For a large ensemble of N data points with purely random uncertainties, drawn
from a common underlying physics curve with m degrees of freedom, the distribution
of the x? (with respect to the physics curve) follows the standard x? distribution with
a probability density P(x?, N — m) [Bev92]. The integrated probability of having
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5
a value of x? less than a given X2, /XO P(x*, N — m)dx?, can be simply looked
up or calculated. As a familiar exarr?ple, for a single data point, the integrated
probability of having a x? less than 1 relative to a given theoretical value is 68.3%.
However, this simple recipe is not valid for our data due to the existence of global
uncertainties. Therefore we determine the probability with a Monte Carlo (MC)
approach, by generating data samples dispersed around the zero-line according to
our random and global uncertainties. Specifically, for each data point, different
pieces of uncertainty are first grouped into a random and a correlated uncertainty

as

Uv?an = (Ustat)2 + (Ug);;pt)Q ) Ufom = (ngl;b)2 + (‘7model)2 ) (6.14)

where g4, Ug’;;pt, O'gégb, and o0,,04¢ are statistical, point-point systematic, global
systematic, and model uncertainties of G%, + nG5,, respectively. Then a copy of
G% + nGS5, is generated, for data point j, such as

05
+ r Ucorre ?

GI=0+rio]

ran

(6.15)

where G’ is a compact symbol for G$, + nG$, of the jth data point, and 77/ and
r? are both Gaussian-distributed (centered at 0, with 1 as the standard deviation)
random numbers. The nature of the random and correlated uncertainties is reflected
in that for each set of the MC data, r/ is different for each data point, whereas r° is
common for all of them. The x? relative to the zero-line is calculated for each copy
of the MC data, and compared with the same x? of the measured data using the
form factors of Kelly (35.2 for 17 degrees of freedom). Note that the uncertainty of
each data point in calculating x? is taken as the random uncertainty in Eqn. 6.14.
The result of this analysis is plotted in Fig. 6.4. The black histogram is the )2
probability distribution of the MC data relative to the zero-line, and the vertical
red line is that of the measured data. The area of the black histogram below the
red line is the probability that the zero-line hypothesis is rejected; it is 89.6%. The

x? distribution for a pure random data sample with 17 degrees of freedom is also
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overlaid in the figure as the blue histogram to demonstrate the “distortion” of the
MC distribution from the random expectation, due to the correlated uncertainties
among the data. Lastly, for completeness, the same analysis is repeated by using
the overall uncertainty (statistical and systematic combined) for each data point
in calculating x?2, resulting into an almost identical y? distribution and a rejection

probability of 89.3%.

Distribution of x2

GO data: x2 = 35.17, NDF=17

0.04
0.03
0.02

0.01

L ‘Htjrf““w~?__; el

PRI N
40 50 60 70 80
X2

Figure 6.4: The x? distribution (solid black histogram) for the Monte Carlo data
generated according to the random and correlated uncertainties of the G° data
(Eqn. 6.15), with the hypothesis of G5, + nGS; = 0. The red line is the x* of
G° data relative to the zero-line, and the blue dashed histogram is the distribution
of the x? if the correlated uncertainties of all 18 data points of G° are assumed also
to be uncorrelated.

6.3.2 Combined Analysis to the World Data

To make statements about G, and G35, independently, one needs to combine
the G° forward data with results from other experiments. However, since the nucleon
form factors and electroweak radiative corrections were handled differently in differ-
ent measurements, one can not directly combine the published values of G, +nG35,.
The approach we take here is to start from the measured physics asymmetry in each
experiment, use the same nucleon electromagnetic and axial form factors, as well as

the electroweak parameters to calculate G%, + nG%,, and then combine the results.
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In total, the existing world data overlap with the coverage of G° at three differ-
ent values of four-momentum transfer: 0.1 (GeV/c)? (SAMPLE-I [Spa04], HAPPEx-
H-II [Ani05], HAPPEx-He [Ani05b] and PVA4-1I [Maa05]), 0.23 (GeV/c)? (PVA4-
I [Maa04]) and 0.477 (GeV/c)? (HAPPEx-H-I [Ani04]). The SAMPLE deuterium
data [Has00, Ito04] are primarily sensitive to G¢, and are therefore omitted in this
analysis. The kinematics and the measured asymmetries from these experiments
have already been summarized earlier in Table 3.1. For convenience, the same val-

ues are listed here in Table 6.5.

Q? O1ab Aphys
(GeV/c)? (deg) (ppm)
SAMPLE-I ~ 0.098 144.8 —5.6140.67+0.88 [Bei05]
HAPPEx-H-IT  0.099 6.0 —1.14+0.24+0.06 [Ani03]
HAPPEx-He  0.091 57 6.72+0.84+0.21 [Ani05b]

PVA4-II 0.108 35.52 —1.36+0.29+0.13 [Maa05]
PVA4-1 0.23 3545 —5444+0.54+0.26 [Maa04]
HAPPEx-H-I = 0477 12.3 —15.05+0.98+0.56 [Ani04]

Experiment Reference

Table 6.5: A summary of the world data prior to G°: the average kinematics and the
measured asymmetries from the publications. The first and the second uncertainties
of the measured asymmetries are statistical and systematic, respectively. The cen-
tral kinematics of the two PVA4 measurements and the SAMPLE measurement are
obtained from [AM05p] and [BeiO5p], respectively.

The average values of four-momentum transfer of the G° Q? bins do not co-
incide exactly with those from other measurements, therefore for a global analysis
some interpolation is necessary. For Q? = 0.1 (GeV/c)?, we chose to use the lowest
three Q2 bins of G, (0.122, 0.128, 0.136) (GeV/c)?. For the other two momentum
transfers, Q% = 0.23 and 0.477 (GeV/c)?, three adjacent G° points in Table 6.2 are
used for interpolation: @? =(0.210, 0.232, 0.262) (GeV/c)? and Q? =(0.410, 0.511,
0.631) (GeV/c)2

For Q% = 0.1 (GeV/c)?, to apply the physical constraint that (G%+nGS,)(Q* =
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0) = 0 T, a linear interpolation is made directly for G + nG3, using the “Kelly”
values in Table 6.3. The procedure is illustrated in Fig. 6.5(a). The uncertainty
of the interpolated value of G% + 1G5, is separated into four components: the
statistical and point-point systematic uncertainties are given simply by the fit based
on the corresponding uncertainties of those of the three % bins involved; the global
uncertainty is taken as a straight average of those of the three data points (0.014,
see Table 6.3). The model uncertainty of the interpolation is assigned to be the half
difference between the constant (ignoring (0,0)) and linear fits at the desired Q?, as
illustrated in the figure. The red solid data point in the figure is the interpolated
G4, + nG5,, with all components of uncertainty combined. For the other two Q?
points, the physics asymmetries are first normalized by their corresponding Q? value
to take out the leading Q? dependence, for which a linear and constant fit is made, as
illustrated in Figs. 6.5(b) and 6.5(c). The central value of App,s(Q?) (pink solid data
point in the figure) is taken as the average between the two fits. The uncertainty
of the interpolated asymmetry is assigned in the same way as the uncertainty at
Q* = 0.1 (GeV/c)?. One should note, however, that the G electron angles are
different for the three Q% bins involved, which leads to some ambiguity in the value
of n associated with the interpolated result. In this analysis, we simply calculate
the electron angle and 7 using the G° beam energy (3.03 GeV) and the value of the
desired four-momentum transfer, and associate them with the interpolated results.
The interpolated asymmetries at @* =0.23 and 0.477 (GeV/c)? are summarized in
Table 6.6, and the result of G§ + 1nG%, at @* = 0.1 (GeV/c)? can be found in
Table 6.7.

Before we proceed with a global analysis at @*=0.1 (GeV/c)?, since a mea-
surement on a *He target [Ani05b] will be involved, let us review the formalism
here. The *He nucleus is spin zero, parity even and isoscalar. In the standard J*T
notation it is labeled as 070. A nice feature of this type of target is that with

isospin symmetry, the parity violating asymmetry for elastic electron scattering is

GP
tThis is due to the fact that G%(0) = 0 and n(0) = z Ggl = 0. Therefore this procedure is an
€U E

interpolation, not an extrapolation.
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Figure 6.5: The interpolation of the G° data around Q? =0.1, 0.28 and
0.477 (GeV/c)*. The G° data are shown as the blue data points, with the error
bars being statistical and point-point systematic combined. Interpolations are made

A
on G5 +nG3, (Q?=0.1 (GeV/c)?) and é’)—’;“’ (Q%=0.23 and 0.477(GeV/c)?), with

linear and constant fits (dashed lines). The adopted centroids and overall uncertain-
ties of the interpolated values are shown as the red solid (a) and pink solid (b and
¢) data points. The model uncertainty of this interpolation is estimated to be half of
the difference between the linear and constant fits. See text for details.

Q? Orab Aphys — Ostar || OBEPY 0% iy | Oy
(GeV/c)?  deg ppm  ppm || ppm  ppm  ppm | ppm
0.23 927  —498 029 | 0.10 020 0.05 | 0.23
0.477 1368 —13.76 048 | 066  1.12 029 | 1.33

Table 6.6: The interpolated physics asymmetries of G° at Q? =0.28 and
0.477 (GeV/c)?, based on the G° data in Table 6.2 (using the Kelly form factors).
Ostat 1S the pure statistical uncertainty. ag’;;m, ag;/g” and Oinpr are the point-point
and global systematic uncertainties, and the uncertainty assigned to the interpola-

tion procedure, respectively. oy is the combination of the latter three.

only sensitive to G%, (with no dependence on G%,; and G4) [Mus94|. At tree level,

the parity violating asymmetry can be expressed as

A0+0,tree: GFQ2 (
PV A7/ 200
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When the electroweak radiative corrections are included, it is modified to become [Mus94]

GrQ? [ . v 201+ B3
AL = 4sin? Oy (1 + RT=0) + v IE ) 6.16
PV 47T\/§Oé ( W( 1% ) G%- + G%‘ ( )

where the isoscalar and isosinglet R factors are related to R, and R} in Table 6.1

as [Mus94]

R + (1 — 4sin” Oy ) R,
2(1 — 2sin® Oyy)
R — (1 — 4sin” Oy ) RY,
4sin? Oy,

Ry = = —0.0141(3),

R0 = = —0.0091(3). (6.17)
The uncertainties of these two factors are propagated from the uncertainties in R
in Table 2.3.

Based on the results in Tables 6.5 and 6.6, one can compute G, + 1G4, using a
common set of parameters (nucleon form factors, electroweak radiative corrections,
etc.). For the hydrogen data, the values of Ap,,s are translated into G + nG%,
using Eqn 6.1, and for the “*He point, Eqn. 6.16 is used to calculate G%. The form
factors of Kelly [Kel04] have been used in this global analysis, and the electroweak
parameters are taken from Table 6.1. The resulting world data of G% + nGj, at
Q% =0.1, 0.23, and 0.477 (GeV/c)? are summarized in Table 6.7.

Using the data from Table 6.7, we can make a combined analysis at three differ-
ent four-momentum transfers. In the (G%;, G5,) space, each measurement constrains
a linear band of

G +miGy = gi £ 0(g:), (6.18)

in which 7n;, g; and o(g;) represent the values of n, G% + nG%, and its uncertainty
for a given measurement i. Intuitively, with more than one of such bands, the best
values of (G%;, G%,) lie within the overlapping area. In Fig. 6.6, the five bands at
Q? = 0.1 (GeV/c)? are overlaid. For each band, the inner dashed lines and the outer
solid lines represent statistical, and the statistical and (experimental) systematic

combined uncertainties, respectively. Visually the five bands have a common area
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Experiment Q? (GeV/c)? n G5 +nGy Ostat Osys

SAMPLE-H 0.0980 1.6771 0.5632 0.3319  0.4360
HAPPEx-H-II 0.0990 0.0795 0.0303 0.0251  0.0063
HAPPEx-He 0.0910 0.0000 —0.0386 0.0416  0.0104
PVA4-II 0.108 0.1045 0.0661 0.0288  0.0129
GO 0.1000 0.0803 0.0539 0.0193  0.0181
PVA4-1 0.23 0.2248 0.0374 0.0239  0.0115
GO 0.23 0.1872 0.0074 0.0120  0.0095
HAPPEx-H-I 0.4770 0.3976 0.0167 0.0172  0.0098
GO 0.4770 0.4000 0.0415 0.0085  0.0234

Table 6.7: The world data of G%+nG%, recalculated using the standard G° parameter
inputs at Q% =0.1, 0.23, and 0.477 (GeV/c)?. The Kelly form factors are used. ogqy
and ogys are the statistical and (experimental) systematic uncertainties of G5+nG5,.

of interception, showing that they are in good agreement.
Technically, the evaluation of the best (G%,G?,) follows the method of least

squares, i.e., we define the x? function as

2

GGy = 3 | 2] (6.19)

i

and the solution of (G%;,G%,) is the pair that gives the minimum x? = x2, . The
value of x?2 ., when having redundant constraints, gives a measure of the consistency
among measurements. The contour of (G%, G3,) with a fixed x? = x2,;,, + Ax?, takes
an elliptical shape [PDGO4]. The ellipse with x* = x2,,, + 1 is conventionally called
the error ellipse, since the projection of the ellipse onto a given axis gives +1 unit
of the estimated uncertainty of the corresponding variable. Similarly the contour of
X% = X2, + 4 is the so-called 20 ellipse. One should note, that this simple prescrip-
tion requires an independent uncertainty o(g;) for each measurement. Therefore
only the total experimental uncertainties (the combination of o4 and o4y in Ta-
ble 6.7) are taken to compute x?. The model uncertainties, such as the electroweak

radiative corrections, and the variation due to the form factor parameterizations,

237



O-l5~lllIIIIlIIII:IIIIlIIIIlIIII
.. N\ H
~‘~~ N ]
. " A L}
N D H
N N ' H

Q°=0.1 .

. — SAMPLE-H i

0.1 —

N N — HAPPEX-He

i RN — A4l .
0.05+ LN — GO —
wn LW O ____________________________ 3 N

_.1 |III|IIII|I:IIII|I:I'III|IIII|I‘\~I‘\Ii
05—1 -0.5 0 0.5 1 1.5 2

Gy,

Figure 6.6: The world data of G§ + nG4, at Q* = 0.1 (GeV/c)*. The form fac-
tors of Kelly are used. Different bands in the plot represent: HAPPFEz-H-II [Ani05]
(light blue), HAPPEz-He [Ani050] (blue), PVA4-II [Maa05] (light green), SAM-
PLE [Spa0/] (red) and G° [Arm05] (pink). The inner dashed lines and the outer
solid lines represent the statistical and total experimental uncertainties for each
measurement, respectively. The yellow and gray blue (dark) ellipses are the lo
and 20 error ellipses for the point of marimum likelihood of all erperiments at

(G%; = —0.004, G4, = 0.55). The black point represents G5, = G5, = 0.

will be treated separately.
Applying the above technique to the five measurements in Fig. 6.6, the best
fit of (G%;, G3,) is

G, = —0.004 +0.026, G%, = 0.55 + 0.28
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with a correlation of —0.82 between the two, and a minimum x2,, = 1.63 with 3
degrees of freedom. Let us make some remarks at this point. First, the value of 2
quantitatively shows that the agreement among the five independent measurements
is excellent, and the resulting G, is large and positive at the ~2¢ level, Second,
the five measurements used in this analysis have some slight differences (<~10%)
in Q. One could try to shift the values of G% + nG%, to a common Q?, by, e.g.,
assuming that the data scale with Q2. This correction leaves the values of the
separated G, and G, virtually unchanged. Third, in terms of probability, Ax? =
x> — X2, obeys the x? distribution with 2 degrees of freedom [Bev92]. The lo
error ellipse is shown as the yellow area in the figure; for a joint estimate of two
parameters, the area enclosed by it corresponds to the 39.3% confidence interval.
The gray blue (dark) ellipse is the 20 ellipse, corresponding to a confidence interval
of 86.5%. Fourth, G5, = G4, = 0 (shown as the black point in the figure) yields a
Ax? = x*—x2,,, = 10.1, corresponding to a confidence level of only 0.6%. Although
the model uncertainties have not yet been taken into account, this at least indicates
the unlikeliness of the non-vector-strange hypothesis at this momentum transfer.
Lastly, since the (electroweak) model uncertainty of G% + nG%5, is dominated by
the contribution of R%=! (Table 6.4), we perturb R4=! according to its uncertainty
in Table 6.1 and re-evaluate G, + nGY, for each measurement, then repeat the
least squares procedure described above. The resulting variation of G% and G,
are £0.008 and £0.14 respectively. The non-negligible variation of G, is primarily
driven by the variation of the SAMPLE result, since as a backward measurement
it is more sensitive to the axial form factor. The uncertainty due to the nucleon
EM form factors was evaluated similarly by applying Arrington or Friedrich-Walcher
parameterization globally to all the measurements. The effect of this turns out to be
negligible compared with the electroweak model uncertainty. Therefore, we arrive

at the final extracted G4 and G5, at Q% = 0.1 (GeV/c)?:

G5,(Q2 = 0.1) = —0.004 + 0.026 + 0.008 , (6.20)

G5,(Q*=0.1) =0.55 £ 0.28 + 0.14. (6.21)
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In each expression, the first uncertainty is experimental, and the second is the model
variation. Let us recall Eqns. 2.27 and 2.28, that G, and G, need to be both
multiplied by —%, the electric charge of the strange quark, to give the strangeness
contribution to the nucleon form factors. Taking this into account, the measured
value of G, implies that the contribution of strange quarks to the proton’s magnetic
form factor is ~ —10%.

