REFERENCES

REFERENCES SECTION I

I1: THERMAL PROPERTIES OF MATTER

I1-01: THERMOMETERS
Louise Diehl Patterson, Thermometers of the Royal Society, 1663-1768, AJP 19, 523-535, (1951).
William R. Barron, Temperature Scales, AJP 25, 326 (1957).
Walter Thumm and Duncan McArthur Hall, Special Relativity and High Temperature, TPT 10, 507, (1972).
Mario Iona, History of the Fahrenheit Scale, TPT 11, 503, (1973).
Carl B. Boyer, Early Principles in the Calibration of Thermometers, AJP 10, 176-180, (1942).
George D. Nickas, A Thermometer Based on Archimedes' Principle, AJP 57, 845-846, (1989).
Ronald Geballe, Note on "A thermometer based on Archimedes' principle," by George D. Nickas [AJP 57, 845-846 (1989)], AJP 59, 90 (1991).
Volker Thomsen, Response time of a thermometer, TPT 36, 540-541 (1998).
Carl J. Wenning, A variation on temperature conversion, TPT 39, 434 (2001).
Philip Gash, So you thought a glass thermometer measured temperature, TPT 40, 74-76 (2002).

I1-11: THERMAL EXPANSION - BALL AND HOLE
Lecture Demonstration Apparatus Diagram.
Paul Hewitt, Expansion of Nothing.

I1-12: THERMAL EXPANSION - BALL AND RING
Instructions for the Use of No. 1661 Ball and Ring Apparatus, Welch Scientific Co. Chicago, Ill.
Directions for Use: Ball and Ring, Leybold-Heraeus Gmbh & Co., Germany.
Sutton, Demonstration Experiments in Physics, Demonstration H-15. Ball and Ring.

I1-13: THERMAL EXPANSION - BIMETAL STRIP
None.

I1-14: THERMAL EXPANSION OF ALUMINUM - OPTICAL LEVER
Ricardo Trumper and Moshe Gelbman, Measurement of a Thermal Expansion Coefficient, TPT 35, 437-438 (1997).

I1-15: THERMAL EXPANSION - PIN BREAKER
Operating Instructions, Cenco-Miller Forces in Thermal Expansion Apparatus No. 77430, Central Scientific Co., Chicago, Ill.
Lecture Demonstration Data Sheet for Pin Breaker Pins.
C. H. Anderson and W. H. Morewood, How things work: Long rails, TPT 17, 601 (1979).

I1-16: THERMAL CONTRACTION OF CUPS WITH LN
None.

I1-17: THERMOSTAT - MODEL
None.

I1-18: BIMETALLIC STRIP THERMOMETERS
None.

I1-19: LAVA LAMP
Obituary for Edward C. Walker, 82; Inventor of the Lava Lamp, Washington Post, August 20, 2000
How It Works: Secrets of the Lava Lite; FYO, edited by Cecilia Wessner, Popular Science, September 1997, p107.

I1-21: WATER NEAR 4 DEGREES CELLCIUS
Lecture Demonstration: J. Phillips; Handwritten Page of Calculations, (July 31, 1991).

I1-22: WATER DENSITY VS TEMPERATURE
None.

I1-31: RUBBER BAND ENGINE
George Calingaert, A Simple Demonstration of the Carnot Cycle, Journal of Chemical Education, August 1952, pp. 405-406.
J. G. Mullen, George W. Look, and John Konkel, Thermodynamics of a simple rubber-band heat engine, AJP 43, 349-354 (1975).
J. G. Mullen, Ronald Wasserstein, and Louis Burmeister, On Optimiziing an Archibald Rubber-Band Heat Engine, AJP 46(11), 1107-1110, (1978).
S. L. Stong, The Amateur Scientist - "Some Delightful Engines Driven by the Heating of Rubber Bands," Scientifec American, 118-122.
Lester G. Paldy, Rubber Bands and Cryoginecs, AJP 32, 388, (1964).
J. B. Brown, Thermodynamics of a Rubber Band, AJP 31, 397, (1963).
H. B. Carroll, M. Eisner, and R. M. Henson, Rubber Band Experiment in Thermodynamics, AJP 31, 808, (1963).
Emmanuel P. Papadakis, Undergraduate Experiment on Elasticity of Rubber Bands, AJP 31, 938-939, (1963).
Feynman Lectures, Section 45-2 Applications.
Meiners, Physics Demonstration Experiments, Vol 2, 766-767. (1970).

I1-32: RUBBER BAND CONTRACTION DURING HEATING
J. B. Brown, Thermodynamics of a Rubber Band, AJP 31, 397 (1963).
Bruce Denardo and Richard Masada, Rubber Hysteresis Experiment, TPT 28, 489-491 (1990).
G. Savarino and M. R. Fisch, A general physics laboratory investigation of the thermodynamics of a rubber band, AJP 59, 141-145 (1991).

I1-40:REVERSIBLE THERMOELECTRIC DEMONSTRATOR
Arbor Scientific

I1-41: THERMOELECTRIC MAGNET
Apparatus Description, 557 11 Thermoelectric Magnet, Leybold Co.

I1-42: THERMOELECTRIC FAN
Instructions for Model TD-8550 Thermoelectric Converter, Pasco Scientific Co., Hayward, CA.
Stanislaw Bednarek, Thermoelectric motor, AJP 63, 1051-1052 (1995).

I1-43: THERMOCOUPLE
Thomas B. Greenslade, Jr., Thermoelectric Battery (photograph amd notes), AJP 72(12), 1516 (2004).

