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It is well known that the spin direction of a particle is affected by a boost that is not parallel 
to its momentum, a relativistic effect described as Wigner rotation or Wigner-Thomas precession.  
Thus, we often require a transformation between polarizations expressed in either the lab or cm 
frames.  Several versions of this transformation appear in the literature, but proving their equiva-
lence can be algebraically tedious.  Unfortunately, at least one widely cited paper that was intended 
to be pedagogical gets the transformation wrong.  Therefore, in this notebook I review the standard 
derivation and then examine several of the published variations using Mathematica to perform as 
much of the tedious algebra as possible.  Numerical results are provided for several typical 
reactions.
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Wigner rotation

à Derivation

The intrinsic spin of a massive particle is specified in its rest frame.  Suppose that s”÷÷  is a unit vector that
represents  the  spin  orientation  in  a  rest  frame.   A spacelike  spin  four-vector  is  then formed as  s = H0, s”÷÷ L  such
that  sm sm = -1  is  invariant.   The  spin  four-vector  in  an  arbitrary  frame is  obtained  by  applying  the  boost  that
represents  the  momentum  in  that  frame.   Nevertheless,  the  orientation  of  the  spin  is  still  represented  by  the
original s”÷÷ .  The relationship between spins in frames differing by a boost which is not parallel to the particle's
momentum can be determined by transforming each frame to a rest frame of the particle, using a boost parallel
to the momentum in that frame, and comparing the orientations of the two rest frames.  These orientations differ
because nonparallel boosts do not commute.

Consider two frames, S1  and S2 , that share a common set of coordinate axes and differ by a boost along
z̀ .   We assume, without loss of generality,  that the velocity of a particle lies in the xz-plane and that the polar
angles are in the range 0 § q1, q2 § p .  If we label the boost direction as z̀  and the normal to the plane containing
the boost and momentum directions as ỳ ,  the four-vectors take the form 8E, pz, px<  where the y  component is
superfluous.  The four-momenta can then be expressed as

p1 = m g1 81, b1 Cos@q1D, b1 Sin@q1D<
p2 = m g2 81, b2 Cos@q2D, b2 Sin@q2D<

in S1  and S2 , respectively.  The momentum observed in frame S2  moving with velocity - b
”÷

= - b z̀  relative to S1

is obtained via the boost p2 = Bz@- bD.p1  where

Bz@bD =
ikjjjjjjjj g -g b 0

-g b g 0
0 0 1

y{zzzzzzzz
Similarly, the momentum observed in a frame S2  rotated by an angle q  relative to S1  is given by p2 = Ry@qD.p1

where

Ry@qD =
ikjjjjjjjj1 0 0
0 Cos@qD Sin@qD
0 -Sin@qD Cos@qD y{zzzzzzzz

Finally, if the relative velocity  b
”÷

= bx x̀ + bz z̀  lies at angle q = ArcTan@bz, bxD  in the xz-plane, we employ the
combined boost 

B@q, bD = Ry@-qD.Bz@bD.Ry@qD
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Note  that  these  transformation  matrices  are  expressed  in  passive  form,  transforming  the  coordinate  systems
instead of the particle.  

If  the momentum forms an angle q1  with the z̀  axis  of S1 ,  we can reach a rest  frame R1  using a boost
with velocity b

”÷
1 , such that

T1 = B@q1, b1D = Ry@-q1D.Bz@b1D.Ry@q1D
represents the complete Lorentz transformation from frame S1  to a rest frame R1 .  Alternatively, we could first
use a boost along the z̀  axis to transform from S1  to S2  in which the momentum p2  appears at angle q2 .  We then
use a boost with velocity b

”÷
2  

T2 = B@q2, b2D .Bz@- bD = Ry@-q2D.Bz@b2D.Ry@q2D.Bz@- bD
to  reach  a  rest  frame R2 .   These  are  both  rest  frames  of  the  same particle,  so  can  differ  at  most  by  a  rotation
about their common ỳ  axis, such that

T2 = Ry@cD.T1

Thus, the angles between the spins in S1  and S2  can be obtained from the transformation

Ry@cD = T2 T1
-1 = Ry@-q2D.Bz@b2D.Ry@q2D.Bz@- bD.Ry@-q1D.Bz@- b1D.Ry@q1D

Unfortunately, direct multiplication of these seven matrices produces a rather complicated result that is difficult
to simplify and from which it  is  difficult  to  determine c .   A somewhat simpler  method is  to  use that  fact  that
successive rotations about the same axis add, such that

Ry@-WD = Bz@b2D.Ry@q2D.Bz@- bD.Ry@-q1D.Bz@- b1D
where W = q1 - q2 - c  is easier to evaluate.  Once we demonstrate that this matrix represents a pure rotation, we
can identify W  from its matrix elements and deduce c = q1 - q2 - W .  