The world data at @ = 0.23 and 0.477 (GeV/c)? are plotted in Figs. 6.7(a)
and 6.7(b), respectively. At Q* = 0.23 (GeV/c)?, following the same procedure as
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(a) Q% = 0.23 (GeV/c)? (b) Q% = 0.48 (GeV/c)?

Figure 6.7: The world data of G5, +nG3, at Q* = 0.23 and 0.477 (GeV/c)*. The
Kelly form factors are used in both plots. The dashed and solid lines represent the
statistical and total experimental errors for individual measurements. The pink, light
green and light blue bands are the results from G° [Arm05], PVAJ-I [Maa04] and
HAPPEz-I [Ani04], respectively. The black point in (a) is the best fit of (G%, G3y)
at Q* = 0.23 (GeV/c)?. (0,0) are indicated in both figures.

above, we get

G5(Q*=0.23) = —0.14+0.16, G5, (Q* =0.23) = 0.80 £ 0.81, (6.22)
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with the small model uncertainties neglected. Although with large uncertainties,

these results tend to favor a negative G, and a positive G3,. For the measurements

at Q* = 0.477 (GeV/c)?, the G° forward and HAPPEx-I had very similar kinematics,

therefore the two bands in Fig 6.7(b) are almost parallel. As one can see, the

agreement between the two measurements is excellent, but no separation of G'3, and
%; can be made.

To summarize, the G° forward angle results have been compared with previous
measurements and yield excellent agreement. A global analysis of the world data
has been made, which yields a positive G§, at the 20 level at Q> = 0.1 (GeV/c)?,
implying that the strange quark contributes to the proton magnetic form factor to

~ —10%, and favors a positive G, and negative G% at Q* = 0.23 (GeV/c)2.

6.3.3 Speculations Regarding the Q? Behavior of G and G%;, and

Comments on Theoretical Predictions

Now let us take the full data set of G° (Fig. 6.3) into account and speculate
about the Q? behavior of G4 and G%, in a wider scope. One should first note that
the linear combination coefficient 7 is a function of the four-momentum transfer,
and for the G° kinematics n ~ 0.94Q2. In other words, in the G° forward angle
data, the weight of G5, increases monotonically with @Q?. Let us first focus on the
low Q? regions in Fig. 6.3. The positive data in this region can be understood from
the results in Fig. 6.6, that a positive and large G5, drives the data in the positive
direction, despite the smallness of . As Q? increases to 0.2 (GeV/c)?, despite the
increase of 1, the combined G, + 7G5, decreases, which suggests that either G, or
G%, rapidly becomes negative. The results from Fig. 6.7(a) imply that it is G%, that
becomes negative, while G$, stays positive. As Q? increases beyond 0.3 (GeV/c)?,
the data exhibit a significant positive trend, and they are consistent with HAPPEx-
H-I measurement(Fig. 6.7(b)). Since n has been fairly large there, it is possible that
G4, 1s positive in this region.

Lest one becomes too aggressive about the above picture, one should be aware
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of the sparsity and level of precision of the existing world data. Therefore the
arguments above can at best be speculations, except for the statement at Q? =
0.1 (GeV/c)?, which is reasonably well-grounded. The separation of G%, and G%, at
other four-momentum transfers awaits the results from future experiments, which
will be briefly introduced in Sec. 6.3.4.

Let us reiterate the physical interpretation of the signs of G% and G9,, as
discussed in Sec. 2.6. A negative G$,;, which is favored by the G® and PVA4 data at
Q* = 0.23 (GeV/c)?, leads to a positive Sachs strangeness radius (r2) z, which implies
that on average the s quark is spatially outside the § quark in the nucleon. Note
that this is consistent with the well-known picture of the neutron charge distribution
that it has a positively charged “core” and a negatively charged “skin”. One should
also note that this is contradictory to the naive kaon (u3) cloud picture, which
would infer an 5 outer layer. For G,, a naive non-relativistic argument is given
in [HRGO00], implying that a kaon cloud picture would naturally lead a negative s,
which too is contradictory with the positive ps that the world data indicate. In
this regard, the signs of G4, and G¥, that are favored by the data are physically
consistent.

It is precocious, however interesting, to compare the positive signs of u,; and
(r?) with the theoretical predictions summarized in Sec. 2.6. Among all the predic-
tions that have been discussed, only the HBXPT calculation in [HKM99] (Sec. 2.6.1),
the resonance saturation model in [RMI97] (Sec. 2.6.2), and a hybrid of VMD and
kaon loop calculation in [Mei97] (Sec. 2.6.3) predicted positive signs for both quanti-
ties. The first one was a lowest order HBPT calculation, which was later shown to
become uncertain when the calculation was extended to higher order [Ham03]. The
second calculation, as noted by the authors in [RMI97], was a conceptually incon-
sistent treatment. The last one was a calculation only looking at the OZI allowed
¢ meson coupling to the kaon loop, without the consideration of the w—¢ mixing,
and the predicted values of ys and (r2)y are very small. Even if one takes these
predictions seriously, it is difficult to translate them into an intuitive and coherent

physics picture.
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Quite recently, an interesting idea has been proposed by Riska et al., who
have considered the consequence of a five-quark uwudss wave function mixture in
the proton under the assumption of spin dependent hyperfine interaction between
quarks [ZR05, ARZ05, RZ05]. These authors show that in all possible five-quark
configurations (with at most one quark orbitally excited), the lowest energy state is
with s in the ground state and the uuds subsystem in the P-state. This configuration
leads to a positive G, and a negative G5, and As. This theoretical approach is
still under active investigation, and it is certainly too early from the experimental
perspective to draw conclusions. Nevertheless, this five quark picture is possibly
one of the most intuitive theoretical treatments to date, and so far is experimentally

favored.

6.3.4 Future Outlook

After the completion of the G° forward angle experiment in spring 2004, the
worldwide program of parity violating electron scattering has been continuing, with
the primary goal to further elucidate the physics situation of the nucleon vector
strangeness.

The backward G° experiment [GOBkw1, GOBkw2] will soon be launched in
Hall C at the Jefferson Lab. A schematic drawing of the G° backward setup is
displayed in Fig. 6.8. The spectrometer is turned around with the polarity of the
magnet reversed, selecting only backward-scattered negatively charged particles.
Additional cryostat exit scintillation detectors (CED) and aerogel Cerenkov coun-
ters are installed to separate elastic and inelastic electrons, and negative pions. The
G° backward running is currently planned at two values of four-momentum trans-
fer: 0.63 (GeV/c)? and 0.23 (GeV/c)?, with beam energies of 687 and 360 MeV
respectively. Both measurements will be performed on hydrogen and deuterium
targets, and in combination with the results obtained from the forward angle, a
model independent separation of G%,, G5, and GZ(T:U can be made at these two
kinematics. In Figs. 6.9 and 6.10, the expected uncertainties of G%;, G, and GZ(T:U

are shown. With projected accuracies, the measurement at Q? =0.63 (GeV/c)? will
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Cerenkov

Electron = \:\"\
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Figure 6.8: G° backward angle setup. Electrons and negative pions are selected by the
magnetic field. One segment of the spectrometer is shown. Additional cryostat exit
scintillation detectors (green), in combination with the focal plane detectors (brown)
allow the separation of elastic and inelastic electrons. The w— background is vetoed
by aerogel Cerenkov counters (blue).

provide insight into the origin of the significant positive trend measured in high @?
region in the G° forward data (Fig. 6.3), and the lower Q> measurement will further
constrain the intriguing possibility of a negative G, and a positive G, implied by
the PVA4 and G° forward angle measurements (Fig. 6.7(a)). Additional important
physics outcomes from the G° backward experiment include measurements of parity
violating asymmetries in the N — A transition [Wel04], and in 7~ photoproduction
from deuterium [Mar04], as well as a measurement of the vector analyzing power in
elastic electron-proton scattering [Wel04b].

The PVA4 backward experiment began data collection in Jan. 2006 at the
Mainz Microtron in Germany. Similar to the G° backward running, PVA4 uses the
same detector package as described in Sec. 3.3 at backward angle. The collabo-
ration plans to measure backward asymmetries on both hydrogen and deuterium
at Q% = 0.23 (GeV/c)? [Maa06p]. The expected precision of the PVA4 backward
measurement is comparable to that of the G® backward experiment at the same Q2.

With two measurements employing distinctly different techniques made at the same
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Figure 6.9: Ezpected uncertainties of G5, (left) and GS, (right) at Q? =0.63
and 0.23 (GeV/c)? by combining the forward and backward G° measurements.
Both form factors have been multiplied by a factor of 1/3 to reflect their con-
tribution to the nucleon electromagnetic form factors. To indicate the scale,

the corresponding proton form factors are divided by 10 and overlaid in the
plots (blue curves). Figure taken from [GOBkw?2].
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Figure 6.10: Same as Fig. 6.9 but for GZ(T:U. The two existing SAMPLE mea-
surements [Bei05] (square), and a theoretical calculation at zero momentum
transfer [Zhu00] (triangle) are also shown. Figure taken from [GOBkw2].

@Q)?, crucial crosschecks on the results can be made, and if in agreement, the physics

at this Q? point will be answered with a much improved accuracy.
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The HAPPEXx collaboration has recently completed a low Q? (~0.1 (GeV/c)?)
measurement on hydrogen and *He, with results expected soon. With a much im-
proved statistical precision at Q? = 0.1 (GeV/c)?, their measurements will yield
a very precise determination of the sign and size of G3,, and a better constrained
G4, at this Q? point. Currently another HAPPEx forward angle measurement at
Q? = 0.63 (GeV/c)? is planned in Hall A of the Jefferson Lab [Pas05]. Such a high
precision forward angle measurement, together with the G° forward and backward

. . . T=1
measurements, will provide a more accurate separation of G%, G, and GZ( ) at

this value of Q2.

6.3.5 Conclusions

The strangeness content of the nucleon’s electromagnetic form factors, G, and
%7, describes the contribution of the strange sea to the charge and magnetization
distributions of the nucleon. They open a unique window to study the role of
the non-perturbative QCD sea in low energy nucleon properties. Parity violating
electron scattering provides a powerful neutral weak probe, which interacts with
quarks inside the nucleon differently, as compared to the widely used electromagnetic
probe. By combining measurements from these two probes, the contribution from
strange quarks can be separated.

In this work, we have reported one of such parity violating electron scattering
measurement, the G° forward angle experiment. The parity violating asymmetry
of elastic electron-proton scattering has been measured over a wide range of four-
momentum transfer from 0.12 to 1.0 (GeV/c)?, from which linear combinations of
G% and G%; have been determined in 18 Q? bins. The G° forward angle data,
combined with previous world data, indicate that both G% and G3, are non-zero
and Q2-dependent. In particular, the world data have led to a positive G5, at the
20 level at Q% = 0.1 (GeV/c)?, implying a ~ —10% contribution of strange quarks
to the proton’s magnetic form factor. The data also suggest that G% might be
negative around Q? = 0.2 (GeV/c)?. These results are contradictory with most of

the theoretical predictions presently available. Several similar types of experiments
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are in preparation or ongoing. These measurements together will lead to a clean
separation of G, and G4, at different momentum transfers in the near future, and

deepen our understanding of this intriguing problem in strong interactions.
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Appendix A
Leakage Correction

A.1 Introduction

At the CEBAF electron source, three separate laser systems illuminate a com-
mon photo-cathode to produce electrons for the three experimental halls. Under
normal running conditions, all 3 lasers are pulsed at the same repetition rate of
499 MHz, with their phases separated by 7/3. During the G° running period, the
Hall C Ti:Sapphire laser was pulsed at a repetition rate of 31.1875 MHz instead.

Although the driving pulse lengths of the seed lasers are generally short (~<
100 ps), the outputs of the lasers require finite time to be turned off. Therefore, there
is a small component of the beam in one hall due to the tails of all three lasers. In
addition, each laser has a DC component due to the amplified spontaneous emission
(ASE), which creates a DC electron beam for all halls. These are the two sources
of the so-called leakage beam, and their difference will become apparent in our
discussion of the G° laser leakage in Sec. A.3.2. Just to set the scale, the nominal
G° beam current is ~40 pA, and a typical leakage current is ~50 nA.

Because of the different time structure, the detected rates due to the G° and
leakage beams have different time of flight (ToF) distributions. In Figure A.1(a),
a typical measured ToF spectrum is overlaid with the spectrum due to the leakage
beam. As one can see, the leakage spectrum is nearly DC with only ~0.1% of
the total rate. However if the leakage beam has a large charge asymmetry, it will
introduce a time-of-flight dependent false asymmetry contamination to the measured
asymmetry. Qualitatively, this can be understood from an exaggerated cartoon
shown in Fig. A.1(b). Suppose that the average rates due to the G° and leakage
beams are the same, but with different shapes as illustrated, and the two beams
have non-zero but exact opposite charge asymmetries. Then there will be a false

asymmetry in the measured spectrum, which is different in sign for the “leakage”
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and “proton” regions in Fig. A.1(b), despite the fact that the integrated charge

asymmetry of the combined beam is zero.

ToF, octant 4 detector 5

o
=}

A, =600 ppm |

Ago =-600 ppm aoo

<Rell)>= <R (0>
ROOARD

A
Alt) =
O RORO | G

=
o

Rate(kHz/bin)

Yield(kHz/p A)

H
(wdd) AnawwAsy

elastic cut

LN W Ao N ® ©
T[T

|

0

S

]

i
] 3
Sl AR L A AL B R AL

o

o
o
=
o
e
o
N
=3
]
o
w
S

O P PP PP P R N R I
20 40 60 80 100 120
ToF(1/4ns) ToF(ns)

(a) Measured ToF spectrum. (b) A exaggerated “cartoon” of (a).

Figure A.1: (a): an example of the measured (black) and leakage (light blue) ToF
spectra. The y axis is in log scale. (b): a cartoon to illustrate the origin of the false
asymmetry arising from the leakage (see text).

A.2 The False Asymmetry Due to the Leakage

A.2.1 Formulation

The beam charge monitors (BCMs) in the hall measure the integrated beam
charge every 1/30 s, so they are only sensitive to the combined average current of

the G° and leakage beams. Therefore we have
Iy, = Igo + 11, (A.1)

where Igo, I, and I,, are the average current of the G°, leakage, and combined

beams, respectively. The time-encoding electronics also measure a combined rate
R.(t) as
Rm(t) = RGO (t) + RL(t) = YGo (t)IGo + YL(t)IL , (AQ)

where Rgo(t)(Yeo(t)) and Ry (t)(YL(t)) are the rates (yields) due to the G° and

leakage beams, respectively. Note we have treated the beam currents as DC and
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absorbed the time-structure into the rates and yields (R(¢) and Y(¢)). Since the
leakage rate is approximately flat, the leakage yield Y7,(¢) is simply the time average
of the G yield Yo (2).