I1-51: RUBBER AT LN TEMPERATURE
Martin H. Edwards, Cooling by Immersion in Liquid Air, AJP 20, 313-314, (1952).
Kathy Malone and Tejwant Datta, Beware the Frozen Squash Ball, TPT 32, 351 (1994).

I1-52:TUNING FORK AT LN TEMPERATURE
None.

I1-53:LEAD BELL AT LN TEMPERATURE
None.

I1-61: DUST EXPLOSION
"Dust Explosion," 26-(4.5) Meiners, 769.

I1-62: DUST EXPLOSION MODEL
George Barnes, An Experiment on Area-to-Volume Ratios, TPT 28, 403-405 (1990).

I1-63: HYDROGEN EXPLOSION
None.

I1-64: BURNING CANDLE - COMBUSTION PROCESS
Lecture Demonstration Formula Sheet. John H. Rosengren, Old Experiment - New Twist, Elementary School Science Bulletin, nationa Science Teachers Association, November 1962, pages 10-11.
Hubert N. Alyea, Combustion of a Candle, Journal of Chemical Education 40, Number 2, February 1963, page 131. Bassam Z. Shakhashiri, Chemical Demonstrations, Volume 2 (University of Wisconsin Press, 1985) Section 6.13 Combustion of a Candle in Air, pages 158-161.
Samuel Morris and Alvah John Washington Headlee, Lecture Experiments in General Chemistry, I. The Rusting of Iron, Journal of Chemical Education, ? , pages 637-638.
Henry A. Bent, Einstein and Chemical Thought, Journal of Chemical Education 57, Number 6, June 1980, pages 395-405.
Jeremy B. Caplan, Hendrik J. Gerritsen, and Jason S. LeDell, The Hidden Complexities of a "Simple" Experiment, TPT 32, 310-314 (1994).

I1-71: SHAPE-MEMORY ALLOY - THERMOBILE
L. McDonald Schetky, Shape Memory Alloys, Scientific American, (Nov. 1979).
Kevin Sanders, Miracle Metal, Science Digest, (Oct. 1981).
Kevin Sanders, Grassroots Genius, Science Digest, (Mar. 1982).
R. D. Spencer and Michael J. Harrison, Demonstration Solid State Engine, AJP 52(12) , (Dec. 1984).
Earl Zwicker, Ed McNeil an Norbert Zarumba, Doing Physics: A Mystery Heat Engine, TPT, (Sept. 1984).
Frederick E. Wang, Society of Automotive Engineers Publication, SAE Technical Paper Series 851495: The Thermobile Nitinol Engine, (Sept. 9-12, 1985).
Jane A. Slezak and Ronald W. Veresko, Undergraduate Investigation of Nitinol, TPT 30, 42-43 (1992).

I1-72: SHAPE-MEMORY ALLOY- ICEMOBILE
Earl Zwicker, William Kopp, Arthur Schmidt and E McNeil, Doing Physics: The Icemobile, TPT, (Sept. 1985).

I1-73: SHAPE-MEMORY ALLOY - COOL CRAFT
Instructions for Cool-Craft, Innovative Technology International, Inc., Beltsville, MD.

I1-74: SHAPE-MEMORY ALLOY - CLOVER
None.

I2: TRANSFER OF HEAT

I2-01: CROOKES' RADIOMETER
Gordon F. Hull, Concerning the Action of the Crookes Radiometer, AJP 16, 185-186, (1948).
H. V. Neher, Light-Pressure Tube, AJP 29, 666-668 (1961).
Arthur E. Woodruff, The Radiometer and How it Does Not Work, TPT 6, 358-363, (1968).
Pamphlet, The Radiomete: What Makes it Work?, Winsor Electronics, Inc., Wheaton, Ill.

I2-02: CROOKES' RADIOMETER - DOUBLE
Instructions for Nos. 1733 and 1735 Radiometers, Welch Scientific Co., Chicago, Ill.

I2-03: CROOKES' RADIOMETER - ROTATION REVERSAL
Frank S. Crawford, Running Crookes' radiometer backwards, AJP 53, 1105 (1985).

I2-04: WIEN' S LAW OF THERMAL RADIATION
H. Richard Crane, The cold night sky, TPT 22, 284 (1984).
W. G. Rees and C. Viney, On cooling tea and coffee, AJP 56, 434-437 (1988).
Colm T. O'Sullivan, Newton's law of cooling - A critical assessment, AJP 58, 956-960 (1990).
Craig F. Bohren, Comment on "Newton's law of cooling - A critical assessment," by Colm T. O'Sullivan, [AJP 58, 956-960 (1990)], AJP 59, 1044-1046 (1991).
Thomas B. Greenslade, Jr., The Coffee and Cream Problem, TPT 32, 145-147 (1994).
Wei Lee, Letter: Coffee and Cream, TPT 32, 326-327 (1994).
Biman Das, Obtaining Wien's displacement law from Planck's law of radiation, TPT 40, 148-149 (2002).
Mark L. Biermann, Debora M, Katz, Robert Aho, James Diaz-Barriga, and Jerome Petron, Wien's law and the temperature of the sun, TPT 40, 398-400 (2002).
James M. Overduin, Eyesight and the solar Wein peak, AJP 71, 216-219 (2003).
Geoff Nunes, COMMENT ON "EYESIGHT AND THE SOLAR WEIN PEAK," AJP 71, 519 (2003).
Art Hobson, SOLAR BLACKBODY SPECTRUM AND THE EYE'S RESPONSE, AJP 71, 295 (2003).
Virginia Trimble, Response to "SOLAR BLACKBODY SPECTRUM AND THE EYE'S RESPONSE," AJP 71, 295 (2003).