It is useful to distinguish between polarizations expressed with respect to a common coordinate system,
described as z bases, from those expressed with respect to helicity bases with the longitudinal direction along the
momentum for either frame.  In z bases we findikjjjPz

H2L
Px

H2L y{zzz =
ikjjj Cos@cD Sin@cD

-Sin@cD Cos@cD y{zzz 
ikjjjPz

H1L
Px

H1L y{zzz
while for helicity bases we obtainikjjjjPL

H2L
PS

H2L y{zzzz =
ikjjjCos@WD -Sin@WD

Sin@WD Cos@WD y{zzz 
ikjjjjPL

H1L
PS

H1L y{zzzz
where W = q1 - q2 - c .  The signs chosen for c  and W  give positive angles when S1  is the cm, S2  is the lab, and
b > 0.  Notice that b > 0 ï q2 < q1  corresponds to the typical cmØlab transformation while b < 0 ï q2 > q1

corresponds to the typical labØcm transformation.  For small †b§  we expect c  to be small because it represents a
relativistic  effect  that  causes  noncolinear  Lorentz  transformations  not  to  commute  while  Galilean  transforma-
tions  would  commute.   Under  these  circumstances  we  expect  to  find  W º q1 - q2  to  be  positive  for  cmØlab
transformations or negative for labØcm transformations.
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We are now ready to set up a Mathematica  calculation of  the spin rotation matrix.  First we define the
momenta in S1  and S2  as

p1 = m γ1 81, β1 Cos@θ1D, β1 Sin@θ1D<;
p2 = m γ2 81, β2 Cos@θ2D, β2 Sin@θ2D<;

where 0 § b1, b2 § 1.  Next, we define the rotation matrix

Ry@θ_D = 881, 0, 0<, 80, Cos@θD, Sin@θD<, 80, −Sin@θD, Cos@θD<<;
and boost functions

Bz@β_D = 88γ, −γ β, 0<, 8−γ β, γ, 0<, 80, 0, 1<< ê. 9γ →
1

ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

=;

Bz@β_, γ_D = 88γ, −γ β, 0<, 8−γ β, γ, 0<, 80, 0, 1<<;
where, for algebraic reasons, it will prove convenient to define a variant in which the relationship between g  and
b  remains implicit.  A boost in an arbitrary direction in the xz-plane is then

B@θ_, β_D = Ry@−θD.Bz@βD.Ry@θD;
B@θ_, β_, γ_D = Ry@−θD.Bz@β, γD.Ry@θD;

Now we verify that a boost with b
”÷

= b
”÷

1  transforms from S1  to a rest frame R1  such that

B@θ1, β1D.p1 ê. 9γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

= êê MySimplify

8m, 0, 0<
Although the results are already familiar, we also check our functions by evaluating the relationship between p2

and p1  under a boost b   in the z-direction.

Thread@Bz@−β, γD.p1 m p2D êê MySimplify8m γ γ1 H1 + β β1 Cos@θ1DL m m γ2,
m γ γ1 Hβ + β1 Cos@θ1DL m m β2 γ2 Cos@θ2D, m β1 γ1 Sin@θ1D m m β2 γ2 Sin@θ2D<

These results can be represented by substitution rules

rule1 = 9γ2 → γ1 γ H1 + β β1 Cos@θ1DL, Sin@θ2D →
β1 γ1
ccccccccccccc
β2 γ2

 Sin@θ1D,

Cos@θ2D →
γ γ1

ccccccccccccc
β2 γ2

Hβ1 Cos@θ1D + βL, β2 → $%%%%%%%%%%%%%%%%%1 −
1

ccccccccc
γ22

=;

rule2 = 9γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

, γ →
1

ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

=;

We  are  now  ready  to  evaluate  the  angle  between  R1  and  R2 .   Multiplying  five  transformations  and
applying the kinematic relationships between S1  and S2  gives
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R12 =

HBz@β2, γ2D.Ry@θ2D.Bz@−β, γD.Ry@−θ1D.Bz@−β1, γ1D êê. rule1L ê. rule2 êê
MyFullSimplify981, 0, 0<, 90, β1 + β Cos@θ1DccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH1 + β β1 Cos@θ1DL $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 − H−1+β2L H−1+β12LcccccccccccccccccccccccccccccccccH1+β β1 Cos@θ1DL2 ,

β H−1 + β12L Sin@θ1DccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH1 + β β1 Cos@θ1DL $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H1 − β12L I1 − H−1+β2L H−1+β12LcccccccccccccccccccccccccccccccccH1+β β1 Cos@θ1DL2 M =,
90, −