Normalizing the total rate by the beam current, we have

Rm(t) _ YGo(t)IGo + YL(t)IL

V(1) = I, Tgo + 11

: (A.3)

in which Y,,,(¢) is raw experimental yield. This equation can be cast in terms of

asymmetries as

_ Reo(t) Ru(t)
Am (t) - R, (t) AYgO (t) + R, (t) AYL (t)
GO (t) Igo RL (t) IL
(g ) et (g 1) e 00

where Ay, (t) and Ay, (t) are the physics asymmetries of the G° and leakage yields,
and A7, and Aj, are the charge asymmetries of the G° and leakage beams, re-
spectively. Again, due to the flatness of the leakage rate, its physics asymmetry
Ay, (t) is the time average of the G° asymmetry Ay _,(t). The origin of the leakage
problem becomes apparent from Eqn. A.4. The different time structures of the G°

and leakage beams lead to the following inequalities:

oy
Q
o
—~
&

I
T R A T A0 £ A ), (A5)

so the measured asymmetry is no longer the physics asymmetry of G°. Conversely if
the G° and leakage beams were to have the same time structure, there would be no
false asymmetry, however large the leakage current and asymmetry were. Further-
more, it can be observed from Eqn. A.4 that if the charge asymmetries of the G° and
leakage beam are the same, the leakage contamination also approximately vanishes.
Therefore, any component of the leakage beam can be omitted if it shares the same
charge asymmetry as the main beam, regardless of its detailed time structure. This

fact will later be used in Sec. A.3.2.

250



The total charge asymmetry measured by the beam charge monitors is an
average of the charge asymmetries of the G° and leakage beams, weighted by the

corresponding currents:

1, I
A = I£ Ap + I—LAIL. (A.6)
So Eqn. A.4 can be rewritten as
Reo(t) Ry (1) Reolt) I 1, 1= 750
( ) Rm(t) YGO( ) Rm(t) YL( ) <Rm(t) IGO m IGO 1 + Ry (1) Ir
Rgo(t)
(A.7)

For the four terms on the right hand side of this equation, each is an asymmetry
quantity with a coupling coefficient. Let us first make some order of magnitude es-
timate for these asymmetries. Ay, (t), the physics asymmetry of G, has a typical
size of —5 ppm, and varies with ¢t. The physics asymmetry of the leakage yield,
Ay (1), is the time average of Ay, (t), therefore has a similar size. The measured
charge asymmetry A; is very small (~ 0 ppm) due to the charge asymmetry feed-
back system, and the charge asymmetry of the leakage beam A;, has a typical size
P;t‘j:((tt)) and ﬁ;((?) are the ratio of the G°

and leakage rates to the total measured rate. For most regions on the ToF spec-

of ~600 ppm. The coupling coefficients

trum, g—; ~ I%LO < 1 and 1;_(:,: ~ 1. With the above preparation, Eqn. A.7 can be

simplified to become

An®) = Ay (0= 75 (1 720 =0 - (72— 1) n . (A9

or

Afalse(t) = Am(t) - AYGO (t) = _II—; (1 — ;/,zo((tt))> A]L . (Ag)

in which Ajys(t) is the false asymmetry due to the leakage. One observes that
Afase(t) is inversely proportional to the G° beam current Igo; this fits into the
intuitive picture that the more the G° current, the less contribution the leakage
contamination. Furthermore, Ajys.(t) is proportional to the leakage current I,

and its asymmetry A;,. Therefore the key of the leakage correction is to properly
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determine these two quantities.

A.2.2 Examples

We shall consider the leakage contamination for a few representative regions of
the ToF spectrum. The standard PID cuts have been defined in Sec. 5.2.1 and some
of them are indicated in Fig. A.1(a). For the leakage discussion, we introduce one
more cut, “cut0”, defined as the “forbidden” low rate regions of the ToF (very early
and very late regions in the spectrum). This cut is also indicated in Fig. A.1(a), and
it is only defined for the French detectors 1 through 7 (see details in Sec. A.4.1).

For the nominal beam current (40 pA) with a typical leakage current (50 nA),
the average measured, leakage, and G° rates per detector!, R,,, R, and Rgo, and
g—i of these cuts are shown in Table A.1. The measurement of leakage rate R will
be discussed in Sec. A.3. Also tabulated are the current-normalized yields Ygo and

Y7, and their ratio YY—LO From the table, one can see that for all the cuts except cut0,
G

PID cuts Ry, R, Rgo & Yoo Y @3E
m a0

total ~ 1137.4 1422 1136.0 1.25x107® 2843 2843 1
proton  647.1 0.2054 646.9 3.17x107* 16.19 411  0.25
cutl 1023 0.1164 1022 1.14x107* 256 233 091
cut2 1062 0.1165 106.1 1.10x107* 2.66 2.33  0.88
cut3 2015 0.1920 200 9.53x107* 0.5 3.84  7.69

cut0 5.97 247 3.5 0.41 0.09 494 563.87

Table A.1: The average measured, leakage, and G° rates per detector, R,,, R, and

Rgo, wn various PID cuts, and the ratio g—;, with a beam current of 40 pA and a

leakage current of 50 nA. The (beam current) normalized G° and leakage yields, Ygo
Yr

and Yy, and their ratio v are also tabulated. The rates and yields are in units of

G
kHz and kHz/nA, respectively.
KL~ If;LO < 1, and % ~ 1, which justify the assumptions that lead to Eqns. A.8
m G m
and A.9.

tFor cut0, the rates are integrated over all four French octants of detectors 1 through 7.
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The factor (1 — ;;LO((%) in Eqn. A.9 is of particular interest. It shows that the

sign of Ay in a given time bin ¢ depends on the relative sizes of Y;, (the time
averaged yield), and the G yield in this bin. For example, in the proton cut where
Yoo > Yy, Atase and the leakage charge asymmetry A, are opposite in sign. This
can be qualitatively understood from the fact that the charge asymmetry of G°,
Ap,, which is opposite in sign to Ay, (as a consequence of the zero overall charge
asymmetry), has a dominating contribution in this region. For cut3, on the other
hand, since Yo < Y7, therefore A;, dominates and Ay, shares the same sign as
Ap, .

In the extreme situation that the whole G° spectrum is just a 6 function proton

Ir

peak and the leakage beam is continuous, Eqn. A.9 becomes A g >~ —ﬂAIL ~
G

—1.25 x 1073A;, . In reality, the proton peak is not infinitely narrow, and using the

values in Table A.1, we have

I

Atuse = —0.
fal 075IG0

A, ~—9.4x107*A,, .

Cut3 sits on the other side of the hierarchy; according to Table A.1, % = 7.69.

Therefore Eqn. A.9 can be written as

I

Afaise ~ —(1 — 7.69) I

A[L ~ 4+8.4 % 10_3A1L .

Note again that the false asymmetry changes sign from the proton cut to cut3.

Cut0 can be regarded as the extreme of cut3, where YY—LO ~ 600 > 1, or
G

;;LO > II—LO (see Table A.1). However the approximations leading to Eqn. A.8 no
G G

longer hold. So we start from Eqn. A.7 instead and simplify it as

R Ccu
AcutO =~ RL’ 0 AIL bl (AIO)

m,cutQ

where R, .0 and Ry, cu0 are the measured and leakage rates in cut(, respectively.
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A.3 Direct Measurements of the Leakage Current and Asymmetry

A.3.1 Leakage Due to the A and B Lasers

The leakage currents and asymmetries due to individual lasers can be directly
measured. For the A and B lasers, this was accomplished by turning off the G°
laser; then the leakage beam is completely responsible for the rates in Hall C. The
leakage current was computed by scaling the leakage rate measured by the FPDs by
that measured at the nominal G° beam current (40 pA). The luminosity detectors
(see Appendix C), operating at a high gain mode, were used to measure the leakage
charge asymmetry T. The leakage spectra due to the A and B lasers are shown in
Fig. A.2(a). Although both exhibit 2 ns beam structure, the width of the structure
is small compared to the width of typical PID cuts (4 — 5 ns). Therefore, in the

following discussion, the A and B leakages will be treated as flat.
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(a) A and B leakage. (b) C Leakage.

Figure A.2: Measured leakage ToF spectra with the G° spectrometer. (a): leakage
ToF spectra due to the A (black solid) and B (red dash) lasers; (b): leakage ToF
spectra due to the G° laser itself when putting the main pulse onto the A (black
solid) and B (red dash) slits. See text for details.

tDue to the much higher particle rate, LUMIs measure A;, with better statistical precision
compared with the FPDs.
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A.3.2 Leakage Due to the G° Laser

To access the leakage component of the G° beam, we “rotated” its main pulses
onto either the A or B slit (see a discussion of the CEBAF injector operation in
Sec. 4.2.1.1), which allows a measurement of the leakage in Hall C.

Figure A.2(b) shows the spectra of FPD 5 when the main G° pulse was put onto
either the A or B slit. In either case, one observes a G°-like spectrum superimposed
on a flat background. Apparently they correspond to the two sources of the leakage
introduced in Sec. A.1: the G° structure is due to the tail of the G° main pulse and
the flat background is due to the ASE. We speculate that after the G° laser delivers
its main pulse (~50 ps FWHM), there exists a long tail, the electrons from which
are bunched as well and leak through when the C slit rotates around, which makes
an obvious G° structure in the leakage spectrum. From Fig. A.2(b), one observes
that when the G® main pulse was put onto the B slit, the height of the proton peak
measured in Hall C is roughly a factor of two compared with that of the A slit,
which indicates that the chopper rotation sequence is A-B-C and the decay time
constant of the G° beam tail is ~ 1 ns f. Therefore under the normal situation
when the G° main pulse is put onto the C slit, one can project from Fig. A.2(b)
that each time the chopper rotates around to the C slit, the tail of the G° laser
would make secondary peaks of 11.2, 1.4, 0.17, --- Hz subsequently. The first one

11.2 Hz
100 kHz

would be ~ 1 x107* of the main peak in strength, and offset by 2 ns, and so
on. The multiple decaying peaks right after the elastic peaks in Fig. A.2(b) indeed
support this picture.

The G° main laser pulse and its tail arise from the same driving pulse, so they
share the same initial properties upon arriving onto the helicity pockels cell and the

photocathode. Hence they should interact with the control devices in the same way

at the source, and it is very likely that the tail of the G° beam has the same charge

tOne should treat the interpretation of this ~ 1 ns time constant with some care; it is not the
time scale to turn off the laser. When the G° main pulse is put onto the B slit, it would have made
an elastic proton peak with a height of ~100 kHz per bin, were there a G° detector in Hall B.
% ns later when the chopper rotates to the C slit, the residual G° structure only contains a peak
of 45 Hz (see Fig. A.2(b)). So the initial “turning-off” of the G° main pulse is very sharp. Only

the residual tail of the main pulse is decaying slowly.
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asymmetry as the main pulse. Then as discussed in Sec. A.2.1, the G° tail can be
simply omitted. Therefore only the ASE (DC) component of the G° leakage will be
considered in the following analysis .

One subtlety persists however. Due to the existence of the G° tail, the mea-
sured leakage rates and asymmetries are not the same rates and asymmetries of
the ASE component. From Fig. A.2(b), we estimate that the average contribution
of the ASE component is 50% of the total G° leakage. Therefore we use 50% of
the measured FPD rate to calculate the current of the ASE leakage, and the ASE

asymmetry is evaluated as twice the asymmetry measured by the LUMIs.

A.3.3 Summary

Based on the discussion above, we will treat the leakage ToFs from all three
lasers as flat. This important fact later enables us to apply the measurement in cutO
to correct for the leakage throughout the ToF spectra.

In Table A.2 the results (I, and Aj,) of the direct leakage measurements of
individual lasers are summarized. For the G° laser, the extracted values for the ASE
components are shown. The last column, Ry, is the total measured rate in cut0,
which will be discussed in Sec. A.4. During all of these measurements, we had kept
the G° parity feedback devices at their normal settings to mimic the normal running

conditions. As one can see, the leakage beam properties are not stable over time.

A.4 Cut0O Technique

A.4.1 Definition

Due to the unstable properties of the leakage beam, using the direct mea-

surements in Table A.2 to correct for the full data set is not an acceptable option.

t An unlikely scenario would be that the G° tails has a large charge asymmetry — let us assume
that A, ~ 300 ppm (see Table A.2). The fraction of the first child peak underneath the main peak
is ~ 0.5 x 10™* (a factor 0.5 is to take into account the 2 ns offset). Then Afarse due to the tail is
only 0.5 x 10~* x 300 ppm ~ 0.015ppm, much less than the systematic uncertainty we assign later
in Sec. A.5.
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Run A/B/C IHWP I;(nA) A (ppm) Reuo(kHz)
22071 A IN 13 —1879(20)  0.63
22120 A IN 12 —1121(20) 0.56
21865 B IN 38 —690(20)  1.85
21866 B ouT 39 435(20) 1.90
922030 B OUT 31  —511(10)  1.51
22062 B IN 16 —162(20)  0.76
22067 B IN 15 —101(22)  0.70
22102 B IN 21 40(10) 1.03
22104 B IN 14 559(17)  0.69
22152 B OUT 26  —565(10)  1.26
922162 B OUT 29  —974(11)  1.46
22028 C  OUT 11  —446(52)  0.54
92029 C  OUT 11  —204(54)  0.54
22060  C IN 11 —614(58)  0.55
22069  C IN 12 —370(70)  0.57
22096  C IN 11 —200014) 055
22106  C IN 12 686(32)  0.60

Table A.2: Direct measurements of the leakage currents and asymmetries for indi-
vidual lasers. Column “IHWP” gives the state of the insertable halfwave plate during
the measurements. For the C leakage, the extracted values for the ASE components
of the G° laser are shown (see text).

Instead we needed to find a “leakage monitor” in the data that allows us to de-
termine the leakage current I;, and its asymmetry A, at the time the data were
taken.

Let us consider a given region of the measured spectrum, “cutX”, with a total
rate Ry, c.ex and a leakage rate Ry q,:x. For simplicity, let us further assume that
the charge asymmetry of the G° beam and the physics asymmetry in “cutX” is

negligible. Then as in Eqn. A.10, the measured asymmetry in cutX is simply a
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diluted leakage asymmetry, so that the leakage asymmetry can be expressed as

Rm cutX
AI L =~ 7 AcutX )

RL ,cutX

which has a statistical uncertainty of

0.6

Ry cutx /R cutx Rr cutx

Therefore, for a given Ry .. x, the less the rate in cutX, the more sensitive it is

m,cu 1 V Rm cu
o(Ar,) x B curx X (A.11)

to the leakage asymmetry. As indicated in Fig. A.1(a), since the prompt charged
particles from the main beam pulses hardly reach the “forbidden” regions before
the pion peak or after the “shoulder” of the slowest deuterons knocked out from the
aluminum target cells (the regions after the “deuteron” band in Fig. 5.16(b)), these
regions (“cut0”) are selected as the leakage monitor. The cuts were made on the
first 7 French detectors (0.25 ns timing resolution). For higher numbered detectors,
the slowest deuterons wrap around the spectrum and overlap with the rising edge

of the pion peak, so those detectors were omitted.

A.4.2 Cut0 Rate Decomposition

Although the prompt charged particles cannot reach cut0, the main G° pulses
can produce a photon/neutron background, which creates extra events in cutQ un-
related to the leakage beam. Let us denote the leakage rates in cut0 due to the A, B

lasers as Ry, , Rp,, respectively, and that due to the G laser as Rc,,,, which con-

tas
tains a a leakage component R¢, and a background component Rc,, . To quantify
the sensitivity of cutO to the leakage beam, one needs to know the fraction of this
extra background rate Rc,,, in cut0.

The rate decomposition in cutO was studied with a series of leakage and stan-
dard measurements. We made direct leakage measurements with the A and B lasers,

or the B laser alone, interleaved with standard measurements with both the G° and

the leakage beams present. The difference of rates in cut0 between the above two
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measurements gives the total C component R¢,,,. As mentioned in Sec. A.3.2, the
measurement of the G° leakage is made by putting the G° main pulses onto the
A or B slit, which was destructive to other halls. From the few measurements we
made (Table A.2), R¢, seems quite stable over time. Therefore we simply took the
average value of R¢,, 0.56 kHz, and subtracted this from R¢,,, to get Rcbkg'

In Table A.3 the decomposed rates in cut( are listed. Rp, appears to change
with time, so in Table A.3 only a typical value is given, whereas R4, and R¢, seem
to be stablef. The extracted background component Re,,, in cut0 is ~3.5 kHz for
40 pA G° beam, therefore contributing to ~60% of the rate in cut0, and is stable
at the level of + 5%.