I2-05: LESLIE'S CUBE
Cenco Instruction sheet and catalog entry.

I2-06: THERMOPILE WITH AUDIO OSCILLATOR
Instructions for Use and Care of Cat. No. 81071 Radiation Thermopile, Central Scientific Co., Chicago, Ill.
Circuit Diagram, Thermal Controlled Oscillator (Blue Print), Dec. 1979.

I2-07: THERMOPILE WITH DVM
None.

I2-08: RADIATIVE HEAT TRANSFER
Michael Vollmer, Klaus-Peter M”llmann, Frank Pinno, and Detlef Karst„dt, There is more to see than eyes can detect, TPT 39, 371-376 (2001).

I2-09: DEWAR - TRANSPARENT WITH LN
Robert J. Soulen, Jr., James Dewar, His Flask and Other Achievements, Physics Today, March 1996, pages 32-37.

I2-10: DEWARS - SILVERED AND UNSILVERED
None.

I2-11: THERMOS BOTTLE
Michael A. Karls and James E. Scherschel, Modeling heat flow in a thermos, AJP 71, 678-683 (2003).

I2-12: RADIATION FROM COLD OBJECT
None.

I2-21: THERMAL CONDUCTIVITY IN METALS
Operating Instructions, Heat Conductivity Demonstrator, Cenco Cat. No. 77531, Central Scientific Co., Franklin Park, Ill.
Lecture Demonstrations List of Thermal Property Data for Various Metals.
Albert Diaz-Guilera, On heat conduction in one-dimensional solids, AJP 58, 779-780 (1990).
Ismael Rafols and Jordi Ortin, heat conduction in a metallic rod with Newtonian losses, AJP 60, 846-852 (1992).

I2-22: THERMODYNAMICS BY TOUCH
None.

I2-23: THERMAL CONDUCTIVITY IN METALS - PROJECTION
Teacher's Guide for Heat Conductivity Apparatus, Cat. No. DPS-0090, Developmental Corp. of America, (1987).

I2-24: THERMAL CONDUCTIVITY IN WATER
None.

I2-25: THERMAL CONDUCTIVITY IN BUILDING MATERIALS
Determination of the Insulating Properties of Building Materials: A Laboratory Excercise.
Lecture Demonstration Table of Thermal Properties for Building Materials.

I2-26: LEIDENFROST PHENOMENON
Owen F. Gaede, A Thought-Provoking Demonstratio in Heat, TPT 15, 487-488, (1977).
Jearl Walker, Drops of Water Dance on a Hot Skillet and The Experimenter Walks on Hot Coals, The Amateur Scientist, ?, 126-131, (?).
G. Guido Lavalle, P. Carrica, V. Garea, and M. Jaime, A boiling heat transfer paradox, AJP 60, 593-597 (1992).

I2-27: THERMAL EQUILIBRIUM BETWEEN ALUMINUM AND COPPER
None.

I2-41: CONVECTION - POWDER IN WATER
Ronald M. Cosby, Natural Convection in a Stratified Fluid, TPT 30, 434-435 (1992).
S. Velasco, A. Gonz lez, F. L. Rom n, and J. A White, A simple method for measuring atmospheric pressure, AJP 70, 1236-1237 (2002).
Richard J. Bohan and Guy Vandegrift, Temperature-Driven Convection, TPT 41, 76-77 (2003).

I2-42: FALLING CANDLE
John McKinley, What Happens to a Candle Flame in an Orbiting Spacecraft?, TPT 20, 261, (1982).
Meiners, Physics Demonstration Experiments, Section 8-3.7, page 146.

I2-43: CONVECTION - HOT PLATE
None.

I2-44: CONVECTION - CANDLE IN CYLINDER
None.

I2-45: CONVECTION - HIGH/LOW CANDLES IN CYLINDER
None.

I3: GASES

I3-01: BAROMETER - ANEROID TYPE
Dean O. Kuethe, Confusion about pressure, TPT 29, 20-22 (1991).
Gavin D. Peckhan and Lee Sutherland, Pressure measurements: A diagrammatic comparison, TPT 37, 100-101 (1999).
S. Velasco, A. Gonz lez, F. L. Rom n, and J. A White, A simple method for measuring atmospheric pressure, AJP 70, 1236-1237 (2002).

I3-02: BAROMETER - WEIGHT PARADOX
E. U. Condon, Three Catch Questions, AJP 3, 85-86 (1935).
Richard M. Sutton, Simplicity in demonstrating physics, AJP 24, 299 (1956).
John B. Hart, Balance Barometer, AJP 26, 199 (1958).
S. W. Leifson, Another Hydrostatic Paradox, AJP 28, 557 (1960).
R. W. Pohl, Another Hydrostatic Paradox, AJP 29, 369-370 (1961).
Wallace A. Hilton, Little Thinkers: Mental Gymnastics, TPT 2, 139 (1964).
Meiners, Physics Demonstration Experiments, Section 16-4.9 Hydrostatic Paradox, page 385.
J. B. Brown, J. C. Dore, C. Isenberg, and S. J. Rogers, Pascal's demonstration experiment: Weighing the atmosphere, AJP 63, 886-888 (1995).
Mário N. Berberan-Santos, Evgeny N. Bodunov, and Lionello Pogliani, On the barometric formula, APJ 65, 404-412 (1997).