β H−1 + β12L Sin@θ1DccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH1 + β β1 Cos@θ1DL $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H1 − β12L I1 − H−1+β2L H−1+β12LcccccccccccccccccccccccccccccccccH1+β β1 Cos@θ1DL2 M ,

β1 + β Cos@θ1DccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH1 + β β1 Cos@θ1DL $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 − H−1+β2L H−1+β12LcccccccccccccccccccccccccccccccccH1+β β1 Cos@θ1DL2 ==
where

R12.Transpose@R12D êê MySimplify881, 0, 0<, 80, 1, 0<, 80, 0, 1<<
Det@R12D êê MySimplify

1

demonstrates that R12  is a proper orthogonal matrix or, in other words, a pure rotation.  Thus, the net effect of
three  nonparallel  coplanar  boosts  which  take  a  system  from  one  rest  frame  to  another  in  the  sequence
R1 Ø S1 Ø S2 Ø R2  is a pure rotation.  Thus, by analyzing the components of this matrix

−
R12P2, 3T
ccccccccccccccccccccccccc
R12P2, 2T

ê. 9β2 → 1 −
1

ccccccc
γ2

, β1
2 → 1 −

1
ccccccccc
γ12

, β2
2 → 1 −

1
ccccccccc
γ22

= êê MySimplify

β Sin@θ1Dcccccccccccccccccccccccccccccccccccccccccccccccc
β1 γ1 + β γ1 Cos@θ1D

we identify

Ω = ArcTan@γ1 Hβ1 + β Cos@θ1DL, β Sin@θ1DD ê.

9γ →
1

ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

, γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

= êê MyFullSimplify;

and  use  the  quadrant-sensitive  version  of  the  inverse  tangent.   The  rotation  angle  relative  to  a  fixed  set  of
coordinate axes is then  
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c = q1 - q2 - W

or

χ = i
k
jjjθ1 − θ2 − Ω ê. θ2 → ArcTanA β1 Sin@θ1D

ccccccccccccccccccccccccccccccccccccccccccccc
γ Hβ1 Cos@θ1D + βL Ey

{
zzz ê.

9γ →
1

ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

, γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

= ê.

ArcTanA
y_
ccccccc
x_

E → ArcTan@x, yD êê MyFullSimplify

θ1 − ArcTanAβ1 + β Cos@θ1D, β"#############1 − β12 Sin@θ1DE −
ArcTanAβ + β1 Cos@θ1D, è!!!!!!!!!!!!!1 − β2 β1 Sin@θ1DE

Therefore, we can evaluate the spin rotation angle observed in the transformation S1 Ø S2  produced by a boost
b
”÷

= b z̀  using

c = q1 - q2 - W
W = ArcTan@g1 Hb1 + b Cos@q1DL, b Sin@q1DD
q2 = ArcTan@g Hb1 Cos@q1D + bL, b1 Sin@q1DD

These  results  are  quite  general  and  apply  to  any  spin  or  to  any  pair  of  reference  frames,  although  the  most
common  applications  are  probably  to  lab¨cm  transformations  for  spin  one-half.   Also  note  that  b  may  be
positive or negative.

The following function returns the kinematics and spin rotation angles in the form of replacement rules.
We will use this below to display some specific examples.

transform@β1_, θ1_, β_D := ModuleA8γ1, γ, Ω, θ2, χ, γ2<,

γ1 =
1

cccccccccccccccccccccccc
"###############
1 − β12

; γ =
1

ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

;

θ2 = ArcTan@γ Hβ1 Cos@θ1D + βL, β1 Sin@θ1DD;
Ω = ArcTan@γ1 Hβ1 + β Cos@θ1DL, β Sin@θ1DD;
χ = θ1 − θ2 − Ω;
γ2 = γ1 γ H1 + β β1 Cos@θ1DL;
8theta2 → θ2êDegree, chi → χêDegree, omega → ΩêDegree, gamma2 → γ2<E

Suppose that S1  is the cm frame while S2  is the lab frame reached by a boost with b > 0.  The momen-
tum then appears to rotate forward, such that q2 § q1 .  We also find, at least numerically, that the spin rotates in
same direction but by a much smaller angle.
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Plot@Evaluate@8theta2, chi< ê. transform@0.2, θ1 Degree, 0.5DD,
8θ1, 0, 180<,
PlotRange → 8Automatic, All<,
PlotStyle → 8RGBColor@0, 0, 1D, RGBColor@1, 0, 0D<,
Frame → True, FrameLabel → 8"θ1", " "<,
PlotLegend → 8"θ2", "χ"<, LegendPosition → 80., 0<,
LegendSize → 80.6, 0.3<, LegendShadow → NoneD;