Component Rate in cutO (kHz) 1L girect (RA)

Ry, 0.60 12.2
Rs, 1.4 28.4
Re, 0.56 11.3
Rey,, 3.5(0.17) n/a

Table A.3: Rate decomposition in cut0 with 40 pA G° beam and a typical leakage
beam. The leakage current Iy, from each laser is also shown in the table. The
uncertainty of the non-leakage C rate Rg,,, (in the parenthesis) is taken as the
standard deviation of Rg,,, from all measurements.

A.4.3 From CutO to the Leakage Current and Asymmetry

Once Rg,,, = 3.5 kHz is established, the total leakage rate in cut0, Rr, o,

can be extracted as

RL,cutO = Rm,cutO - RCbkg = Rm,cutO —-3.5 kHZ, (A12)

It appears that the leakage current Iy, is related to the beam current that goes into each hall.
Throughout these measurements we kept the main G° beam at 40 yA and Hall A was running
stably with ~90 pA. But Hall B ran with various different beam currents.
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for any standard G° run. Since the leakage spectrum is flat, the leakage current Iy,

can then be deduced by dividing the leakage rate in cutO by the average G° yield as

RL cutO/wcutO (Rm cut0 — 35 kHZ)/wcutO
It deduced = s = : — , A.13
L,d d d <YC]1,',0 rd <YG]_0 7) ( )

where w0 is the total width (~58 ns) of cut0 (French FPDs 1 through 7), and
(Yo ) is the time averaged yield of the G° rates per ns in the same detectors.
In parallel, applying Eqn. A.10, A;, can be deduced from A, ¢yt as

Rm cut0 Rm cut0
A = —— Ao = ’ Acuio - A.14
B Rpcuo ™™ Rypcuo — 3.5 kHz (A.14)

A.4.4 Certification of the CutO Technique

In the previous section, a procedure to determine I;, and A;, from cut0 was
presented. The goal of this section is to certify this technique.

As discussed in Sec. A.4.2, we have made interleaved direct leakage measure-
ments and the standard measurements to study the rate composition in cut0. Here
we will use the same measurements to compare the deduced leakage current I; and
its asymmetry A;, from cutO with those directly measured in the adjacent leakage
runs.

For each standard run, the leakage current (I, geguced) is deduced with Eqn. A.13.
For the interleaved (non-destructive) leakage runs, the leakage current due to Halls
A and B, I4p,, is directly measured. The total leakage current due to all 3 lasers,
I}, direct, 1s then obtained by combining I4p, with a constant I, = 11.3 nA (see
Table A.3).

In Fig. A.3, I dgeduced is Plotted against Iy girect- A 3 nA uncertainty is assigned
on each data point of Iy jeduced based on the uncertainty of Rcbkg (Table A.3). A
fit of It geduceda = @IL direct 1s also made, from which one can see that I gedycea and
I1, girect agree within a few percent.

A similar analysis can be performed for the deduced and direct leakage asym-

metries, Az, 4.0 a0d Ar, .., For the standard runs, Ay, , ..., is calculated using
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IL,deduced VS IL,direct
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Figure A.3: The deduced leakage current Iy, gegucea vS. the directly measured leakage
current Ir, girect- See text for details.

Eqn. A.10. For the direct measurements, once again the (non-destructive) leakage
runs only allow us to measure the leakage asymmetry from Halls A and B, A; aBy
For the leakage asymmetry due to the G laser, AICL, there are only six (destruc-
tive) measurements available (Table A.2) — we apply them to six consecutive sets
of runs correspondingly. Then the overall direct leakage asymmetry is obtained by
averaging Ar,, and Ay, , weighted by the corresponding current components.

In Fig. A4, Aq jo4ueeq VeTSus A, . is shown, with the fit of A7 .0 =
A7, 4iree; Overlaid. The statistical uncertainty of the slope is inflated by the value
of the square root of the reduced x?, to effectively take into account the systematic
effects. From the slope and the (inflated) uncertainty of the fit, 1.12 4 0.22, one

concludes that AIL, tedueeq 18 Vverified to agree with AIL, sirees b the level of 22%.

A.4.5 Leakage Situation During the Entire G° Production Period

The leakage current and asymmetry deduced from cutO during the entire G°
data taking period are shown in Figure A.5. The average I, and A;, for each
insertable halfwave plate state are plotted against the run number. On average

I, ~50 nA and A, ~ +570 ppm, after correcting for the beam polarization (0.737)
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Figure A.4: The deduced leakage charge asymmelry Az, . ...q vS- that from the direct
measurement, Ay, ... The uncertainty of the slope (0.17) is purely statistical. See
text for details.

and the blinding factor (0.8056). The statistical uncertainty of A;, (combining
both IHWP states) is ~5% of A;, . Furthermore, one observes that both I, and A;,
were changing throughout the period. Interestingly, A;, has a sign flip around run
21400, corresponding to when Hall A resumed running; and it was this large false

asymmetry that led us to realize the leakage problem.

A.5 Correction to the Leakage Effects and Its Systematic Uncer-

tainty

A.5.1 Effectiveness of the Correction

Eqn. A.9 can be rewritten as

I Y (1)
A =A A, A=-A ~—1— A Al
YGO (t) ™m (t) + 9 false IGO ( YGO (t) IL 9 ( 5)

in which A is the correction for the leakage. The correction was made to the
production data on a run-by-run basis. The average asymmetry of each ToF bin

or PID cut was corrected according to Eqn. A.15, with the leakage current I and
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Figure A.5: The leakage current and asymmetry vs. the run number during the entire
experiment. Data are grouped according to the state of the insertable halfwave plate:
[blue open squares = “IN”, red solid circles = “OUT”]. The leakage asymmetries
shown on the plot are not corrected for the beam polarization (0.737) nor the blinding
factor (0.8056).

its asymmetry A;, computed from the measurements of cut0 during the same run
using Eqns. A.13 and A.14.

In Figs. A.6(a) and A.6(b) the average asymmetries of the proton (integrated
over all FPDs), before and after the leakage correction, are plotted vs. the run
number. Figs. A.7(a) and A.7(b) are the same plots for cut3. One can see the
raw data clearly drift after run 21400, corresponding to the sign flip of the leakage
asymmetry Aj;, due to Hall A. Furthermore, the leakage asymmetry drives the
measured proton and cut3 asymmetries in opposite directions, as expected from the
discussion in Sec. A.2.2. After the correction, the statistical agreement among the
results for different periods is much improved, as indicated by the reduced x? in
Figs. A.6(b) and A.7(b).

Another way of justifying the correction is to cross-compare the corrections

made at various values of beam current, which, according to Eqn. A.15, would lead
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Figure A.6: The raw (a) and leakage corrected (b) asymmetries of the proton cut
(averaged over all FPDs) vs. the run number. Each data point is an average value
over a consecutive set of runs with a given state of the insertable halfwave plate: [blue
open squares = “IN”, red solid circles = “OUT”]. Asymmetries are not corrected
for the beam polarization (0.737), nor the blinding factor (0.8056).
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Figure A.7: Same as Fig. A.6 but for cut3. Asymmetries are not corrected for the
beam polarization (0.737), nor the blinding factor (0.8056).

to different sizes of the correction. On the other hand, if the corrections are ideal, the
corrected asymmetries at all beam currents should converge to a constant physics
asymmetry. Therefore, if one plots the raw asymmetry vs. the correction for various
beam currents, ideally the data should lie on a straight line with a slope —1. Having
a slope more negative than —1 indicates that the data have been under-corrected.
This type of plot is shown in Figs. A.8(a) and A.8(b) for the proton cut and cut3,
respectively. The slope of the linear fit of the proton cut agrees well with —1. The

slope of cut3 suggests some under-correcting, but agrees with —1 to within 20%.
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Figure A.8: The raw asymmetry A,q, vs. the correction A for the proton cut (a)
and cut3 (b).

A.5.2 Systematic Uncertainty of the Correction

From Fig. A.3 one sees that the cut0 technique determines the leakage current
very well, therefore the uncertainty of the correction is driven by how well the
leakage asymmetry A;, is determined. In Sec. A.4.4 we discussed that during the
“cut0 certification”, Ay, is determined at the level of 22%; this value is a natural
assignment of the fractional uncertainty of the correction. Two more independent
evaluations will be presented below.

Among all ToF regions other than cut0, cut3 is the most sensitive to the
leakage. As already shown in Fig. A.7(b), the statistical property of A.us is sig-
nificantly improved after the leakage correction. Nevertheless, the reduced x? after
the correction is ~2, indicating that there is a residual systematic fluctuation in the
data samples with roughly the same size as the statistical uncertainty, ~0.6 ppm .
Therefore a systematic uncertainty of the correction of 0.6 ppm was assumed, which
corresponds to a fractional uncertainty of 23% relative to the size of the correction
(-2.61 ppm).

One can also use a different perspective of Figs A.8(a) and A.8(b) to evaluate

the systematic uncertainty of the correction. For the three different beam cur-

tConservatively we only take the statistical uncertainty of one IHWP (in/out) state.
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rents in Figs A.8(a) and A.8(b), the averaged raw and corrected asymmetries (A4
and Agyr) of the proton cut and cut3 are summarized in Table A.4. To increase
the sensitivity, cut3 was also broken into two parts, labeled “cut3.1” (earlier) and
“cut3.2” (later), and their asymmetries are tabulated as well. For each given beam
current, the correction A is computed according to Eqn. A.15. In Table A.4 they do
not simply scale with the inverse of the G° beam current, since the leakage asymme-
tries during the three measurement periods were different, nevertheless it is apparent
that the correction is the smallest when I50 = 40 pA. If one further assumes that
at Igo = 40 pA, the corrected asymmetry approaches the physics asymmetry, then
for any other lower beam current, one can calculate the correction needed to bring
the measured asymmetry to the physics asymmetry, A;zeq.;. The difference between
Ajgear and A then gives an evaluation of the systematic uncertainty of the correction,
Oys(A). The values of A, Ajgeq and o,ys(A) for various cuts are also summarized
in Table A.4. The column %m)(%) in the table gives the fractional uncertainty of
the correction, and on average it is ~17%. For reference, the statistical uncertainty
of the raw asymmetry, ogqt(Araw), is listed in the last column.

All of the discussion above suggests that the systematic uncertainty of the
leakage correction is ~20% of the correction itself. In principle, the statistical un-
certainty of A;, also contributes to the uncertainty of the correction. However, as
shown in Fig. A.5, the statistical uncertainty of A;, throughout the entire experi-

ment is ~5% of Ay, ; this contribution is therefore omitted.

A.5.3 Uncertainty in the Elastic Asymmetry Due to the Leakage

Correction

So far, we have discussed the leakage correction to the measured asymme-
try. Based on the leakage corrected data, the background correction discussed in
Sec. 5.3.6 is made, from which one obtains the elastic asymmetry A.. The question
now is, how does one translate the (20%) uncertainty of the leakage correction to

the measured asymmetry into an uncertainty of the elastic asymmetry?
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PID | I, | Aaw  Acorr A Digear 0oys(D) 285 (%) | 0utat(Ar)
40| —2.64 —233 031 n/a  n/a n/a 0.07
proton | 20 | 0.28 —-2.71 =299 -2.61 0.38 —12.7 0.35
10 | 3.75 -1.79 =554 -6.08 —0.54 9.7 0.64
40 | 0.14 —-247 -261 n/a n/a n/a 0.43
cut3 | 20 | —29.60 —-7.20 2240 27.13 4.73 21.1 2.10
10 | —51.30 —9.50 41.80 48.83 7.03 16.8 3.90
40 | —0.86 —265 -179 n/a  n/a n/a 0.53
cutd.1 | 20 | —22.30 —-6.30 16.00 19.65 3.69 22.8 2.70
10 | —=35.10 —4.70 30.40 32.45 2.05 6.7 4.90
40 | 2.07 —-212 —-419 n/a n/a n/a 0.74
cut3.2 | 20 | —40.78 —8.58 32.20 38.65 6.45 20.0 3.34
10 | =79.30 —-17.80 61.50 77.18  15.67 25.9 6.44

Table A.4: A summary of the leakage correction at different beam currents for vari-
ous PID cuts. The proton cut and cut3 are defined in Sec. 5.2.1. Cut3.1 and cut3.2
are the earlier and later parts of cut3. I, is the beam current in pA. Apgw and
Acorr are the raw and leakage corrected asymmetries, respectively, with the correc-
tion A = Acorr — Araw- Didear 1S an estimated “ideal” correction, and the systematic
uncertainty of the correction, osys(A), is estimated as the difference between A and
Njgear- For reference, ogat(Araw), the statistical uncertainty of the measured asym-
metry, is listed in the last column. All asymmetries, corrections, and uncertainties
are in units of ppm, and are NOT corrected for the beam polarization and the blind-
ing factor. See text for more details.

In Sec. 5.3.6, the elastic asymmetry A, is obtained as

Am — [5 A

Ae: 3
L—fp

(A.16)

where A,, and A, are the measured and background asymmetries in the elastic peak,
and f; is the fraction of the background yield in the total yield. The background
asymmetry is evaluated in Sec. 5.3.6 by fitting or interpolating the measured back-
ground asymmetry away from the elastic peak. Here, without loss of generality, let

us consider a simple model that Ay = 0.5(Acuo + Aeurs). As shown in Eqn. A.15,
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the leakage correction in any time bin or cut is proportional to Iy A;,. Since A, is
linear in A,,, Acue and A3, the correction of A, due to the leakage correction, A,
is also proportional to I Aj,. Therefore based on the discussion in Sec. A.5.2, the
fractional uncertainty of A is also 20%. A, can be determined “experimentally” by
taking the difference between the elastic asymmetries A, copr and Agrqy, Obtained
by applying the same background correction procedure on the corrected and the
raw data, and we get A, = A corr — Aepaw = 0.71 ppm T, with the beam polar-
ization corrected and the blinding factor removed. Therefore, the final systematic

uncertainty of A, due to the leakage correction, o(A,), is
o(Ae) = 20%A, = 0.14 ppm, (A.17)

which is a global systematic uncertainty to all detectors (Q? bins).

tThis quantity has some small difference (~5%) from detector to detector, which can be safely
omitted.
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Appendix B
Hyperon Simulation

B.1 Physics

The hyperons are baryons containing one or more strange quarks. They can
be produced in electron-proton scattering via photo- or electro-production. For the

G° forward angle kinematics, the dominant hyperon production channels are

T +p— A+ KT,
7*+p—>2++K05

7*+p—>EO+K+a

where v* can be either a real or virtual photon. The relative photo-production rates
for A, 3% and ©F, measured by SAPHIR, [Tra98, Law05], are approximately ~3:2:1.

The hyperons (Y) undergo subsequent decays. The main decay modes of A
and X7 are non-leptonic weak decays, in which a hyperon turns into a nucleon (N)

and a pion (7). For example, A has the following two non-leptonic decay channels:

AN—p+a,

A—n+7°.

Due to the parity violating nature of the weak interaction, the decays of A and ¥+
are self-analyzing: if the hyperon Y is initially polarized with a polarization ﬁ, the
angular distribution of the outgoing nucleon with a momentum ky in the rest frame
of the hyperon can be expressed as

AN N

o E(l + aPy cos(@ﬁ%}v)) , (B.1)
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in which Hgf]%N is the angle between P and EN, and « is a parameter characterizing
the parity violation of the decay, first introduced in [LY57].

The X% hyperon, on the other hand, is very short-lived (7 ~ 1072 5), and it
decays radiatively (M1) into a A:

¥ s A+, (B.2)

If X0 is initially polarized, the daughter A retains —% of the initial polarization [DP62],
and the latter then decays weakly. Therefore, a X% with polarization Pso can be
effectively viewed the same as a A with polarization —%PEO. In the remainder of
this appendix, the polarization and the decay of X° will always refer to those of the
daughter A. The lifetimes, decay channels, branching ratios, and the values of the

weak decay parameter « for the three hyperons are summarized in Table B.1.

Hyperon | Lifetime (s) Reaction Branching Ratio (%) «
A— - 63.9 0.642
A 2.632 x 10710 p+m
A—n+a° 35.8 0.65
Yt p+ad 51.57 —0.980
rt 0.8018 x 10710 brm
Yt on+4af 48.31 0.068
»0 7.4 x 10720 Y0 - A+y 100% n/a

Table B.1: The lifetimes of the A, 1, and X° hyperons, their major decay channels,

branching ratios, and the values of the o parameters for non-leptonic decays (for the
A and X% only) [PDG04].