I3-03: GALILEO'S THERMOSCOPE
Operating Instructions and Parts List for Magnehelic Differential Pressure Guage, Dwyer Instruments.

I3-04: GALILEAN THERMOMETER
None.

I3-10: LUNG FUNCTION MODEL
None.

I3-11: WATER BARAMOETER - BOTTLE COLLAPSE
Russell Akridge, Water Barometer, TPT 31, 110-111 (1993).

I3-12: WATER BAROMETER - CAN CRUSHER
None.

I3-13: INVERTED GLASS OF WATER
Hans Weltin, A Paradox, AJP 29, 711-712 (1961).
Moti Nissani, Clifford L. Maier, and Norma Shifrin, A Guided Discovery Exercise for Introductory Physics Labs, TPT 32, 104-107 (1994).

I3-14: MAGDEBURG HEMISPHERES
Ernest Hammond, Demonstration of Atmospheric Pressure, TPT 3, 67, (1965).

I3-15: MAGDEBURG HEMISPHERES - PORTABLE
None.

I3-16: COLLAPSE OF CAN - LARGE PUMP
None.

I3-17: COLLAPSE OF CAN - PORTABLE PUMP
None.

I3-18: VACUUM BAZOOKA
Richard E. Berg, Demo Hints: Vacuum "Bazooka," from PIRA Newsletter (late 1987?).
John Cockman, Apparatus for Teaching Physics: Improved Vacuum Bazooka, TPT 41, 246-247 (2003).

I3-19: LIFTING USING AIR PRESSURE
None.

I3-20: COLLAPSE OF CAN - LARGE CAN WITH MALLET
None.

I3-31: IDEAL GAS LAW - VOLUME OF ONE MOLE
Frederic R. Stauffer, An Estimate of Avogadro's Number, TPT 29, 252-254 (1991).
Garcia Brizuela and Alfredo Juan, An Easy Method for Measuring CO2 Molecular Weight, TPT 30, 408-409 (1992).
Mark Talmadge Graham, Investigating Gases' Masses in Impecunious Classes, TPT 40, 144-147 (2002).

I3-32: ISOBARIC EXPANSION OF AIR
None.

I3-33: HELIUM BALLOON ON LIQUID NITROGEN
None.

I3-35: SOLAR BAG
Arbor Scientific

I3-41: BOYLE'S LAW - PROJECTION
Thomas B. Greenslade, Jr., Apparatus Review: The EME Boyle's Law and Absolute Zero Apparatus, TPT 29, 116-117 (1991).
Changde Wei, Improving the Syringe Method for Demonstrating Boyle's Law, TPT 32, 446-447 (1994).
Jolene Houser, Doug Johnson, and Peter Siegel, Getting pumped up on the ideal gas law, TPT 40, 396-397 (2002).

I3-42: BOYLED MARSHMALLOWS
Operation and Maintenance Manual for E.M.E. Boyle's Law and Absolute Zero Unit, Educational Materials and Equipment Co.
Graph of Temperature vs. Pressure (with transparency).
Calculation Sheets, Performance Check (hand written).

I3-43: TIRE PRESSURE - UNLOADED AND LOADED
John Sperry and Evan Jones, How Do Tubeless Tires Support an Auto, TPT 32, 174 (1994).
Samuel K. Clark, Editor, Mechanics of Pneumatic Tires, U. S. Dept. of Transportation, National Highway Traffic Safety Administration, Washington, D. C. 1981, Section 4.8. Mechanism of Load Carrying - Infinitely Flexible Membrane, pages 237-245, pages 728-730.

I3-51: CHARLES' LAW - PROJECTION
Operation and Maintenance Manual for E.M.E. Boyle's Law and Absolute Zero Unit, Educational Materials and Equipment Co.
Graph of Temperature vs. Pressure (with transparency).
Calculation Sheets, Performance Check (hand written).
Thomas B. Greenslade, Jr., Apparatus Review: The EME Boyle's Law and Absolute Zero Apparatus, TPT 29, 116-117 (1991).
Robert Otani and Peter Siegel, Determining Absolute Zero in the Kitchen Sink, TPT 29, 316-317 (1991).

I3-52: CONSTANT VOLUME GAS THERMOMETER - ABSOLUTE ZERO
Meiners, Section 25-2, 753-754, (Physics Demonstration Experiments, Vol. 2).
Dragia Trifonov Ivanov, Experimental Determination of Absolute Zero Temperature, TPT41, 172-175 (2003).
Dean S. Edmonds, Jr., Comments on Determination of Absolute Zero, TPT 41, 318-319 (2003).

I4: CHANGES OF STATE

I4-01: PVT PHASE DIAGRAMS FOR CO2 AND H2O
Frank L Verwiebe, Models of Thermodynamic Surfaces, AJP 3, 179-181 (1935).
M. W. Zemansky and C. R. Herman, The Gibbs and Mollier Thermodynamic Surfaces, AJP 4, 194-196 (1936). Frank L. Vereiebe, A P-V-T Diagram of the Allotropic Forms of Ice, AJP 7, 187-189 (1939).
Jesse W. M. DuMond, Construction of Thermodynamic Models for Elementary Teaching, AJP 9, 234-237 (1941).
James E. McDonald, Homogeneous Nucleation of Vapor Condensation. I. Thermodynamic Aspects, AJP 30, 870-877 (1962).

I4-02: PVT SURFACE - TRANSPARENT
None.