0 25 50 75 100 125 150 175
q1

0

5

10

15

20

c

q2

à example: nucleon-nucleon scattering

An important special case occurs when the projectile scatters from a particle of equal mass, such that

m1 = m2 ï b = bc =
bÅÅÅÅÅÅÅÅ
2

ï W = q c = qc - 2 q

where b  is the boost from the cm to the lab frame and where S1  and S2 are now labeled as Sc  and S ,  respec-
tively.  Substituting these kinematics, we find

q = W = ArcTan@gc H1 + Cos@qcDL, Sin@qcDD
such that

c = qc - 2 q

Finally, in the nonrelativistic limit, we find that

g Ø 1 ï qc = 2 q ï c Ø 0

justifies  the  identification  of  c  as  the  "relativistic"  spin  rotation  angle.   More  generally,  qc > 2 q  for  equal
masses  so  that  c > 0.   Therefore,  we  conclude  that  successive  nonparallel  boosts  rotate  the  spin  in  the  same
direction but generally much less than the momentum.

The figure  below shows c  as  a  function of  cm scattering  angle  for  laboratory kinetic  energies  ranging
from 0.25 to 2.25 GeV in steps of  0.5 GeV, with the smallest (largest)  energy producing the smallest (largest)
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Wigner  rotation.   The  maximum  Wigner  roation  angle  under  these  condition  is  only  about  8°.   It  is  a  small
effect, but still must be included in the analysis of depolarization or polarization transfer data.

PlotA

EvaluateATableAchi ê. transformA β
cccc
2
, θ1 Degree,

β
cccc
2
E ê. 9β →

è!!!!!!!!!!!!!
γ2 − 1

cccccccccccccccccccc
γ

= ê.

γ →
T + 1

cccccccccccccccc
0.939

, 8T, 0.25, 2.25, 0.5<EE, 8θ1, 0, 180<, PlotPoints → 50,

Frame → True, FrameLabel → 8"θc HdegL", "χ HdegL"<,
PlotLabel → "Wigner Rotation for NN Scattering",
Epilog → Text@"Tlab=80.25,2.25,0.5< GeV", 890, 0.5<DE;

0 25 50 75 100 125 150 175
qc HdegL0

1
2
3
4
5
6
7

c
HgedL

Wigner Rotation for NN Scattering

Tlab=80.25,2.25,0.5< GeV

à example: pion electroproduction on the nucleon

Let  S1  represent  the  cm  frame  and  S2  the  lab  frame  for  pion  electroproduction  on  the  nucleon
e N Ø e N p .   The  following functions  evaluate  the  lab  angle  and  Wigner  precession angle  in  terms of  the  cm
angle given 8W , Q2< .   The example below is  relevant  to  JLab E91-011,  but  larger  precession angles  would be
seen for more extreme kinematics (large W  or large Q2 ).

eNπRules = 9γ →
mp2 + Q2 + W2
cccccccccccccccccccccccccccccc

2 mp W
, γ1 →

mp2 + W2 − mπ
2

cccccccccccccccccccccccccccccccc
2 mp W

, mp → 0.939, mπ → 0.14=;

eNπ@Win_, Q2_, θ1_D :=

transformA
è!!!!!!!!!!!!!!!

γ12 − 1
ccccccccccccccccccccccc

γ1
, θ1 Degree,

è!!!!!!!!!!!!!
γ2 − 1

cccccccccccccccccccc
γ

E êê. eNπRules ê.

8Q2 → Q2, W → Win<
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Plot@Evaluate@8theta2, chi< ê. eNπ@1.232, 1.0, θ1DD,
8θ1, 0, 180<, PlotRange → 8Automatic, All<, PlotPoints → 50,
PlotStyle → 8RGBColor@0, 0, 1D, RGBColor@1, 0, 0D<,
Frame → True, FrameLabel → 8"θc", " "<,
PlotLabel → "eN→eNπ for HW,Q2L=H1.232,1.0L",
PlotLegend → 8"θ", "χ"<, LegendPosition → 80., −0.3<,
LegendSize → 80.6, 0.2<, LegendShadow → NoneD;