The coordinate systems describing an electro-production of a hyperon and
its subsequent weak decay are depicted in Fig. B.1. Three scattering planes are
involved. The electron plane contains the incident and scattered momenta of the
electron, with Z being the unit vector along the virtual photon momentum, and z
being the in-plane transverse direction. The hyperon production plane is defined
by the virtual photon and the hyperon momenta. The azimuthal angle between the
electron and hyperon production planes is ®. The last plane, the hyperon decay

plane, is made by the momenta of the nucleon and pion. The photo-production can
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be depicted in the same way, except that both the electron and the photon are along

Z, therefore the orientation of the electron plane is arbitrary.

hyperon production plane

electron plane
‘e‘
6, _. \¢V
N-"g Y
PNRAAAS --'%V )
X A Y
yi 2 ioX
e . v
=7 Yot
4 Z WQW ¥*
o X
.. 2
PR
A
J/pS.On
Vol

Figure B.1: Coordinate systems describing an electro-production of a hyperon and
its subsequent weak decay.

Let us consider a longitudinally polarized electron beam with polarization P,.

The polarization of the produced hyperon (P) is the sum of a (helicity-independent)

induced polarization (P°), and a (helicity-dependent) transferred polarization (P'):
P=P"+ PP (B.3)

Both P° and P’ are defined with respect to a particular set of spin-quantization
axes, of which one standard choice is £=%,7,Z (see Figure B.1). Then with respect
to &, Eqn. B.1 for each beam helicity state (+ or —) can be expressed as

ngi N

o = L+ a(P £ BP) cosO]F ). (B4)

§7kN

in which P and P} are the components of PY and P' along &, and Hng is the angle
between ¢ and ky in the rest frame of the hyperon. Therefore, the parity violating

(PV) asymmetry of the decay nucleon cross section between two beam helicity states
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Ag(cos OFL ) = 42 d9 by g cos( 5”“N)

&kN dNF dN; 1+ aP?cos(6RE )~
¢ ¢
y y f ( f,k )

(B.5)

In the case of G?, since the scattered electron is not detected, only the ®-averaged
polarizations are relevant. As shown in [Sch98, Car03], after averaging over ® , P?,
PY and P, vanish identically. Therefore only A¢—z; survive t and they take the
simple form of

A¢ = ab, P COS(Q?,?N) , £€=1%,2. (B.6)

Clearly, a measurement of A, as a function of OSI?N allows the extraction of P.
The first measurement of P! and P! of A in the exclusive reaction ép — ¢/ KA
was given in [Car03], where it was reported that P, ~ 0.75 and P, ~ 0 over a wide
range of invariant mass (1.6 — 2.2 GeV) and kaon angle. Taking into account the
circular polarization of the virtual photon in their experiment (~ 0.8), one concludes
that ~ 100% of the polarization of the photon gets transferred to the A. In this
work, the same P, in [Car03] is assumed for the electro-production of the A . For
photo-production, the average circular polarization of the Bremsstrahlung photons
is calculated using the formulation in [OM59] to be ~ 0.85 for the G° kinematics,
which yields a very similar value of P/. Therefore in both cases, we simply adopt
P'|| 2 and
P,y =0.75. (B.7)

The transferred polarizations of ¥° and X% have not yet been directly mea-
sured, therefore some ad hoc assumptions have to be made. The interpretation of
the observed polarization of A presented in [Car03], implies that X% is polarized
along —2Z, opposite to that of A [Car03, Mes05p]. Thus the polarization of the
daughter A is also along Z (but reduced by 1/3), and

! = (<0.75)(—3) (B9

tThe ®-averaging is implicit in the rest of this appendix.
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is adopted in this work. As stated earlier, although we have used “X°” in the
subscript, P!, refers to the polarization of the daughter A. For the £*, we simply

assume that X7 shares the same polarization as A, so that
Pz'72+ =0.75. (B.9)

To summarize, P' of all three hyperon channels have been taken to be along
Z, and the asymmetry of the decay (Eqn. B.6) can be written explicitly as

A = aP,P!cos(0%L ), (B.10)

27kN

in which OkaN is the angle between the decay nucleon momentum and Z (the direction
of the photon) in the rest frame of A or . Note that the size of this asymmetry is
of the order 1 (O(1)), much larger compared to a typical asymmetry being measured

by G° (O(10 ppm)).

B.2 Monte Carlo Details

The contribution of hyperons to the G experiment is studied with a detailed
Monte Carlo (MC) simulation [Bei04, Liu06]. The simulation code was written
based on a customized GEANT code developed for the G° experiment (GOGEANT,
version May 2004) [GEA94, GOGEA99] . In this section, a detailed discussion of

the simulation will be given.

B.2.1 Cross Section Tuning

The source code of KAON-MAID (version 2002), which is an isobar model for
kaon photo- and electro-production on the nucleon [KMAID], is implemented into

our simulation to calculate the differential cross section of the photo-production of
do,

dQk.

the hyperons, . This cross section is a function of the photon energy F.,, and

tA copy of the MC code can be downloaded from
http://www.jlab.org/ jianglai/geant/g0geant_hyp_jianglai.tar.gz.
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6K and ¢X . the polar angles of the kaon in the center-of-momentum (CM) frame
of the y—p system.

The KAON-MAID calculation is compared with the data from SAPHIR [Tra98,
Law05] in Fig. B.2. One sees that it works well for A and X%, but fails on . How-
ever, as shown by the blue curve in the figure, if the KAON-MAID calculation of
Y9 is scaled down by 0.3, it reproduces the ¥t data reasonably well. This recipe
is therefore adopted for X*. It should be noted that the KAON-MAID contains
some empirical parameters that need to be tuned against the data. The SAPHIR’s
¥t data are newer than the KAON-MAID 2002 release, which is the reason of the

discrepancy in Fig. B.2, and should be fixable in the newer release of the code.

Total photo-production cross sectionA, 2°, and =*

o) 3
= u —e— A, SAPHIR 92-94 — A, kMAID
% - —a 5 SAPHIR 92-94 — 3°, kMAID
o 2.5 —&— 3" SAPHIR 97-98
- + + — 0.3 x3% kMAID
2
1.5
1
0.5:— ;
oc® . 1oy e
1.6 1.8 2 2.2 2.4 2.6
W(GeV)

Figure B.2: A comparison of the measured total cross section of the A (black solid
circle) [Tra98], X° (red solid square) [Tra98], and XF (blue open square) [Law05],
with the KAON-MAID calculations (curves) [KMAID], as functions of the invariant
mass W. Various curves represent the KAON-MAID calculations of the A (black),
Y0 (red), ©F (light blue), and 0.3 x 3° (blue).
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The invariant mass of the y—p system, W, is related to E., as

W = \/2E,M, + M2, (B.11)

in which M, is the mass of the proton. For all three hyperon channels, the KAON-
MAID predicts an increasing cross section for W > 2.2 GeV, which is not supported
by the data. Therefore in our simulation, we take the value at W = 2.2 GeV and

make a flat extrapolation to the region beyond it, i.e.,

do,

dQK,

do
(W > 2.2 GeV) = nggn (W =2.2 GeV). (B.12)

B.2.2 Event Generator
Photo-production

In the case of photo-production, the minimum photon energy to create a K'Y

final state is
(Mg + MY)2 — Mg

2M, ’

Eth/res,'r = (B13)

in which Mg and My are the masses of the kaon and hyperon, respectively. E., of
the Bremsstrahlung photon is randomly selected between Eyp,.s, and the incident
beam energy Ej (3.03 GeV). The standard formula to compute the Bremsstrahlung
spectrum is given in [Mat73]. For a given radiator material, the number of photons
per incident electron per unit photon energy and radiator thickness, ddELjdt, is given
as a function of Fy and E,. For each event, the reaction vertex is randomly chosen
along the LH2 target, with a distance ¢y relative to the upstream end of the hydrogen
cell. The total photon flux, I',., can be written as the sum of the flux from liquid

hydrogen, and all the target components upstream of it:

r N SN (B.14)
el T aE,dt " dEydt M dE,dt 0" '
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dNH AN
dE-dt dt’ dE-dt dt

in which and 4 are the Bremsstrahlung spectra of the liquid hydro-

dE dt
gen, aluminum windows and gaseous helium, and ?4; and ¢4z, are the total thickness
of the upstream windows and the helium cell, respectively.

The polar angles of the hyperon in the y—p CM frame, 0., and ¢.,,, are also

randomly generated within the ranges from 0 to 7 and 0 to 2, respectively. The

three-fold differential cross section for photo-production can then be calculated as

do, do
T =T eu—n, B.15
dE,dQK QK (B-15)
dQK
A weight is assigned to each event to reflect its reaction probability:
ight = —— 7 §in(fen) A (B.16)
welg - m Sln( cm phase 5 .

in which the factor sin(f,,,) is the Jacobian between dQX. and df.mddem. Aphase 18
the constant phase space volume into which the events were generated; in this case
it is

Apha,se = (Eb - Ethres,r)27T2 . (B17)

For a given set of (E,, ., ¢cm), the kinematics of the outgoing hyperon is deter-
mined. The lab momentum vector of the hyperon is fed to GEANT, after which the

tracking starts.

Electro-production

The electro-production is treated in a very similar way. A virtual photon with
energy E,- is now in the place of a real photon. In addition to (E,s, Ocm, ¢em), the
lab polar angles of the scattered electron (relative to the natural coordinate of the
experiment with beam along %), 6, and ¢., are also randomly chosen within the

ranges from 0 to 7/8 T and 0 to 27 respectively.

tIn principle, f. can go as high as 7/2. We set the cutoff at /8, beyond which the events
hardly contribute to the rate.
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To first order, the four-momentum transfer Q? is
2 s 2 e
Q° ~ 4E,FE' sin (5), (B.18)

in which E' = E, — E.» is the energy of the scattered electron. For a finite Q?, the

minimum energy of the photon to produce a K'Y state is now

(Mg + My)* + Q> — M}
oM, !

Ethres,v -

which is larger than Ey,.s, in Eqn. B.13. To avoid having a different generator
limit for each event, we choose E.- randomly within (Eypres,r, Eb), but set the event
weight to zero if E,» < Ejpresp-
The virtual photon flux I'y;puq is given by [Dre92]
a E'k, 1

Fvirtual(Eba Ela QQ) = 2—71'25(,@ 1—¢’ (B19)

where « is the fine structure constant, k, = (W? — M})/2M,, and

e=(1+ Qgij tanz(%))1 ,
in which ¢ is the three-momentum vector of the virtual photon.

According to Eqn. B.18, Q* — 0 when 6, — 0, at which point Eqn. B.19
diverges. However, Eqn. B.18 is only an approximation when ignoring the mass of
the electron. When keeping the lowest order of the electron mass in the expres-
sion [Mar04p]|, @? becomes

.

2E_E12
2)+me(b )

2 ~ 4E,F'sin?
Q B’ sin”( BB

(B.20)

This expression is taken instead of Eqn. B.18 to remove the singularity at 6, = 0.
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The five-fold differential electro-production cross section [Dre92] is then

do do
e = Lvirtual(E E,Q? 7 B.21
dE,-dQ.dQK, wat (B, B, Q%) o (B.21)
and the event weight is

ight do in(0% ) sin(6,) A (B.22)
weight = ———————sin sin(f, ase s .

S T 4B, dQ.dak, STV em ph

-t

Aphase = (Eb - Ethres,r)? . (B23)

It is noteworthy that in the case of electro-production, the hyperon CM angles
(Oem, Pem) are defined in the “photon coordinate”, i.e. they are relative to the
photon momentum ¢ and the electron plane. Therefore, after obtaining the hyperon
momentum in the lab frame with respect to the photon coordinate, one has to make
vector rotations to obtain the momentum vector in the natural lab coordinate (with

beam along 2).

B.2.3 Weak Decay Vertex and the Asymmetry Calculation

A flow diagram of the event processing in the simulation is displayed in
Fig. B.3. After the event generation, the hyperon is tracked by GEANT through
the media. All secondary trackings are activated in this simulation. Some of the
hyperons interact with the target materials hadronically and disappear into pions
and nucleons. If these particles or their secondaries make it into the detectors, they
are assumed to not carry a PV asymmetry. Occasionally, hyperons will scatter elas-
tically and remain in the final state; we shall also ignore the PV asymmetry of its
subsequent weak decay, since the polarization of the hyperon after the scattering
becomes uncertain. Therefore, the only events of interest are those in which the hy-
perons decay directly, then the daughter nucleons or pions make direct or secondary
hits into the detectors.

The hyperon decay is handled internally by GEANT. However, GEANT only

treats the hyperon as unpolarized and the decay is carried out isotropically (no parity
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Create Y inside target
Compute event weight

Y polarized along ~v* OR Y hadronic vertex —>IE
Y polarization changed!
Y weak decay vertex Y weak decay vertex
AP" = O’P[,PZ/COSQRF | | APV =777
( Direct or rescattered hits )

Figure B.3: A flow diagram of the treatment of various types of hyperon events at
the tracking time, and the calculation of the parity violating asymmetry.

violation). Therefore at the weak decay vertex, we calculated a PV asymmetry
manually according to Eqn. B.10, with the values of P, of each hyperon channel
taken from Eqn. B.7, B.8 or B.9. Note that QQkEN in Eqn. B.10 is the rest frame
angle of the momentum of the nucleon relative to the photon direction, even if a
decay pion is tracked. Since after the weak decay, all secondary processes do not
yield additional asymmetries (nucleons will rescatter hadronically, and pions do not

carry net spin), the asymmetry at the weak decay vertex is shared by all subsequent

tracks in this event.

B.2.4 Coincidence Hit Selection

A particle making it into an active volume in GEANT is called a “hit” and
the information of the hit, such as the flight time and particle id, are usually stored
in a list of variables. In GOGEANT, each scintillator is an active detector volume,
therefore it is very common to have events with multiple hits (for example when

a front-back coincidence occurs). The handling of the multi-hits in GOGEANT is

279



illustrated in Fig. B.4. In this case, each hit variable gets expanded into an array,
with each “column” in the array attaching to a certain hit.

In the real experiment, a good hit requires a coincidence of the front and back
scintillators. This requirement is implemented in the MC software. Specifically, the
hit arrays of a given event are looped over and comparisons are made between the

hits. If a pair of hits has

e the same octant and detector numbers;

the same particle id;

one “front”, the other “back”;

less than 1 ns difference in ToF;

high enough deposited energy (will be elaborated in Sec. B.2.5);

then this pair is identified as a good detector hit. In the example in Fig. B.4, hits
nl and n3 make a good coincidence pair. It is also possible that for a given event,

more than one good hit is identified.

Event N
Hit n1 Hit n2 Hit n3
octant[n1]=8 octant[n2]=3 octant[n3]=8
ring[nl] =14 ring[n2] =8 ring[n3] =14
position[n1]="F" position[n2]="B" position[n3]="B"
ToF[nl]=22 ns ToF[n2]=15ns ToF[n3]=22.4 ns
[ X X ] pid[n1] = proton (X X} pid[n2] = electron [ X X ] pid[n3] = proton (X X}
dEdx[n1] =6 MeV dEdx[n2] =2 MeV dEdx[n3] =6.1 MeV
ptot_o[n1] ptot_o[n2] ptot_o[n3]
theta_o[n1] theta_o[n2] theta_o[n3]
[ [ J [ J
[ 4 [ J [ J
[ ] [} [ ]
good hit!

Figure B.4: A schematic diagram to illustrate the storage of hits, and the selection
of good hits in the simulation. In this example, hits “nl1” and “n3” satisfy the
coincidence requirement, and is therefore identified as a good hit.
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B.2.5 Threshold Setting

If a particle hits the scintillator, the deposited energy AFE is computed by
GEANT and stored into the hit array. This energy, in the form of scintillation light,
propagates towards the photomultiplier tubes (PMTs) located at both ends of the
scintillator. The PMT signals are discriminated, which effectively sets a cut on AFE.

The light propagation along the scintillator is modeled by a linear attenuation
relation. The attenuation factor, «, is defined as the fractional loss of the light when
it travels the full length (L) of a scintillator. This factor has been measured for each
scintillator. Empirically it can be approximated as a function of the detector number
i [Roc04p]:

a=0.1+0.025x1. (B.24)

Now consider an impact point with a distance xL to the far end of the scintil-
lator (% <z < 1). Initially the light carrying %AE propagates to either end. Due
to the attenuation, the energy reaching the PMT at the far end is JAFE(1 — ax).