I4-03: LATENT HEAT - ICE TO WATER TO STEAM
James L. Hunt and Tracy L. Tegart, Measuring the Heats of Water, TPT 32, 545 (1994).
J. Guemez, C. Fiolhais, and M. Fiolhais, Revisiting Blacks experiment on the latent heats of water, TPT 40, 26-31 (2002).

I4-11: BOILING AT REDUCED PRESSURE
None.

I4-12: BOILING WATER BY PUMPING
None.

I4-13: CHANGE OF STATE IN LN - POPPING CAN LID
P. A. Knutson and G. L. Salinger, A Simple Measurement of the Heat of Vaporization of Liquid Nitrogen, TPT 7, 288-289 (1969).
R. G. Hunt and G. L. Salinger, Qualitative Demonstrations and Experiments Using Liquid Nitrogen, TPT 7, 289-290 (1969).

I4-14: CHANGE OF STATE WITH BANG
None.

I4-15: CONDENSATION OF STEAM - GALLON CAN COLLAPSE
James E. Stewart, The Collapsing Can Revisited, TPT 28, 144 (1991).
Jukka O. Mattila, Physics at the Fire Station, TPT 26, 440 (1988).
S. Velasco, J. Faro, and F. L. Román, An experiment for measuring the low temperature vapor line of water, AJP 68, 1154-1157 (2000).

I4-16: DRINKING BIRD
Julius Sumner Miller, Physics of the Dunking Duck, AJP 26, 42-43 (1958).
Jerry L. Gaines, Dunking Duck, AJP 27, 189-190 (1959).
Harry E. Stockman, Dunking Duck without Liquid, AJP 29, 335-336 (1961).
Harry E. Stockman, Secret of the Dunking Duck, AJP 29, 374-375 (1961).
Kemp Bennett Kolb, "Reciprocating" Engine, TPT 4, 121-122 (1966).
Drinking Duck Shutter, TPT 5, 342 (1967).
David L. Frank, The Drinking Bird an the Scientific Method, Journal of Chemical Education 50, No. 3, March 1973, page 211.
Carl Bachhuber, Energy from the evaporation of water, AJP 51, 259-264 (1983).
Robert E. Wagner, Physical Chemistry of the Drinking Duck, Journal of Chemical Education 50(3), 213 (1973).
Robert C. Plumb, Footnote to the Drinking Duck Exemplum, Journal of Chemical Education 52(11), 728 (1975).
David L. Frank, The Drinking Bird and the Scientific Method, Journal of Chemical Education 52(11), 727 (1975).
Edmund Scientific Information an Instructions, "Herbert the happy bird."
Robert Mentzer, The Drinking Bird - The Little Heat Engine that Could, TPT 31, 126-127 (1993).

I4-17: AIR BALLOON ON LIQUID NITROGEN
None.

I4-18: PULSE GLASS
Julius Sumner Miller, Remarks on the Pulse Glass, AJP 25, 120 (1957).
The Welch Scientific Company, Instructions for use of Nos. 1665 and 1665A Pulse Glasses.

I4-19: CONDENSATION OF STEAM - SODA CAN COLLAPSE
James McGahan, Collapsing Soda Cans and Efficiency, TPT 28, 550-551 (1990).
Brian W. Holmes, Save Those Soda Cans, TPT 35, 281 (1997).

I4-31: ICE BOMB
Sargent-Welch Scientific Company, Instructions for use of No. 1670 Ice Bomb.
Lecture-Demonstration data on galvanized steel fittings for UM ice bomb.
Herbert M. Reese, Freezing in Water Pipes, AJP 19, 425-426 (1951).
David Miller Raybin, The Stones of Spring and Summer, TPT 27, 500-502 (1989).

I4-32: FREEZING WATER BY PUMPING
Haym Kruglak and Paul M. Loofboro, Freezing Water by Evaporation, AJP 12, 48 (1944).
Julius Sumner Miller, Freezing Water by Evaporation - A Remarkable Situation, AJP 18, 238 (1950).
John F. Streib, editor, Apparatus Notes: Triple-Point Demonstration, AJP 32 #11, xxiii (1964).
Z. V. Harvalik, Vacuum by Freezing, TPT 2, 178-179 (1964).
R. L. Wild and D. C. McCollum, Dramatic Demonstration of Change of Phase, AJP 35, 540-541 (1967).
Robert N. Stoller, Apparatus for Teaching Physics: Freezing-by-Boiling Apparatus That Does Not Require Acid, TPT 14, 59-60 (1976).
Mario Capitolo, Phase-change demonstrationinstant gratification, TPT 36, 349 (1998).

I4-33: CRYOPHORUS
Welch Scientific Company, Instructions for use of Cat. No. 1667 Cryophorus.

I4-34: HAND WARMER
Manufacturer's sheet.

I4-35: LOWERING THE FREEZING POINT OF WATER USING SALT
None.