0 25 50 75 100 125 150 175
qc

0

2

4
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8

10

12

eNØeNp for HW,Q2L=H1.232,1.0L

c
q

Notice that lab spin is slightly forward of the cm spin while the lab momentum is considerably forward.
However, recoil polarization is usually represented in a helicity basis with the longitudinal component along the
momentum either in the cm or the lab, as appropriate.  Thus, the helicity basis for this reaction rotates forward
by the angle qc - q  in  transforming from the cm to the lab frame.  This is  usually a large angle that  produces
considerable mixing between the helicity  states.  The apparent spin rotation relative to the helicity bases for the
two frames is then determined by W = qc - q - c , which the figure below shows is generally large and negative.
Thus, a spin which appears to be purely longitudinal in the cm frame appears to be transverse in the lab when qc

is near about 105° for these kinematics.
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Plot@Evaluate@8omega< ê. eNπ@1.232, 1.0, θ1DD,
8θ1, 0, 180<, PlotRange → 8Automatic, All<,
PlotPoints → 50, Frame → True, FrameLabel → 8"θc", "Ω"<,
PlotLabel → "eN→eNπ for HW,Q2L=H1.232,1.0L"D;

0 25 50 75 100 125 150 175
qc

0
25
50
75

100
125
150
175

W

eNØeNp for HW,Q2L=H1.232,1.0L

à derivation using rapidity

Several authors, including both Dmitrasinovic and Giebink, perform their analyses using the rapidity representa-
tion.  In the hope that  this is  algebraically simpler,  we now modify our derivation along these lines.  First,  we
define the rapidity boost, evaluate the matrix product, and test its orthogonality.

boost@ξ_D = 88Cosh@ξD, −Sinh@ξD, 0<, 8−Sinh@ξD, Cosh@ξD, 0<, 80, 0, 1<<;

p1 = m 8Cosh@ξ1D, Sinh@ξ1D Cos@θ1D, Sinh@ξ1D Sin@θ1D<;
p2 = m 8Cosh@ξ2D, Sinh@ξ2D Cos@θ2D, Sinh@ξ2D Sin@θ2D<;

Thread@boost@−ξD.p1 m p2D êê MySimplify8m Cosh@ξD Cosh@ξ1D + m Cos@θ1D Sinh@ξD Sinh@ξ1D m m Cosh@ξ2D,
m Cosh@ξ1D Sinh@ξD + m Cos@θ1D Cosh@ξD Sinh@ξ1D m m Cos@θ2D Sinh@ξ2D,
m Sin@θ1D Sinh@ξ1D m m Sin@θ2D Sinh@ξ2D<
rule3 = 9ξ2 → ArcCosh@Cosh@ξ1D Cosh@ξD + Sinh@ξD Sinh@ξ1D Cos@θ1DD,

Sin@θ2D →
Sinh@ξ1D
cccccccccccccccccccccccc
Sinh@ξ2D

 Sin@θ1D,

Cos@θ2D →
1

cccccccccccccccccccccccc
Sinh@ξ2D

HSinh@ξ1D Cosh@ξD Cos@θ1D + Cosh@ξ1D Sinh@ξDL=;
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test = boost@ξ2D.Ry@θ2D.boost@−ξD.Ry@−θ1D.boost@−ξ1D êê. rule3 êê
MyFullSimplify981, 0, 0<, 90, HCos@θ1D Cosh@ξ1D Sinh@ξD + Cosh@ξD Sinh@ξ1DL ìikjjjjjH1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1DL$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 − 2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1D y{zzzzz,

−HSin@θ1D Sinh@ξDL ì ikjjjjjH1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1DL$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 − 2
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1D y{zzzzz=,90, HSin@θ1D Sinh@ξDL ì ikjjjjjH1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1DL$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 − 2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1D y{zzzzz,HCos@θ1D Cosh@ξ1D Sinh@ξD + Cosh@ξD Sinh@ξ1DL ìikjjjjjH1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1DL$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 − 2
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1 + Cosh@ξD Cosh@ξ1D + Cos@θ1D Sinh@ξD Sinh@ξ1D y{zzzzz==

test.Transpose@testD êê MySimplify881, 0, 0<, 80, 1, 0<, 80, 0, 1<<
Det@testD êê MySimplify

1

Unfortunately, this result is not appreciably simpler than the previous version.  Nevertheless, 

−
testP2, 3T
ccccccccccccccccccccccccccccc
testP2, 2T

êê MySimplify

Sin@θ1D Sinh@ξDcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Cos@θ1D Cosh@ξ1D Sinh@ξD + Cosh@ξD Sinh@ξ1D

agrees with the previous Tan@WD .
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Alternative representations
Many different versions of these formulas appear in the literature, but it is often difficult to demonstrate

their equivalence symbolically.  Our formulation has the advantage that the formulas are relatively simple, much
simpler than others that appear in the literature, but has the disadvantage that c  must be evaluated in two steps
— we compute q2  and W separately and then combine them to obtain c = q1 - q2 - W  — and it is not immedi-
ately obvious that c  is small for most reactions.  In the remainder of this section, we compare our results with
other representations, symbolically when possible or numerically when not.