For a given detector, the elastic proton has a well-defined momentum, therefore
deposits a constant energy A Fj into the scintillator. In the experiment, these elastic
protons are used to calibrate the threshold set on each PMT. One selects the most-
attenuated elastic proton signals, with the impact points at the very far end of the
scintillator (z = 1), and sets the threshold at ~ 1 of that signal amplitude. In other
words, the energy threshold (7) at the PMT can be expressed as

T = % < %AEO(l —a). (B.25)

T can be translated into an energy threshold at the impact point. For any hit,
to ensure a coincidence between the left and right PMTs, the energy reaching the

PMT at the far end has to be greater than 7, i.e.,

1 1 1
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which turns into an effective energy threshold AFEy,(z) of

AEy(z) = i(l — o)

AE,. (B.27)

1—ax

Eqn. B.27 is used as a cut on AF for each hit in the simulation. For reference,
AFE, and the average AFy, for each detector are summarized in Table B.2. For
detectors 13 to 16, it turns out that the threshold needs further tuning. Setting
them to 2.1 MeV seems to reproduce the side-band asymmetry better; it is therefore

adopted as the default thresholds for detectors 13 to 16 [Liu06].

ring AE; (MeV) AEy, (MeV)

1 6.0 1.45
2 2.7 1.36
3 5.4 1.28
4 10.4 241
3 9.8 2.27
6 9.3 2.13
7 8.7 1.97
8 8.0 1.80
9 7.5 1.67
10 6.8 1.50
11 6.2 1.35
12 5.6 1.20
13 5.1 1.09
14 4.5 0.96
15 3.7 0.76
16 3.8 0.76

Table B.2: The energy deposited into the scintillator by elastic protons (AEy), and
the average threshold (AFEy,) calculated from Eqn. B.27 for each detector.

B.2.6 Rates and Asymmetries

The detector rate can be computed by combining the differential cross section

defined in Eqn. B.15 or B.21 with the detector acceptance. Taking photo-production
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as an example, the detector rates can be formally expressed as

do, .
R = E X <m Sln(ecm)>Aphase,acc, (B28)
in which «uzj% is the three-fold differential cross section given by Eqn. B.15,

Aphase,ace 1S the actual volume within the generator phase space (Eqn. B.17) that is

covered by the detector acceptance, and the luminosity factor £ is defined as

L = # of incident electrons per second x # of protons in the target per cm?.
(B.29)
Since the events are uniformly thrown into the phase space, the ratio between
Aphase,ace and Appese would be the same as the fraction of the number of good hits

(Nhits) in the total number of generated events (Nyyrown). Therefore we have

N hits

A ase,acc — A ase ) B.30
phase, ph Nthroum ( )
and Eqn. B.28 becomes
o . Nyits ZZ weight’
R =L x (——2—sin(0em)) Aphase =L , B.31
8 <dE7dQ§n Sln( )> Ph Nthrown Nthrown ( )

where weight’ is the event weight associated with a good hit, and ZZ is over all
good hits.
In parallel, the mean asymmetry can be obtained by making weighted averag-

ing for the asymmetry as . o
> weight' A*

3" weight'

in which A’ is the asymmetry of a good hit calculated with Eqn. B.10 at the weak

(A) (B.32)

decay vertex.

283



B.3 Results

B.3.1 G° Acceptance and the Direct and Rescattered Protons

As discussed in Sec. 4.2.3 (Fig. 4.13), the acceptance of the G° spectrometer
for the protons originating from the the target is usually plotted as a 2D map of
the proton’s initial momentum and angle, (p,6). The left edge of the acceptance
map is defined by the lower primary collimator (LPC); protons with angles less than
~< 48° are blocked by it. However, with high enough momentum (>~ 1 GeV/c),
the protons can penetrate the LPC and make it into the detectors. This “leak-
through” is also apparent in the (p, §) map.

roton (p,0) ma
P (p.6) P Q*(Gevic)
~1600 —
L
>
[+4]
=14008 1.4
a 5 1.3
a 1.2
12005 1.1
1.0
0.9
1000k 0.8
0.7
_ 0.6
800F 08
_ 0.4
800k 0.3
400 L_imits"‘_p) B e 0.4
i Vst Limits
200 | 1 | 1 | I 1 L1 1 1 | L1 1 | | ‘J L1 1 | | 1

40 50 60 70 80 90
0., (degrees)

Figure B.5: The kinematic limits of the protons from the hyperon decays, shown
as the two solid curves in the proton (p,0) space: [black = A, red = Xt]. The
colored bands correspond to the acceptance of individual FPD detectors. See more
explanation of the (p,0) map in the caption of Fig. 4.13.

Let us consider the protons produced at the weak decay vertices. Due to the
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short lifetime of the hyperons (Table B.1), most of the protons can be regarded as
originating from the target. The outgoing proton’s momentum and angle a kinematic
limit. The two solid curves in Fig. B.5 correspond to the limits of decay protons from
the A (black) and 7% (red), produced by 3.03 GeV electron beam; the allowable
(p,0) is the area to the left of the curves. One can see that in general, the G°
acceptance only overlaps with the very edge of the phase space of “direct” protons
from the hyperon decays; the direct protons from the A only go up to detector 9
and those from the X1 go up to detector 11. The kinematically allowed region for
Y% — A — p overlaps even less with the G° acceptance. Compared with the elastic
protons in the same detector, these protons are with higher momentum and smaller
angle, therefore have shorter flight times.

The suppression of the direct events gives a significant boost to the relative im-
portance of the rescattering. Particles can rescattered inside the spectrometers and
strike the detectors without being constrained by the kinematic limits in Fig. B.5.
From the simulation, the total detected proton rates due to rescattering is a factor

of 4—6 to those of the direct hits for the three hyperon channels.

B.3.2 ToF Spectra

The hyperon rates along the ToF bins can be computed with Eqn. B.31. In
Fig. B.6 are shown the ToF spectra arising from the A photo-production for nine se-
lected detectors. The spectra from other hyperon channels have very similar shapes.
For comparison, the measured G° spectra (with an arbitrary scale) are also overlaid.
Due to rescattering, the A rate goes all the way up to detector 16, instead of being
cut off beyond detector 9. In general, the hyperons make a continuous bump in the
ToF, which overlaps more and more with the elastic peak as the detector number in-
creases. For reference, the average rates per detector of the three channels are listed
in Table B.3 for individual FPDs. The contributions from the photo- and electro-
production have been combined; approximately the relative contributions scale as
photo -, 1: 2(A, 2+);1: 1.5(X°). Although these rates are very low compared to the

electro

measured rates, they carry very large asymmetries, therefore can potentially make
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a significant contribution.
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Figure B.6: The ToF spectra due to A photo-production (red solid), overlaid with
the measured G° spectra with an arbitrary scale (black dashed) for nine selected
detectors.

B.3.3 Various Types of Hits and Their #%F Distributions

Decay protons are not the only source that contribute to the detector rates;
some pions generated by the weak decay and their secondaries also make it into the
detectors. Generally, the hits can be sorted into the following categories, based on

the particle type and their origins:

e direct protons (> 48°) — primary protons that go through the opening defined

by the higher and lower collimators;

e direct protons (< 48°) — primary protons that penetrate the LPC;

286



FPD Measured (MHz) A (Hz) ¥t (Hz) X° (Hz)

1 0.82 81.8 37.3 54.9
2 1.09 126.2 07.3 87.1
3 1.16 149.8 65.9 102.4
4 0.96 38.2 41.8 65.8
3 1.03 145.9 63.4 98.9
6 1.12 166.8 80.0 117.6
7 1.20 253.5 126.1 192.2
8 1.07 262.4 121.7 184.8
9 1.20 317.7 138.8 242.8
10 1.24 352.7 143.7 278.2
11 1.27 395.6 164.7 305.7
12 1.02 340.1 141.4 257.7
13 0.88 239.4 96.4 182.9
14 0.92 268.9 108.3 209.5
15 1.00 270.5 114.5 207.5
16 0.47 246.2 100.5 184.3

Table B.3: Total measured rates and the simulated rates from the A, ©F and 3° (per
detector) for individual FPDs.

e fast charged particles: 7%, pu* and e* — directly or indirectly originating from

the weak decay;

e indirect protons — the rescattered/secondary protons indirectly originating

from the weak decay.

In Fig. B.7, the ToF distributions of these four types of hits for rings 4, 8,
12 and 16 from A photo-production are displayed. One can see that in general the
indirect protons dominate the total rates. The direct protons (< 48°) and the fast
charged particles usually have shorter flight time, located at the “dip” in between
the pions and inelastics. The direct protons (> 48°) overlap with the earlier half
of the inelastic bump (cutl), but get cut off for higher numbered detectors. On
the other hand, the indirect protons make a continuous bump across the inelastic

and elastic regions. For reference, the average rates for these four types of hits are
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Figure B.7: The ToF spectra for various types of hits in detectors 4, 8, 12 and
16 from A photo-production: [red = direct protons (> 48°), pink = direct protons
(< 48°), green = fast charged particles, blue = indirect protons, brown dashed =
measured yield with an arbitrary scale].

displayed on the left panel in Fig. B.8 for individual detectors.

grE

One key parameter in evaluating the PV asymmetry is S
RN

the angle of
the momentum of the decay nucleon relative to the photon momentum in the rest
frame of hyperon. For simplicity we will use the symbol 8% from now on. To
make a general impression, the distributions of 8% for various types of hits from
A photo-production are displayed on the right panel in Fig B.8. One can see that
the direct (< 48°) and indirect protons have slightly forward-distributed 8%, on the
contrary those of the direct (> 48°) protons and fast charged particles are backward-
distributed. The distribution of #%F in the electro-production is very similar.

The rates and 0% for the three hyperon channels (averaged over all 16 rings)

are listed in Table B.4. The proton and neutron branches of the weak decay are
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Figure B.8: The average rates vs. the detector number (left plot), and the distribution
of 0% (right plot) for various types of hits in A photo-production. Color code for
different histograms is indicated in the legends.

direct(> 48°) | direct(< 48°) | indirect p | fast part.
R (c) R (c) R | (o | R (c)
pr— | 0.64 | 81 | —0.55 |31.4| 0.12 |66.8]0.12| 7.8 | —0.1
nt® | 0.65 0 n/a 0 n/a |89.5|0.09]29.2|—0.05
pr® | 098] 64| —06 | 94| 017 |203] 02 |11.7|—0.07
nrt | 0.07 | 0 n/a 0 n/a |42.3]0.14 |10.0 | —0.28
pr— | 0.64 |0.40| —0.57 |24.0| 0.14 |509]0.15| 5.8 | —0.13
nm® | 0.65 0 n/a 0 n/a |72.2(0.09|20.0|—-0.03

Y | P] |decay | «

A 0.75

¥t 10.75

0 10.25

Table B.4: A summary table of the average rates and cos(6%F) for different types of
hits. The rates are in units of Hz per detector. Columns {(c) represent (cos(0%)).
The hits are also separated into the “proton” and “neutron” channels at the hyperon
weak decay vertex.

separated, since they have different values of o (see Table B.1). Let us first consider
the contribution of the indirect protons. For A and X°, since P!, o and (cos(6%F")) are
all positive, on average they lead to a positive asymmetry. ¥ T on the other hand, has
positive P! and {cos(#%)), but negative o (the contribution of the neutron branch
is negligible), therefore on average gives a negative asymmetry. Based on the values
in this table, we could repeat this calculation more quantitatively for all types of

hits and combine them; the resulting relative contributions (taking into account the
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differing rates of the three hyperon channels) are roughly A : ¥t : 30~ 3: —1: 1.
Since the A gives rise to a positive asymmetry, the combined contribution from all
three hyperon channels is also positive.

It is useful to estimate the scale of the hyperon contamination in the mea-
sured asymmetry. The total rate due to hyperons is ~500 Hz per detector, and
the total measured rate is ~ 1 MHz. The raw asymmetry of the weak decay is

aPyP! cos(6F) ~ 0.05. Therefore the asymmetry in the measured spectrum due

500Hz
1MHz

to hyperons can be estimated as 0.05 x ~ 25 ppm, which is the scale of the

observed background asymmetry.

B.3.4 Comparison with the G Data

For each ToF bin, the hyperon asymmetry can be computed using Eqn. B.32.
The raw asymmetries of the three hyperon channels vs. ToF are plotted in Figure B.9
for nine representative detectors. One observes a non-monotonic behavior of these
asymmetries at the low ToF region; they are the consequence of the different §%F
distributions of different types of hits in Table B.4. However, across the elastic
peak, where the indirect proton events dominate, the raw asymmetries are smoothly
varying.

Before comparing the simulation with the measured data, let us reiterate the
procedure of the background correction discussed in Sec. 5.3.6. The measured yield
spectrum Y;,(t) is decomposed into an elastic peak Y.(¢) and a background Yj(?),

and then the measured asymmetry A,,(¢) can be written as

)Ab(t) : (B.33)

where A.(t) is the elastic asymmetry, and A,(t) should be interpreted as the effec-
tive asymmetry carried by the background yield Y;(¢). Under the assumption that
the underlying physics is smoothly varying, in Sec. 5.3.6 both Yj(t) and A,(t) are
determined via fits or interpolations, e.g., by parameterizing them as a second order

polynomial in t.
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Figure B.9: The raw asymmetry carried by the A (solid black circles), ¥* (solid
red squares), and X° (open blue circles) vs. ToF for nine representative detectors.
The measured G° yield spectra with an arbitrary scale are overlaid as the dashed
histograms.

To justify our assumption of Ay(¢) in the fit, the raw asymmetries Apy,(t) in

Fig. B.9 are cast into an effective background asymmetry as

Yhyp (t)
Yy(t)

Ahyp,b (t) = Ahyp(t) ) (B-34)

in which Y, (¢) is the simulated hyperon yield, and Y;(¢) is the fitted /interpolated
background yield determined in Sec. 5.3.6. Apypp(t) of the three hyperon channels
(for the nine detectors in Fig. B.9) are plotted in Figure B.10. One can see that the
strengths of the three channels agree with our earlier estimate (A : ©* : 39 ~ 3 :
—1:1). So approximately the contributions from ¥+ and 3° cancel, and that from
A remains. The sum of Ay, ,(t) of the three hyperon channels is shown separately in

Fig. B.11 for all 16 detectors. Also overlaid in the figure are the measured yields and
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asymmetries. In both Figs. B.10 and B.11 we have made small (<2 ns) timing shifts
to Apypp in some detectors to better match the measured asymmetry in the side-
bands. As mentioned earlier, for detector 13 and beyond, the energy loss thresholds

were raised to 2.1 MeV “empirically”.
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Figure B.10: Contributions of the three hyperon channels to the background asymme-
tries Ay(t) for nine representative detectors, calculated using Eqn. B.34 from the raw
asymmetries in Fig. B.9: [solid black circles=A, solid red squares=X%, open blue
circles=X"]. The dashed histograms are the measured yield spectra with an arbitrary
scale.

From Fig. B.11, one observes that for detectors above 8, the simulation re-
produces the trend of the data, i.e. there is a smooth and positive bump of the
background asymmetry moving towards the elastic peak as the detector number
goes higher. The agreement of lower detectors is less satisfactory. Nonetheless, the
simulation does predict a positive asymmetry in the low ToF region, with a fading
strength toward the elastic peak. The complicated structure of the observed asym-

metry at the low ToF regions in detector 4, 5 and 6 is also reproduced by the MC,
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although the scales of the two disagree.

As a conclusion, all the above results have suggested that hyperon decay plays
a significant role in the G° background asymmetry. However, we have emphasized
that the simulation contains unmeasured parameters, in particular the transfered
polarization of X% and X%, as well as the cross section of hyperon productions at
a invariant mass higher than 2.2 GeV. In addition, since the rescattering plays an
important role, one should also be concerned about the accuracy of the handling of
rescattering processes in GEANT. Therefore, the results of this Monte Carlo simu-
lation were not directly applied in the background correction discussed in Sec. 5.3.6.
Nevertheless, according to the MC, both the hyperon rate and asymmetry vary
smoothly across the elastic peak, effectively leading to a smooth varying background
asymmetry, which renders an important justification for the assumptions we made

in the background correction.
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Figure B.11: The total background asymmetries from the hyperon MC by combining
all three channels in Fig. B.10 (open pink squares), overlaid with the G° asymmetries
measured by the NA detectors (solid blue circles) for all 16 FPDs. Both measured
and simulated asymmetries are corrected for the beam polarization
factor is removed from the measured asymmetries. The dashed histograms are the
measured yield spectra with an arbitrary scale.
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Appendix C

Luminosity Monitors

As introduced in Sec. 4.2.2, eight luminosity detectors (LUMIs) were instru-
mented in the G° forward angle experiment. Placed at very forward angles, these
detectors were sensitive devices to check beam induced false asymmetries in the
system, as well as to monitor the density reduction and fluctuations of the liquid
hydrogen target. In what follows, the physical design of the detectors will be pre-
sented in Sec. C.1, followed by a detailed discussion in Sec. C.2 of the detector
performance in terms of the linearity (Sec. C.2.1), sensitivities to the beam proper-

ties (Sec. C.2.2), and measurements of the target density related effects (Sec. C.2.3).