I4-36: REGELATION - ICE UNDER PRESSURE
G. S. Turpin and A. W. Warrington, On the Viscosity of Ice, The London, Edinburgh, and Dublin PHILOSOPHICAL MAGAZINE and JOURNAL OF SCIENCE, Vol XVIII. FIFTH SERIES., July-December 1884, pages 120-123.
R. W. Wood, Jr., Effects of Pressure on Ice, American Journal of Science, Third Series, Volume CXLI Nos. 241-246, January to June, 1891, pages 30-33.
Regelation, TPT 3, 137 (1965).
Regelation, TPT 3, 186 (1965).
Mark W. Zemansky, The Regelation of Ice is a Complicated Phenomenon, TPT 3, 301-302 (1965).
Jerry B. Marion and William F. Hornyak, Physics For Science and Engineering, Part 1, page 657.
Kenneth S. Mendelson, Letter: Why is ice so slippery?, AJP 53, 393 (1985).
Michael Edmiston, Letter: Does Skating Melt Ice?, TPT 27, 327 (1989).
Michael D. Edmiston, Letter: Freezing Points, TPT 28, 260 (1990).
James D. White, The Role of Surface Melting in Ice Skating, TPT 30, 495-497 (1992).
S. C. Colbeck, Pressure melting and ice skating, AJP 63, 888-890 (1995).
S. C. Colbeck, L. Najarian, and H. B. Smith, Sliding temperatures of ice skates, APJ 65, 488-492 (1997).
John S. Wettlaufer and J. Greg Dash, Melting below zero, Sci. Am. 282, 50-53 (2000).
Robert Rosenberg, Why is Ice Slippery, Physics Today, 58 #12, 50-55 (December 2005).

I4-51: SUBLIMATION OF DRY ICE - PROJECTION
Frederick W. Kantor, Sublimation and Erosion of Ice by Dry Thermal Convection Currents in an Ordinary Household Refrigerator, TPT 3, 322 (1965).
Thomas C. Lamborn and Robert Mentzer, Liquid Carbon Dioxide and Solid Nitrogen, TPT 32, 508-509 (1994).

I4-52: CARBON DIOXIDE BALLOON ON LIQUID NITROGEN
None.

I4-61: BINARY PHASE TRANSITION - CRITICAL OPALESCENCE
Locke White, Jr., Demonstration Analog of a Critical-State Phenomenon, AJP 34, 68 (1966).
Instructions for making our aniline/cyclohexane binary fluid.

I5: LAWS OF THERMODYNAMICS

I5-01: MECHANICAL EQUIVALENT OF HEAT - SHOT BAG
R. D. Edge, String and Sticky Tape: The Mechanical Equivalent of Heat, TPT 25, 456, (1987).
F. Neff Weber, Measuring the Mechanical Equivalent of Heat - Mechanically, TPT 30, 507 (1992).
F. Paul Inscho, Apparatus for Teaching Physics: Mechanical Equivalent of Heat, TPT 30, 372-373 (1992).

I5-02: TRANSFORMATION OF MECHANICAL ENERGY INTO HEAT
None.

I5-03: MECHANICAL EQUIVALENT OF HEAT -JOULE'S METHOD
Instruction Sheet, 388 00-06 Set of Apparatus for the Measurement of the Mechanical and Electrical Equivalent of Heat, Leybold-Heraeus, Germany.
Thomas B. Greenslade, Jr., Nineteenth-cnetury measurements of the mechanical equivalent of heat, TPT 40, 243-248 (2002).

I5-11: ADIABATIC PROCESS - AIR PISTON WITH THERMISTOR
Raul Rechtman, An adiabatic reversible process, AJP 56, 1104-1105 (1988).
Z. Blaszczak and P. Gauden, Application of a laser beam in demonstration of adiabatic gas decompression, AJP 58, 1112-1113 (1990).
Michael J. Nolan, Thermodynamic Cycles - One More Time, TPT 33, 573-575 (1995).
William W. McNairy, Isothermal and Adiabatic Measurements, TPT 34, 178-180 (1996).
D. W. Lamb and G. M. White, Apparatus to Measure Adiabatic and Isothermal Process, TPT 34, 290-292 (1996).
Michael E. Loverude, Christian H. Kautz, and Paula R. L. Heron, Student understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas, AJP 70, 137-148 (2002).

I5-12: ADIABATIC EXPANSION OF AIR - FOG IN BOTTLE
J. J. Coop, A Demonstration of Fog Production, AJP 9, 242 (1941).

I5-13: ADIABATIC EXPANSION OF AIR - GRAPH OF TEMP
J. A. Van Den Akker, Letter: How to Cool a Book by its Cover, TPT 13, 324 (1975)

I5-14: LIQUEFICATION OF NITROGEN
Operating instructions for Matheson Cryogenic Liquefier.

I5-15: ADIABATIC EXPANSION OF CARBON DIOXIDE
Arthur M. Vash, Guest Editor, Apparatus Notes: Dry Ice on Demand, AJP 34 #12, xv-xvi (1966).
J. A. Van Den Akker, Letter: How to Cool a Book by its Cover, TPT 13, 324 (1975).

I5-21: HEATING AIR BY COMPRESSION
None.

I5-22: FIRE SYRINGE
Nakamura Fire Syringe Cat. No. C-3418 Fire Syringe instructions.

I5-31: STEAM ENGINE - STATIONARY
E. Rebhan, Efficiency of nonideal Carnot engines with friction and heat losses, AJP 70, 1143-1149 (2002).

I5-32: STIRLING ENGINE
Stirling Cycle Engine, Owner's Manual, Model 1.
Andy Ross, Stirling Cycle Engines, Published by Solar Engines, Phoenix, 1977.

I5-33: STEAM ROLLER
None.

I5-34: STIRLING ENGINE - VISIBLE
Instruction Manual from Pasco Scientific.
The Modern World of Stirling Machines, by Brad Ross, Editor, Stirling Machine World.
Brent H. Van Arsdell, Stirling Engines on the Internet: http://www.stirlingcycle.com

I5-41: ENDOTHERMIC REACTION - ENTROPY
Robert C. Plumb, Teaching the Entropy Concept, Journal of Chemical Education Volume 41, Number 5, May 1964, pp. 254-256.
G. W. J. Matthews, Demonstrations of Spontaneous Endothermic Reactions, Journal of Chemical Education Volume 43, Number 9, September 1966, p. 476.