à Comparison with Dmitrasinovic

Dmitrasinovic obtained the following formula using a somewhat different derivation in Phys. Rev. C 47,
2195 (1993).  Here we translate his Eq. (21) into the present notation.

ω = 2 ArcTanA γ β γ1 β1 Sin@θ1D
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H1 + γL H1 + γ1L + γ β γ1 β1 Cos@θ1D

E;

It is difficult to prove that these two approaches give identical results, but after many attempts I was able to find
a  successful  approach  using  Mathematica.   Note  that  because  Mathematica  does  not  simplify  expressions
involving  the  two-argument  form  of  ArcTan  very  well,  it  was  necessary  to  replace  those  functions  with  the
single-argument  form.   I  have  not  yet  checked whether  this  replacement has  consequences  for  some argument
pairs.

i

k

jjjjjjjjjj
Tan@χ − ωD ê. 9γ →

1
ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

, γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

= ê.

ArcTan@x_, y_D → ArcTanA y
cccc
x
E êê TrigExpand

y

{

zzzzzzzzzz
êê MyFullSimplify

0

I have also verified numerically, using many choices of b and b1 , that these formulas agree to machine precision
over the entire angular range when the two-argument arc tangent is retained.  To ensure that possible quadrant
problems are tested, we include both signs for b  and values of †b§  both larger and smaller than b1 .  Therefore,
even though the proof is not completely rigorous, I am confident that his w  is mathematically identical to our c . 
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diff = χ −

i

k

jjjjjjjjjj
ω ê. 9γ →

1
ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

, γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

=
y

{

zzzzzzzzzz

θ1 − 2 ArcTanA β β1 Sin@θ1Dcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!1 − β2 "#############1 − β12
ikjjjI1 + 1cccccccccccccè!!!!!!!!!!!!1−β2

M ikjjj1 + 1cccccccccccccc"############1−β12
y{zzz + β β1 Cos@θ1Dccccccccccccccccccccccccccè!!!!!!!!!!!!1−β2 "############1−β12

y{zzz E −
ArcTanAβ1 + β Cos@θ1D, β"#############1 − β12 Sin@θ1DE −
ArcTanAβ + β1 Cos@θ1D, è!!!!!!!!!!!!!1 − β2 β1 Sin@θ1DE
Plot@Evaluate@diff ê. 8β1 → 0.6, β → 0.3<D, 8θ1, 0, π<D;

0.5 1 1.5 2 2.5 3

-2 µ 10-16

-1 µ 10-16

1 µ 10-16

2 µ 10-16

Plot@Evaluate@diff ê. 8β1 → 0.6, β → 0.8<D, 8θ1, 0, π<D;

0.5 1 1.5 2 2.5 3

-4 µ 10-16
-3 µ 10-16
-2 µ 10-16
-1 µ 10-16

1 µ 10-16
2 µ 10-16
3 µ 10-16
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Plot@Evaluate@diff ê. 8β1 → 0.6, β → −0.3<D, 8θ1, 0, π<D;

0.5 1 1.5 2 2.5 3

-3 µ 10-16

-2 µ 10-16

-1 µ 10-16

1 µ 10-16

2 µ 10-16

3 µ 10-16

Plot@Evaluate@diff ê. 8β1 → 0.6, β → −0.8<D, 8θ1, 0, π<D;

0.5 1 1.5 2 2.5 3

-6 µ 10-16

-4 µ 10-16

-2 µ 10-16

2 µ 10-16

4 µ 10-16

Plot@Evaluate@diff ê. 8β1 → 0.6, β → 0.6<D, 8θ1, 0, π<D;