C.1 Physical Design

C.1.1 Geometry and Kinematics

The G target is a 20 cm liquid hydrogen, with aluminum windows with a
total thickness of ~0.0483 cm. At small angles, the dominating scattering processes
are elastic scattering between electrons (Mgller), electron and proton (e—p), and
electron and aluminum nuclei (e—Al). The luminosity, £, is defined as the number
of incident electrons per second, multiplied by the number of scattering centers in the
target per unit area. With 40 yA of incident electron beam, £ = 2.131 x 103® cm~2
for the Mgller and e—p, and 7.27 x 10*® cm~2 for e—Al, and the differential cross
sections of these three processes can be calculated with standard formulas in [Ban97]
(Mgller), [TWO00] (e—p) and [Won98] (e—Al). Folding differential cross sections with
luminosities, the electron rates per unit solid angle can be calculated, and they are
displayed against the electron lab angle for these three reactions in Fig. C.1. One
sees that at small scattering angles between 1° to 5°, the Mgller rate dominates.

The actual layout of the LUMI detectors is illustrated in Fig. C.2. There were
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Figure C.1: The electron rates per unit solid angle vs. electron lab angle for the
Myller (black solid), e—p (pink dashed) and e— Al (blue dot-dashed).

upstream downstream
LUMIS

LUMI7 LUMI8

LUMI3 LUMI2
LUMI6

Electron Beam

Figure C.2: An illustration of the layout of the eight LUMI detectors viewed from
the target. The cross section of the downstream beam pipe, the quartz crystals, and
the aluminum cups that hold the detectors are drawn. The quartz crystals (light blue
blocks, not drawn in proportion to the beam pipe) are approzimately 0.5 cm from the
bottoms of the cups.

in total eight quartz Cerenkov detectors grouped into two sets. One set of four detec-
tors was placed symmetrically about the beam line and 699.7 cm downstream of the
target center, labeled as LUMIs 1 through 4 (see Fig. C.2), and will be referred to as
the upstream LUMIs collectively. The four upstream LUMIs were enclosed inside a
lead shielding box (to eliminate the low energy background for the main focal plane

detectors), and for reasons of space they were put at 45° with respect to vertical
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and horizontal axes. The other four “downstream” LUMIs were located at the very
end of the beam pipe with a distance of 1073.5 cm from the target center, vertically
or horizontally placed, and labeled as LUMIs 5 through 8 (see Fig. C.2). The de-
tectors were placed in 0.159 cm thick aluminum cups, which intruded radially into
the (30.48 cm radius) downstream beam pipe. All quartz crystals were cubic with
dimensions of 3.56 ¢cm X 3.56 cm X 7.62 cm. The long axis of the quartz crystal was
parallel to the radial direction, as shown in Fig. C.2, and the front face of the crystal
exposed to the target was 7.62 cm x 3.56 cm = 27.13 cm?. The average scattering
angle was 1.98° and 1.29° for the upstream and downstream LUMIs, respectively.
The scattered electron energies for e—p or e—Al at such a forward angle are very
close to the incident beam energy (3.03 GeV), and the Mgller electron energies at
these two angles are 667 and 1211 MeV, respectively. Ignoring any small magnetic
field, the solid angle acceptance AS2 for each upstream and downstream detector
is 0.0554 mrad and 0.0235 mrad, respectively. With such geometrical acceptance,
the electron rates for the three scattering processes in each upstream and down-
stream LUMI are summarized in Table C.1. Also tabulated are the parity violating
asymmetries of the individual processes. The asymmetry of Mgller scattering is cal-
culated with the formula in [E158P], and the elastic e—p asymmetry has been given
in Eqn. 6.1. They are both very small for the LUMI acceptance. The asymmetry
for elastic e—Al scattering is estimated using the formulation in [Fei75, DDS89],
in which the isospin and spin of the aluminum nucleus is ignored. Although the
magnitude of the aluminum asymmetry is much larger than the other two, it does
not contribute significantly to the overall asymmetry due to its low scattering rate.
The overall rates for both sets of LUMIs are ~1 GHz per detector, with a physical
asymmetry of the order of 0.05 ppm.

The applications of the LUMIs are driven by the physics at small scattering
angles discussed above. The smallness of the expected physical asymmetry in these
detectors opens the possibility of using these detectors to check for false asymme-
tries. The high scattering rate leads to much improved statistical precision in these

detectors (~< 100 ppm per quartet per detector), as compared to the main focal
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o | G = 1.98°) AQ = 00554 mrad | Gy = 1.20°, AQ = 0.0235 mrad
Rate (GHz) | Asymmetry (ppm) | Rate (GHz) | Asymmetry (ppm)
Mgller 1.06 0.033 0.64 0.055
e—p 0.071 —0.082 0.17 —0.032
e—Al 0.014 0.91 0.067 0.39
Total 1.145 0.037 0.877 0.064

Table C.1: The expected electron rates (per detector) and asymmetries from various
reactions, and their overall contributions to the upstream and downstream LUMIs.
See text for details of the calculations.

plane detectors (~ 1200 ppm per quartet per @? bin). Other noise, such as poten-
tial target density fluctuations, will manifest itself as a widening of the measured

asymmetry width, which can be studied systematically.

C.1.2 Secondaries and Counting Statistics

For reference, we shall present here a somewhat pedantic discussion of the
impact of the secondary particles to the statistics of the measured asymmetry.
If secondary scattering processes are negligible, the statistical width of the

1
quartet asymmetry can be calculated as Wy = T with N, being the number

p
of primary particles per MPS (see discussions leading to Eqn. 5.6). When the

secondary particles generated by the primaries also make it into the detector, the

quartet asymmetry width is modified to become

1
Witat = ——V1+0, C.1
= I (C.1)

where b is a positive excessive noise factor depending on the details of the secondary
process. In the special case that each primary particle on average produces m

secondary particles in an MPS, and only the secondary particles are detected (such
var(m)
m2

as photons in a calorimeter or a photomultiplier tube), then b = , where

var(m) is the variance of m, and is equal to m if the secondaries are also Poisson

distributed [Tei86].

298



However, the b given above is not applicable in our situation. A customized
GEANT simulation [GEA94|, with a simplified G° geometry including the target
windows, the downstream beam pipe, the aluminum cups, and the LUMI detectors ,
shows that both the primaries and secondaries contribute significantly to the detected
rates, with the secondary rates about a factor of 3 of that of the primaries in both
sets of LUMIs. To study the width of the asymmetry with both primaries and
secondaries detected, a Monte Carlo (MC) simulation was carried out. In the MC,
Poisson-distributed random numbers with a mean of 1 are generated one by one to
mimic the primary particles, and for each primary particle, a Poisson-distributed
number with a mean of m is generated as the number of the secondary particles.
This is repeated N, times (N, is the average number of primary hits per MPS), and
the sum of the total primary and secondary particles is used as the total number of
hits within a given MPS. This procedure is repeated large number of times, and for
each four consecutive MPS’s, a quartet asymmetry is computed and histogrammed.

In the end, the width of the asymmetry is obtained for each given value of m; the

1
/4N,

for various values of m. As one can see, the largest widening of the MC width away

former is then compared to In Fig. C.3, the ratio of the two are displayed

from —— occurs at m ~ 1 by about 12%, and for m ~ 3 indicated by the GEANT

/AN,

simulation, the asymmetry width is about —2

\/4N,

Although containing some realistic features, the above estimate of the excessive

noise is still too simplistic. We shall show in Table C.2 that the secondary particle
rates in the real experiment are far more significant than that was indicated from
the simple GEANT simulation. These extra secondary rates could originate from
complicated rescattering or cascading processes, which makes it almost impossible
to estimate the excessive noise in the asymmetry. Nevertheless, it is important to
note that the “multiplication” of secondary particles remains the same for a given
electron beam energy and the geometry of the experiment. Since the rate of the

primary particles scales with the beam current Iy, Wy, should scale T%, regardless

tA copy of the GEANT simulation code can be downloaded from
http://www.jlab.org/ jianglai/geant/g0lumi_geant_v2.tar.gz.
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Figure C.3: The ratio of the quartet asymmetry width obtained from the Monte Carlo
to that estimated from the primary statistics (- iN ), against the average number of
p

secondary particles per primary particle. See text for details of the Monte Carlo.

of the details of the secondaries. This important principle shall be referred to as the

“counting statistics” in the remainder of this appendix.

C.1.3 Detectors

The quartz crystal detects electrons via Cerenkov photon radiation. When
propagating through a medium with an index of refraction n, a charged particle with
B greater than a threshold value Byes = % will radiate Cerenkov photons. These
photons are emitted in a sharp cone around the trajectory of the charged particle,
with a half-angle 6, = cos™!(1/n8) [PDG04]. The quartz crystals used in the LUMI
detectors are Spectrosil 2000 (synthetic fused silica) from Saint Gobain Quartz with
n = 1.47. Since the scattered electrons are relativistic (8 ~ 1), the Cerenkov cones
have a half angle of 6, = 47.1°, which will be totally reflected on the surface until
reaching the end of the quartz. FEach quartz crystal was wrapped in aluminum
foil and the only open end was attached to the window of a phototube. For the
four upstream detectors, Hamamatsu R375 photomultiplier tubes (10-stage) were
used. For the downstream set, LUMIs 5 and 6 used Phillips XP2262 photomultiplier
tubes (12-stage), and LUMIs 7 and 8 were instrumented with Hamamatsu R4026PT
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vacuum photodiodes.
For incident particles with charge Ze, the number of Cerenkov photon per unit
path per energy of photon energy is [PDG04]

d>N

~ Z?3705in20, eV ' em™L. 2
T 370sin“ 6. eV " cm (C.2)

However, to estimate the number of photoelectrons generated from the photocath-
ode of the phototube, one will need to take into account the photon collection
efficiency and the quantum efficiency (QE) of the cathode material. Due to the
internal reflection and the aluminum wrapping, we estimate that 70% of Cerenkov
photons reach the photocathode. For the Hamamatsu R375 tubes and photons with
a wavelength between 175 nm (1.13 eV) and 550 nm (0.36 eV), the average QE is
~15%, which collapses rapidly outside this wavelength range [HamCa]. Therefore
the average number of photoelectrons generated from the photocathode per incident

electron on the quartz is estimated to be

Npp =370 eV~ ecm™" x sin®47.1° x 3.5 cm x 70% x 15% x (1.13 — 0.36) eV
=56. (C.3)

With an incident rate of 1 GHz, and a typical gain of a photomultiplier tube (~ 10°),
this leads to an anode current of ~ 1 mA, too high for routine operation of the tube.
Therefore, a special design was needed to reduce the gain of the tube.

The gain of a photomultiplier tube is directly related to the voltage applied in
between its dynodes. Lowering the high voltage is the simplest way of reducing the
gain. However, if the voltage between dynodes is too low, non-linearity will arise
due to space charge effects. Furthermore, the electric field in between dynodes needs
to be kept above certain level in order to maintain proper focusing of the cascading
electrons. Therefore we took an alternative approach to use only the first few dynode
stages, so that the gain can be reduced without compromising the voltage across

active dynodes.
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A diagram of the custom-built base for the Hamamatsu R375 tube is shown in

Fig. C.4. With this design, only the first 5 dynodes (D; through Ds) of the tube were

K G A
—T \ D1 D2 D3 D4 D5 \DG D7 D8 D9 D10
10K R,
330k | 160k

100 10nF
O_HV e

Figure C.4: The diagram of customized base for the R375 photomultiplier tube. Only
the first five stages are active. The signal is extracted at the 6th dynode stage.

used for multiplication, and Dg through D and the anode were shorted together to

serve as a “new”

anode. The resistor between the cathode and D; was significantly
larger than the others to help collect cathode electrons and to ensure a high gain of
the first dynode. The resistors between D, and the anode were also made larger to
eliminate space charge accumulation and help the collection of cascading electrons
at the anode. The base design for the XP2262 tubes was very similar, except that
the signals were extracted at the 7th dynode stage.

For a given photomultiplier tube, the gain of each stage can be parameterized
as G = BV, in which V is the applied voltage across the stage, and § and «
are parameters related to the dynode materials and geometrical structure of the
tube [HamCa]. The S and « can be estimated from the gain calibration curve
from the manufacturer, and the resulting values are o ~ 0.59 and 8 ~ 0.26 for the
R375, and v ~ 0.76 and 8 ~ 0.11 for the XP2262. Based on these parameters, the

expected gains vs. high voltage for the two types of tubes with our customized low

gain bases are displayed in Fig. C.4 .

tThe absolute gain calibration for these LUMI gain bases is difficult, since the amplitude of the
single photoelectron is too low to be observed.
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Gain vs. HV
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Figure C.5: The estimated gain vs. high voltage curves for the XP2262 (red) and
R875 (black) photomultiplier tubes with customized low gain bases. Both = and y
azxes are in log scale.

C.1.4 Electronics

Due to the high particle rate, the pulse counting is no longer practical, therefore
only the integrated signals were extracted from the tubes. The anode currents of
the photomultiplier tubes were fed into commercial low-noise current to voltage
(I-V) pre-amplifiers (Hamamatsu C7319 for LUMIs 1 through 4, and PMT4 and
PMT5 from Advanced Research Instruments for LUMIs 5 and 6, respectively) and
converted into voltage signals. During normal running, the gain of the tubes were
set such that the anode currents of the tubes were kept at ~40 pA, and all the
preamplifiers were set at 0.1 V/uA, resulting in an output signal of ~4 V. The
voltage signal was then digitized by TRIUMF voltage-to-frequency converters, whose
outputs go into scalers being read out for each helicity state (1/30 s). Effectively this
electronics worked like an ADC with an 1/30 s integration time. The output of the
two vacuum photodiodes (LUMIs 7 and 8) were sent to custom-built preamplifiers
located very close to the detectors, and the outputs followed the same path as those
for the photomultiplier tubes.

The 30 Hz electronic noise was measured in two ways. One was to use a
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battery and resistor to mimic a noiseless anode current signal, and the other was
simply by measuring the electronic pedestal. Both measurements looked for the
30 Hz fluctuations at the output of the preamplifier, and showed consistently that

the noise was ~0.09 mV, as compared to a typical signal size of ~4 V.

C.2 Detector Performance

In this section, the performance of the luminosity detectors during the G°
forward angle experiment will be summarized. LUMI7 was not operational during
a significant period of the experiment, and LUMI8 appeared to be more noisy and
non-linear than other detectors, therefore most of the following analysis will be

focused on LUMIs 1 through 6.

C.2.1 Detector Linearity

As mentioned, the high voltages on the photomultiplier tubes were set to main-
tain about ~40 pA of anode current when 40 uA of beam was on the LH2 target.
For reference, the high voltages on the individual detectors during nominal running
are summarized in Table C.2. The estimated gains under these high voltages (see
Fig. C.5), and the anode currents (based on the rates in Table C.1, the number
of photo-electrons in Eqn. C.3, and the tube gains) are also tabulated. The esti-
mated anode currents for the upstream LUMIs are much lower than the measured
values, which indicates very significant secondary rates inside the lead shielding
box. Nevertheless, as explained in Sec. C.1.2, although the statistical width of the
asymmetry is difficult to estimate under such circumstances, it should still follow
counting statistics with a characteristic dependence of ﬁ

Unlike the main FPDs, since the electronics for the LUMIs were integrating,
the non-linearity due to electronic deadtime was not present. However, with such
a high rate, space charge effects inside the phototube could potentially spoil the
linear response of the output with respect to the incident rates. To study the

detector linearity without the complication of the hydrogen target density variation,
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LUMI 1 2 3 4 5 6
HV(V) 380 280 280 390 730 740
Gain 152 63 63 164 1211 1288
1554 (1A) 1.6 0.65 0.65 1.7 9.5 10.1

Table C.2: The high voltages set on the photomultiplier tubes of individual LUMI
detectors during the experiment (40 pA of beam on LH2 target) to get a measured
anode current of ~40 pA. The calculated gains (based on Fig. C.5), and the esti-

mated anode currents IE% are also tabulated.

data collected from the aluminum dummy target (flyswatter) were used instead. In
Fig. C.6, the (beam current) normalized LUMI yields with the flyswatter target
are plotted against the beam current from 10 A up to 40 uA. As one can see, all
six photomultiplier tubes behave linearly over the entire range, and the fractional
changes of the normalized detector yields from 0 to 40 pA for all of them are less

than 0.4%.