I5-51: SPECIFIC HEAT - ALUMINUM AND COPPER
Supplementary Information, Thermophysical Properties of Aluminum and Copper; Demo Instructions.
Lecture Demonstrations List of Properties for Various Metals.
C. R. Mattos and A. Gaspar, Introducing specific heat through cooling curves, TPT 40, 415-416 (2002).

I5-52: ELECTRIC CALORIMETER
None.

I6: KINETIC THEORY AND STATISTICAL MECHANICS

I6-01: GAS PRESSURE - MODEL
A. H. Benade, Quantitative Kinetic Theory Model, AJP 23, 281-285 (1955).
Ronald Bryan, Avogadros number and the kinetic theory of gases, TPT 38, 106-109 (2000).
Se-yuen Mak and Derek Cheung, A dynamic styrofoam-ball model for simulating molecular motion, TPT 39, 48-50 (2001).

I6-02: NITROGEN DIAMETER AND MEAN FREE PATH
Edward V. Lee, Determination of Boltzmann's Constant, TPT 13, 305-306 (1975).
Salvatore Ganci, Determination of the mean velocity of a molecule, AJP 71, 267-268 (2003).

I6-03: EQUIPARTITION OF ENERGY
Filippo G. E. Pantellini, A simple numerical model to simulate a gas in a constant gravitational field, AJP 68, 61-68 (2000).

I6-11: BROWNIAN MOTION WITH TV
N. David Mermin, Two Models of Brownian Motion, AJP 29, 510-517 (1961).
Brownian Movement Corridor Demonstration, AJP 32 #7, vi (1964).
J. A. Earl, Brownian Motion Determination of Avogadro's Number, AJP 33, xxi (1965).
Noel A. Clark and Joseph H. Lunacek, A Study of Brownian Motion Using Light Scattering, AJP 37, 853-855 (1969).
Noel A. Clark, Joseph H. Lunacek, and George B. Benedak, A Study of Brownian Motion Using Light Scattering, AJP 38, 575- ? (1970).
C. D. Anger and J. R. Prescott, A Monte Carlo Simulation of Brownian Motion in the Freshman Laboratory, AJP 38, 716-719 (1970).
George Barnes, A Brownian Motion Demonstration Using Television, AJP 41, 278-280 (1973).
Sister Martha Ryder, HOW TO SHOW IT: Brownian Motion, TPT 12, 574 (1974).
Robert Stoller, Viewing Brownian motio with laser light, AJP 44, 188 (1976).
Haym Kruglak, Brownian movement: An improved TV demonstration, AJP 55, 955-956 (1987).
Bill Reid, Apparatus for Teaching Physics: Viewer for Brownian Motion, TPT 29, 52-53 (1991).
Meiners, Physics Demonstation Experiments, Section 27-8.1.
Se-yuen Mak, Brownian motion using a laser pointer, TPT 36, 342-343 (1998).
Paul Nakroshis, Matthew Amoroso, Jason Legere, and Christian Smith, Measuring Boltzmann's constant using video microscopy of Brownian motion, AJP 71, 568-573 (2003).

I6-12: BROWNIAN MOTION - SMALL VERSION
Wallace Hilton, Brownian Motion, TPT 10, 534 (1972).

I6-13: AIR TABLE - MODEL OF BROWNIAN MOTION
Jeffrey J. Prentis, Experiments in statistical mechanics, AJP 68, 1073-1083 (2000).

I6-21: GAS DIFFUSION - MODEL
Roger A. Key and B. D. DePaola, Apparatus for Teaching Physics: A Simple Apparatus for Demonstration of Gaseous Diffusion, TPT 29, 522-523 (1991).

I6-22: IODINE DIFFUSION TUBES
Eldred F. Tubbs, Demonstration of Gaseous Diffusion, AJP 35, 1026-1029 (1967).
Welch Scientific Co. Instructions for use of Cat. No. 4425 Iodine Diffusion Tubes.

I6-23: DIFFUSION - FOOD COLOR IN WATER
None.

I6-24: DIFFUSION VELOCITY
W. H. Furry, On the Elementary Explanation of Diffusion Phenomena in Gas, AJP 16, 63-78 (1948).
Eldred F. Tubbs, Demonstration of Gaseous Diffusion, AJP 35, 1026-1029 (1967).
E. A. Mason, Equal Pressure Diffusion and Graham's Law, AJP 35, 434-435 (1967).
R. L. Wild, Lecture Demonstration and Laboratory Apparatus Showing F-Center Diffusion, AJP 35, 1023-1026 (1967).
Arnold J. Abraham and Charlse P. Bean, A simple method for measurement of the diffusion of vapors, AJP 57, 325-330 (1989).
Erna M. J. Herry and Hermann Herry, Principles of Physics Applied to Traffic Movements and Road Conditions, AJP 13, 1-14 (1945).

I6-25: DIFFUSION - DISTRIBUTION OF PING-PONG BALLS
None.

I6-26: DIFFUSION - PERFUME
None.

I6-31: MOLECULAR MOTION DEMO - BROWNIAN MOTION
M. Husman, C. Schwieters, M. Littman, and H. Rabitz, Molecular-dynamics simulator for optimal control of molecular motion, AJP 59, 1012-1017 (1991).
James Jadrich and Stanley L. Haan, Class simulation of thermal energy and heat, TPT 37, 98-99 (1999).