0.5 1 1.5 2 2.5 3

-4 µ 10-16

-2 µ 10-16

2 µ 10-16

4 µ 10-16
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However,  the discussion given by Dmitrasinovic has caused considerable confusion in several analyses
of recent JLab experiments on recoil polarization.  According to this paper, "The angle w  is the precession angle
of the spin with respect to the coordinate system defined by the direction of motion of the particle, and will be
referred to as the Wick-Wigner helicity precession angle."  In an earlier paragraph he claims "... w  is the preces-
sion angle with respect to the rotated direction of motion".  His figures show that w  is small, which suggests that
if the spin is purely longitudinal in one frame it should be nearly longitudinal in another even if the momentum
directions  are  quite  different.   His  Eq.  (26)  suggests  that  laboratory  response  functions  are  obtained  from  cm
response functions using a rotation through the angle w , which produces relatively little mixing between longitu-
dinal and transverse components.  Later when examining the nonrelativistic limit, he claims "... there is no spin
rotation relative to the momentum, i.e. no Wick-Wigner precession, in the nonrelativistic limit: The spin and the
velocity three-vectors  remain  parallel  in  that  limit".   Near  the  end  of  the  paper  he  states  "...  the spin  direction
essentially rotates together with the nucleon momentum" in the deuteron electodisintegration reaction with close
to nonrelativistic  kinematics.   This  interpretation strongly conflicts  with the present  analysis in which c  is  the
precession  angle  with  respect  to  a  fixed  coordinate  system  with  the  longitudinal  direction  along  the  relative
velocity between the two frames.  The precession angle with respect to the helicity representation is then given
by W  which would correspond to the angle -g  in his notation.  Perhaps I am still misunderstanding his words,
but they seem clear enough.  So it comes down to the question of whether spin is affected nonrelativistically by a
Galilean transformation.

In standard nonrelativistic quantum mechanics we express the wave function for a particle in the factor-
ized form

Ya = y@p”÷ , r”D Fa

where y@p”÷ , r”D  governs it motion and Fa  represents its internal degrees of freedom, such as its spin orientation.
A   Galilean  transformation  affects  y  but  does  not  affect  F  if  there  is  no  rotation  of  the  coordinate  system or
change of the spin quantization axis.  Under those conditions the spin direction remains fixed relative to a fixed
coordinate system, but if the momentum changes direction the helicity will also.  There seems to be no basis for
the  claim  that  the  spin  direction  rotates  with  the  velocity  direction  under  a  Galilean  transformation.   There  is
even an interpretation in Dmitrasinovic's paper, attributed to Sommerfeld, that the relativistic spin rotation arises
because velocities and momenta add differently, resulting in a hyperbolic velocity triangle that does not comply
with  Euclidean  geometry.   The  precession  angle  can  then  be  decribed  as  a  hyperbolic  defect  because  those
angles do not sum to 180°.

From  a  purely  classical  point  of  view  we  would  define  spin  as  the  internal  angular  momentum  of  a
system of  masses about their center of mass, whereby

s” = ‚
i

Ir”i - R”÷÷ Mä Ip”÷ i - P”÷÷ M
where

M = ‚
i

mi , R”÷÷ =
1

ÅÅÅÅÅÅÅÅÅ
M

 ‚
i

mi r”i , P”÷÷ = ‚
i

mi v”i

Under a Galilean transformation 

v”i ö v”i + v”0 , P”÷÷ ö P”÷÷ + M  v”0 ï s” ö s”
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we immediately find that  the spin direction  is preserved.  Granted quantum mechanical spin for  an elementary
particle cannot be reduced to the sum of relative orbital angular momenta for its constituents, but the relativistic
spin rotation is  an essentially classical  effect  that  does not  depend upon quantum mechanics at  all.   Therefore,
the claim that the spin direction follows the velocity direction violates the correspondence principle.

Fortunately,  I  believe  that  these  misconceptions  were  always  remedied prior  to  publication  and that  no
published data have been adversely affected.  Nevertheless, a lot of time has been wasted by initially accepting
the results and discussion in Dmitrasinovic's paper at face value.

à Giebink

Although Giebink Phys. Rev. C 32, 502 (1985) is primarily concerned with the construction and transfor-
mation properties of few-body states, he provides one of the simplest derivations of the spin transformation and
gives the same formula for Tan@WD  that is derived here.  He also states unequivocally, that "in the nonrelativistic
limit,  there  is  no  spin  precession  in  the  z  basis"  and  provides  a  formula  for  the  mixing of  helicity  basis  states
using a rotation through the angle W .  Finally, he provides a formula for Sin@WD

Sin@WD =
1 + g

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g1 + g2

 Sin@q1 - q2D =
1 + Cosh@xD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Cosh@x1D + Cosh@x2D  Sin@q1 - q2D

in  which  the  nonrelativistic  limit  W Ø q1 - q2  is  obvious.   However,  in  using this  formula to  find  W  one  must
take care to account for situations in which Cos@WD < 0.  From

Tan@WD =
b Sin@q1DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g1 Hb1 + b Cos@q1DL =
Sinh@xD Sin@q1DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Cosh@xD Sinh@x1D + Sinh@xD Cosh@x1D Cos@q1D
it is clear that quadrant ambiguities occur when b > b1  permits b1 + b Cos@q1D  to change sign.  Recognizing that
Sin@q1D  is nonnegative for 0 § q1 § p , the following calculation

giebink =
1 + γ

ccccccccccccccccc
γ1 + γ2

 Sin@θ1 − θ2D;

temp = Hgiebink êê TrigExpandL êê. rule1 ê.