Normalized LUMI yield vs. beam current on flyswatter
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Figure C.6: The (beam current) normalized LUMI yields vs. the beam current and
the corresponding linear fits with the aluminum dummy target (flyswatter). The
color code for different LUMIs, and the fractional changes of the fitted yields from
0 to 40 pA are indicated in the legend.
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C.2.2 Sensitivities to Beam Properties

The sensitivity of the LUMI yield with respect to the beam parameters was
analyzed the same way as the main FPDs. A linear regression method was employed
to compute the yield slope with respect to the beam positions, angles, energy and
charge, (z,vy, 05, 0,, Ep, Q). Similar to those of the main detectors, the slopes of the
LUMIs were fluctuating from run to run, but if they are averaged over the entire
experiment, the expected sensitivities emerge. In Fig. C.7, the fractional LUMI yield
slopes with respect to x and y (average over the entire run) are plotted against the
azimuthal angle (®) for each detector. A cos(®) and sin(®) fit is made on the x and
y slopes, respectively. In principle, the upstream and downstream detectors should
have different position sensitivities due to their different scattering angles, but due
to limited precision of the slopes, we simply fit them with a single sinusoidal function

as if they were located on the same “ring”. Similar to the FPDs (see Fig. 5.14), for

LUMI Yield Slopes w.r.t. x and y vs®
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Figure C.7: The slopes (averaged over the entire experiment) of the LUMI detectors
to the beam x and y positions vs. the azimuthal angle. The slopes are in units
of %/mm. The uncertainty on each data point is calculated by scaling down the
standard deviation of the run-by-run slopes (by a factor of ~5) in order to get a
good x? for the fit.

both x and y positions, the variation of the LUMI slopes from detector to detector
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is consistent with the geometrical expectation. However, both sets of slopes exhibit
some offsets from zero, possibly due to a misalignment.

Combining the LUMI slopes with the measured helicity correlated differences
or asymmetries of the beam parameters (Table 4.1) using Eqn. 5.56, the false asym-
metry due to these parameters is calculated to be of the order ~<0.1 ppm with an
uncertainty larger than 100%. In Fig. C.8, the asymmetry computed by treating
the sum of yields for LUMIs 1 through 4 as a single detector are plotted against
the run number, where the small and uncertain correction has been omitted. Each
data point in the figure is an averaged result over a group of consecutive runs asso-

ciated with a given “IN” or “OUT” state of the insertable halfwave plate. Although

LUMIs 1 though 4 "summed" asymmetry
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Figure C.8: The asymmetry computed from the summed yield of LUMIs 1 through
4 vs. the run number. Fach data point is an average over a given state of the
insertable halfwave plate: [red solid circles = “OUT”, blue open squares = “IN”].

there exist non-statistical fluctuations in the data, the overall averaged asymmetry
is 0.0240.06 ppm, consistent with zero. It is also interesting to note that the uncer-
tainty of the measured asymmetry of each LUMI detector is ~0.07 ppm, and if one
treats the total yield in the four LUMIs as a single measurement, the uncertainty of

the asymmetry does not go down like 0'—\/017 due to a significant common uncertainty
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arising from the target density fluctuations in these detectors. This effect will be
quantified in Sec. C.2.3.

The null LUMI asymmetry in Fig. C.8 has important implications. The asym-
metry of the main FPD could be potentially biased by an unmeasured and helicity
correlated beam parameter. On the other hand, since LUMIs are expected to be
more sensitive to the beam properties, if such a beam parameter did exist, it would
manifest itself as a nonzero asymmetry in the LUMIs f. Therefore the zero LUMI

asymmetry sets a stringent limit on such potential systematics in the FPDs.

C.2.3 Target Boiling Studies

As mentioned in Sec. 4.2.2, with local heating of the electron beam, the liquid
hydrogen could boil. The boiling might change the global density of liquid hydrogen,
which would lead to a change of the (current normalized) detector yield. On the
other hand the density of the boiling hydrogen could fluctuate, increasing the width
of the asymmetry distribution. One of the important purposes of the LUMI detectors

is to study these two effects and we shall discuss them in turn.

C.2.3.1 Target Density Reduction

The density reduction of the liquid hydrogen can not be directly measured
by the main FPDs. If the (beam current) normalized FPD yield is decreasing
with increasing beam current, it is difficult to tell whether it is due to electronic
deadtime in the counting electronics or a target density reduction. On the other
hand, as mentioned earlier, the electronics of the LUMIs were integrating, therefore
did not have this complication. The linearity of the LUMIs has been studied in
Sec. C.2.1 with a control measurement on the dummy aluminum target, where it
was demonstrated that the change of the normalized LUMI yield from 0 to 40 pA
is less than 0.4%. Therefore the global density change of the liquid hydrogen target
can be determined with LUMIs reliably.

tThis statement does not apply to the leakage beam effect, since the LUMIs use integrating
electronics and is insensitive to time structure of the beam. See details in Appendix A.
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Similar to Fig. C.6, the normalized LUMI yields measured at different beam
currents with the LH2 target (under nominal beam size and pump speed) is displayed

in Fig. C.9. As one can see, none of the detectors experiences a significant yield

Normalized LUMI yield vs. beam current on LH2
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Figure C.9: Same as Fig. C.6 but with liquid hydrogen target with nominal beam size
and pump speed.

decrease from 5 to 40 pA. The data points at 5 uA appear to be different from the
trend of the others, which might be due to the non-linearity of the beam charge
monitor at low current. One should also be aware that different LUMIs should in
principle see the same target density reduction, so the different slopes measured
by the six detectors in the figure is an indication of other systematic effects, such
as the calibration of the pedestals of these detectors. The average slopes of the six
detectors in the figure is ~ —1.04+0.7% and we take this as an estimate of the global
target density reduction of hydrogen target under nominal running conditions. This
is very small compared to the yield slope measured in the focal plane detectors (see
Fig. 5.9(a)), which proves in turn that the yield reduction observed in the main

FPDs is primarily due to electronic deadtime.
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C.2.3.2 Target Density Fluctuations

As briefly discussed in Sec. 4.2.2, target density fluctuations can be controlled
by varying the beam current, the rastered beam size on target, and the pump speed.
The first two variables affect the boiling directly by changing the power density of
the incident beam, and the last one controls the thermal mixing in the liquid, which
indirectly affects the boiling.

At nominal running conditions (40 gA beam current, 2 x 2 mm? beam size, and
31 Hz pump speed), the width of the measured quartet asymmetry of each LUMI is
~300 ppm. In Fig. C.10, the asymmetry histograms of LUMI1 with various beam

sizes at a fixed 40 pA current and 31 Hz pump speed are overlaid. One clearly

LUMI1 asymmetry width vs. beam size
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Figure C.10: The asymmetry distributions of LUMI1 with various beam sizes on
target under a fired 40 uA of beam current and 30 Hz target pump speed. The
widest green histogram is with a rastered beam size of 0.85 x 0.85 mm?, whereas the
blue (pink filled) histogram is that with the 2 x 2 mm? (3 x 3 mm?) beam size.

sees that the asymmetry width with a 3 x 3 mm? beam size is the smallest, and it
grows wider when the beam size decreases. Therefore the existence of some density
fluctuations at the nominal running point (the blue “2 x 2” histogram in the figure)

is without doubt.
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The width of the measured asymmetry can be decomposed as
W2 (Am) = Ws2tat + szoil + W72Loz'se : (C4)

In this equation, Wy, is the statistical width discussed in Sec. C.1.2, which has a
characteristic ﬁ dependence. W, and W,,ise are the contributions due to the
target density fluctuation and other noise in the system, respectively.

Let us make some remarks about W,,yise. The 30 Hz electronic noise has been

measured to be ~0.09 mV, as compared to the typical signal size of ~4.0 V. This
\/4 X (0.09 mV)?2

4x4V
The noise due to fluctuations of the beam parameters can be estimated as follows.

noise contributes

~ 11 ppm to the quartet asymmetry width.

Let us define Ap = pf + p; — p; — p, as the helicity correlated difference of a
beam parameter p measured in a quartet, and the width of Ap is W(Ap). Then the
contribution of W(Ap) to the quartet asymmetry width is %%—?W(Ap) For the
six beam parameters considered in Sec. C.2.2, the position differences contribute
most significantly to the LUMI asymmetry width. Taking a typical value of Az =
15 pm and Ay = 20 pm, and assuming that +%* ~1%/mm and %%—}; ~0.5% /mm
(see Fig. C.7), these two parameters alone lead to a 50 ppm contribution to the
LUMI asymmetry width, which is small compared to a typical total LUMI width
(300 ppm). We further note that the noise induced by these beam parameters can
be in principle eliminated by linearly regressing the LUMI yield with respect to
these six parameters. The noise due to other sources such as beam scraping or halos
remains in the corrected width, and will have an unknown dependence on the beam
current.

The key to extracting Wj,; from Eqn. C.4 is to determine Wy; and W, ;-
We shall first demonstrate that W, is negligible after the linear regression, using a
control measurement on a solid target. In Fig. C.11, the asymmetry widths measured

with the aluminum frame target for LUMIs 1 and 4 are plotted against the beam

current f. Since Wi,y = 0 for a solid target, the measured asymmetry width only

tThe asymmetry measurements performed on the flyswatter target with 5 up to 40 pA of
beam (see Fig. C.6) were with very low signal sizes (~ 10% of the typical signal size on hydrogen
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Figure C.11: The measured asymmetry widths with the aluminum frame target for
LUMIs 1 (red solid circles) and 4 (blue open squares) vs. the beam current. The beam
current was limited to below 20 pA for this configuration. The counting statistics
fits for both LUMIs are also overlaid.

contains Wsier and Wipise. The LUMI asymmetry was corrected using the standard
linear regression correction (see Eqn. 5.70) with respect to the six beam parameters
(z,y, 04,0y, Ep, I). As an example, the widths of LUMI1 at 19 pA before and after
this correction is 95 and 79 ppm, respectively. The corrected LUMI widths in
Fig. C.11 are fitted with a counting statistics function %, with C' being a scaling
variable, and one can see that the data do not exhibit significant deviation from
the counting statistics curve down to a width of less than 80 ppm. Therefore,
we conclude that the remaining W, 4;se in the corrected width is small and can be
neglected in the following analysis.

To quantify the contribution of the hydrogen density fluctuation to the asym-
metry width, we varied the beam current from 10 to 40 pA, the beam size from
0.85 x 0.85 mm? to 3 x 3 mm?, and the pump speed from 31 to 42 Hz. As expected,
the larger the beam size and the pump speed, the smaller the width of the asym-

metry. Linear regression corrections were applied to the LUMI yields, and in some

target), therefore the contribution due to the electronic noise to the measured asymmetry width
was significant. Those results are more difficult to interpret.
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cases the corrected width is wider than the raw width; the lesser of the two was
adopted. In Fig. C.12, the asymmetry width of LUMI5 under the nominal pump
speed (31 Hz) and beam size (2 x 2 mm?) is plotted against the beam current.

The width of the asymmetry actually increases when the beam current grows above

LUMI5 Asymmetry Width
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Figure C.12: The measured asymmetry widths (blue open squares) of LUMIS5 vs. the
beam current, with rastered beam size of 2 x 2 mm? and 30 Hz pump speed. The red
data point is that measured at 10 pA, 3 x 3 mm? beam size, and 42 Hz pump speed.
The dashed curve is counting statistics curve extrapolated from the red data point
with an estimated error band. See text for more explanation.

20 pA, which is another demonstration of the effect of the boiling.
In [Cov04, Cov05], the determination W,,; was made by parameterizing W

as a function of the beam size, so that

1
W2 (Am) = W?tat + Wl?oil ’ WbZoil (&8 S_w (05)

where s is the area of the rastered beam size, and z is a fitted parameter. In
this work, we adopt an alternative approach by employing the counting statistics
constraint on Wy,,. The starting point is the data at 10 pA, 3 x 3 mm? beam
size, and 42 Hz pump speed, and we assume that Wj,; = 0 under these favorable

conditions. The corresponding width of LUMI5 is shown as the solid data point in
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Fig. C.12. Next, we assume that W, is also negligible at this point, so W(A4,,) =
Wiiat, and the statistical width at any other beam current can be eztrapolated based
on the ﬁ relation. The extrapolated Wy;,; as a function of the beam current is
overlaid in Fig. C.12 as the dashed curve. Under the further assumption that W,,;se

is negligible over the entire range, the boiling contribution can be calculated from

the difference between the data and the curve as

Wit = \/ W2(A) = Woay. (C.6)

Before presenting the results of W, let us first estimate the uncertainty of
this extraction. The statistical precision of the measured asymmetry width is very
small (~< 5 ppm), therefore the uncertainty is dominated by the two “model”
uncertainties: that associated with our assumption that the target does not boil at
the “no boiling” conditions described above, and that due to the omission of W, 4;se-
The former uncertainty is estimated by using Eqn. C.5 to fit the asymmetry widths
at 10 uA with different beam sizes when the pump speed was fixed at 31 or 42 Hz,
similarly to the treatments in [Cov04, Cov05]. The value of z is assumed to be the
same for the data with 31 and 42 Hz pump speeds, and we further demand that the
extracted statistical W, for the two pump speeds is the same. The resulting values
of z from the fits are 0.3—0.55, and the corresponding W, are 3 to 13 ppm lower
than the measured width at the “no boiling” conditions for all LUMIs. Therefore
13 ppm is conservatively taken as an estimate of the systematic uncertainty for the
“no boiling” assumption. The uncertainty due to the omission of W, is estimated
to be ~15 ppm, according to the largest deviation of the measured data from the
counting statistics fit in the aluminum control measurement (see Fig. C.11). These
two uncertainties are combined into an effective uncertainty to the counting statistics
curve, displayed as the gray error band in Fig. C.12.

The resulting contributions of the target boiling to the LUMI asymmetry
widths at 40 pA, with different raster sizes and pump speeds, are summarized in

Table C.3. The last row in the table is obtained by treating the sum of the yields of

314



LUMI |31Hz 2x2 31Hz 3x3 42Hz 2x2 42Hz 3 x3

1 260(13) 172(19) 207(16) 158(21)

2 267(12) 154(21) 209(16) 163(20)

3 269(12) 158(21) 199(16) 146(22)

4 260(12) 150(22) 183(18) 94(34)

5 322(11) 172(21) 230(16) 275(13)

6 290(12) 192(18) 249(14) 281(12)
Sum 1-4 | 265(12) 152(21) 195(17) 159(20)

Table C.3: The extracted boiling contribution Whey to the LUMI asymmetry width
at 40 pA, with a beam spot size of 2 x 2 or 3 x 3 mm?, and a pump speed of 51
or 42 Hz. All values are in units of ppm. The values in the parentheses are the
uncertainties of Wieit under corresponding conditions. The last row represents the
results by treating LUMIs 1 through 4 as a single detector. See text for more details.

LUMIs 1 through 4 as a single detector. The uncertainty of Wj,; due to the error
band in Fig. C.12, is listed in the parentheses in the table. The agreement among
LUMIs 1 through 4 is excellent, but some discrepancy exists between the upstream
(1 through 4) and downstream (5 and 6) LUMIs, indicating the systematic uncer-
tainty of this evaluation. The boiling contribution at the nominal running point
(40 pA beam current, 2 X 2 mm? beam size, and 31 Hz pump speed), is estimated
to be 264 + 31 ppm, by averaging the values between LUMIs 1 and 4, with the half
spread among all LUMIs as the uncertainty. This result is in agreement with that
in [Cov04, Cov05] (Wyeir = 238 = 65 ppm).

Lastly, let us remark that target density fluctuations contribute to a common
amount to the width of the asymmetries of all FPDs and LUMIs. The contribution
of these fluctuations obtained here (264431 ppm) is negligible compared to a typical
FPD asymmetry width in a given Q? bin (~1200 ppm).
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