I6-32: MOLECULAR MOTION DEMO - RANDOM MOTION IN GASES
None.

I6-33: MOLECULAR MOTION DEMO - GAS PRESSURE
None.

I6-34: MOLECULAR MOTION DEMO - TEMPERATURE OF A GAS
None.

I6-35: MOLECULAR MOTION DEMO - DIFFUSION
None.

I6-36: MOLECULAR MOTION DEMO - AVOGADRO'S HYPOTHESIS
None.

I6-37: MOLECULAR MOTION DEMO - VAN DER WAALS FORCES
None.

I6-38: MOLECULAR MOTION DEMO - BOYLE'S LAW
None.

I6-39: MOLECULAR MOTION DEMO - CHARLES' LAW
None.

I6-40: MOLECULAR MOTION DEMO - SOLIDS
None.

I6-41: MOLECULAR MOTION DEMO - LIQUIDS
None.

I6-51: ENTROPY - SORTING MARBLES
None.

I6-52: ENTROPY - FOUR BALLS IN GAS DIFFUSION MODEL
None.

I6-61: MAXWELL DEMON
L. Darling and E. O. Hulburt, On Maxwell's Demon, AJP 23, 470 (1955).
James H. Larson, Apparatus for Teaching Physics: Maxwell's Demon (Apparatus), TPT 13, 503-504 (1975).
Welch Scientific Company Instructions for use of Cat. No. 1710C Maxwell's Demon Demonstrator.
Harvey S. Leff and Andrew F. Rex, Resource Letter MD-1: Maxwell's demon, AJP 58, 201-209 (1990).

I7: SOLID STATE AND LOW TEMPERATURE PHYSICS

I7-01: CRYSTAL MODELS - SET OF 3
M. Drechsler, Elastic Crystal Models, AJP 39, 545-555 (1971).

I7-02: CRYSTAL MODELS - BRAVAIS SET OF 14
Allen Nussbaum, The mystery of the fifteenth Bravais lattice, AJP 68, 950-954 (2000).

I7-03: CRYSTAL MODELS - BRAVAIS SUPPL SET OF 18
None.

I7-04: CRYSTAL MODELS - CALCITE
None.

I7-05: CRYSTAL MODELS - LARGE
None.

I7-06: CRYSTAL MODELS - LARGE UNIVERSAL
A. L. Loeb and G. W. Pearsall, Moduledra Crystal Models. A Teaching and Research Aid in Solid-State Physics, AJP 31, 190-196 (1963).

I7-07: CLOSE-PACKED CRYSTALLITE
A. L. Loeb and G. W. Pearsall, Moduledra Crystal Models. A Teaching and Research Aid in Solid-State Physics, AJP 31, 190-196 (1963).
Jon Eggert, Inexpensive wooden-ball models for close-packed crystal structures, AJP 68, 1061-1063 (2000).

I7-08: CRYSTAL MODEL WITH FAULTS
None.

I7-11: FERMI SURFACE OF ALUMINUM
R. M. Warner, Jr., Fermi Level Demonstration, AJP 29, 529-531 (1961).

I7-21: SUPERCONDUCTIVITY - MAGNET LEVITATION
Arthur Fisher, SUPERCONDUCTIVITY, Popular Science, April 1988, pp. 54-58.
E. Bochenek, R. Fischer, and H. Voigt, Conception and Operation of a Meissner-Ochsenfeld Effect Motor with High Tc Superconductors, Journal of Less-Common Metals, 151, 473-480 (1989).
P. J. Ouseph, Meissner oscillator, AJP 57, 955-956 (1989).
Robert J. Birgeneau, The Richtmyer Memorial Lecture (January 1989): Novel magnetic phenomena and high-temperature superconductivity in lamellar copper oxides, AJP 58, 28-40 (1990).
Michael J. Pechan and Jonathan A. Horvath, Quasiequilibrium determination of high-Tc superconductor transition temperatures, AJP 58, 642-650 (1990).
E. H. Brandt, Rigid levitation and suspension of high-temperature superconductors by magnets, AJP 58, 43-49 (1990).
P. J. Ouseph, Levitation of a Magnet over a Superconductor, TPT 28, 205-209 (1990).
Judith Bransky, Superconductivity - A New Demonstration, TPT 28, 392-394 (1990).
Masayoshi Wake, Floating Magnet Demonstration, TPT 28, 395-397 (1990).
Raymond E. Benenson, Demonstration of Magnetic Images, TPT 29, 54-55 (1991).
E. Guarner and A. M. Sanchez, The Superconducting Bird: A Didactical Toy, TPT 30, 176-179 (1992).
Frederick H. Juergens, Arthur B. Ellis, Gunther H. Dieckmann, and Ronald I. Perkins, Levitating A Magnet Using A Superconductive Material: An Overhead-Projector Demonstration, reprinted from the Journal of Chemical Education, October 1987, pp. 851-853.
Institute for Chemical Education, Project 1-2-3 Levitation Kit, University of Wisconsin - Madison (1987).
Colorado Superconductor, Lab Manual for Superconductor Demonstrations (1987).
Ronald Brown, Demonstrating the Meissner effect and persistent current, TPT 38, 168-169 (2000).
D. M. Ginsberg, Experimental Foundations of the BCS Theory of Superconductivity, AJP 30, 443-438 (1962).

I7-31: FILLED CONDUCTION BANDS
Jurgen W. Precker and Marcilio A. da Silva, Experimental estimation of the band gap in silicon and germanium from the temperature-voltage curve of diode thermometers, AJP 70, 1150-1153 (2002).