9γ →
1

ccccccccccccccccccccè!!!!!!!!!!!!!
1 − β2

, γ1 →
1

ccccccccccccccccccccccc
"###############
1 − β1

2

= êê MyFullSimplify;

Tan@ArcSin@tempDD êê MySimplify

β"#############1 − β12 Sin@θ1D
ccccccccccccccccccccccccccccccccccccccccccccccccc
Abs@β1 + β Cos@θ1DD

demonstrates that this result has the same magnitude but lacks the quadrant sensitivity of the formula for Tan@WD .

Also  note  that  the  variation  given  in  Appendix  B  of  Arenhövel,  Leideman,  and  Tomusiak,  Few-Body
Systems  15,  109  (1993)  is  based  upon  the  results  of  Giebink.   They  do  not  mention  the  possible  quadrant
ambiguity, but I hope that it is accounted for in their calculations.
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à Wijesooriya

Wijesooriya  et  al.,  Phys.  Rev.  C66,  034614  (2002)  provide  an  appendix  with  essentially  the  same
derivation  used  here  (multiplication  of  five  matrices)  but  do  not  simplify  the  results.   Instead,  they  identify
Sin@WD  and Cos@WD  from appropriate matrix elements without substituting the kinematics of p2 .

test2 = boost@ξ2D.Ry@θ2D.boost@ξD.Ry@−θ1D.boost@−ξ1D êê MyFullSimplify88−Sinh@ξ1D HCos@θ1D Cosh@ξ2D Sinh@ξD +HCos@θ1D Cos@θ2D Cosh@ξD + Sin@θ1D Sin@θ2DL Sinh@ξ2DL +
Cosh@ξ1D HCosh@ξD Cosh@ξ2D + Cos@θ2D Sinh@ξD Sinh@ξ2DL,

−Cosh@ξ1D HCos@θ1D Cosh@ξ2D Sinh@ξD +HCos@θ1D Cos@θ2D Cosh@ξD + Sin@θ1D Sin@θ2DL Sinh@ξ2DL +
Sinh@ξ1D HCosh@ξD Cosh@ξ2D + Cos@θ2D Sinh@ξD Sinh@ξ2DL,

Cosh@ξ2D Sin@θ1D Sinh@ξD +HCos@θ2D Cosh@ξD Sin@θ1D − Cos@θ1D Sin@θ2DL Sinh@ξ2D<,8−Cosh@ξ1D HCos@θ2D Cosh@ξ2D Sinh@ξD + Cosh@ξD Sinh@ξ2DL +
Sinh@ξ1D HCosh@ξ2D HCos@θ1D Cos@θ2D Cosh@ξD + Sin@θ1D Sin@θ2DL +

Cos@θ1D Sinh@ξD Sinh@ξ2DL,
−Sinh@ξ1D HCos@θ2D Cosh@ξ2D Sinh@ξD + Cosh@ξD Sinh@ξ2DL +
Cosh@ξ1D HCosh@ξ2D HCos@θ1D Cos@θ2D Cosh@ξD + Sin@θ1D Sin@θ2DL +

Cos@θ1D Sinh@ξD Sinh@ξ2DL, Cos@θ1D Cosh@ξ2D Sin@θ2D −
Sin@θ1D HCos@θ2D Cosh@ξD Cosh@ξ2D + Sinh@ξD Sinh@ξ2DL<,8Cosh@ξ1D Sin@θ2D Sinh@ξD +HCos@θ2D Sin@θ1D − Cos@θ1D Cosh@ξD Sin@θ2DL Sinh@ξ1D,

Cosh@ξ1D HCos@θ2D Sin@θ1D − Cos@θ1D Cosh@ξD Sin@θ2DL +
Sin@θ2D Sinh@ξD Sinh@ξ1D,

Cos@θ1D Cos@θ2D + Cosh@ξD Sin@θ1D Sin@θ2D<<
8test2P2, 3T, test2P2, 2T< êê.
8Cosh@ξD → γ, Sinh@ξD → β Cosh@ξD, Cosh@ξ1D → γ1, Sinh@ξ1D → β1 Cosh@ξ1D,
Cosh@ξ2D → γ2, Sinh@ξ2D → β2 Cosh@ξ2D< êê MyFullSimplify8−γ γ2 Hβ β2 + Cos@θ2DL Sin@θ1D + γ2 Cos@θ1D Sin@θ2D,

γ1 γ2 Hγ Cos@θ1D Hβ β2 + Cos@θ2DL − β1 γ Hβ2 + β Cos@θ2DL + Sin@θ1D Sin@θ2DL<
These results are consistent with those given by Wijesooriya et al.
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