REFERENCES

REFERENCES SECTION G

G1: SIMPLE HARMONIC MOTION

G1-01: EXAMPLES OF SIMPLE HARMONIC MOTION
THE PENDULUM
D. A. Wells, A Demonstration Laboratory for Advanced Dynamics, AJP 13, 147-15, (1945).
George E. Owen and Daniel C. McKown, An Experiment Illustrating the Elliptic Integral of the First Kind, AJP 19, 188, (1951).
James L. Anderson, Approximations in Physics and the Simple Pendulum, AJP 27, 188-189, (1959).
Harry H. Denman, Amplitude-Dependence of Frequency in a Linear Approximation to the Simple Pendulum Equation, AJP 27, 524-525, (1959).
Malcolm K. Smith, Precision Measurement of Period vs Amplitude for a Pendulum, AJP 32, 632-633, (1964).
Seung-Ping Li and Shih-Yu Feng, Precision Measurement of the Period of a Pendulum Using an Oscilloscope, AJP 35, 1071-1073 (1967).
Douglas J. Haddad, Simple Pendulum Experiment, AJP 36, 273, (1968).
Madan L. Gupta, The Critical Points of a Simple Pendulum, AJP 40, 478-480 (1972).
Eli Maor, A Repertoire of S. H. M., TPT 10, 377-382, (1972).
B. J. Miller, More Realistic Treatment of the Simple Pendulum without Difficult Mathematics, AJP 42, 298-303 (1974).
W. L. Alford, Approximation for Horizontal Motion of a Plane Pendulum, AJP 42, 417-418 (1974).
C. C. Yan, Generation of simple harmonic motions, AJP 50, 940-943 (1982).
Bruse Demardo and Richard Masada, A Not-So-Obvious Pendulum Experiment, TPT 28, 51-52, (1990).
L. H. Cadwell and E. R. Boyko, Linearization of the simple pendulum, AJP 59, 979-981 (1991).
Vincent Santarelli, Joyce Carolla, and Michael Ferner, A New Look at the Simple Pendulum, TPT 31, 236-238 (1993).
Raymond W. Mires and Randall D. Peters, Motion of a leaky pendulum, AJP 62, 137-139 (1994).
Takashi Araki, Measurement of simple pendulum motion using flux-gate magnetometer, AJP 62, 569-571 (1994).
T. FF. Zheng, M. Mears, D. Hall, and D. Pushkin, Teaching the Nonlinear Pendulum, TPT 32, 248-251 (1994).
Cindy Schwartz, The Not-So-Simple Pendulum, TPT 33, 225-228 (1995).
David P. Jackson, Rendering the "Not-So-Simple" Pendulum Experimentally Accessible, TPT 34, 86-89 (1996).
Russell Akridge, Period and amplitude, TPT 36, 507-508 (1998).
Randall D. Peters, Student-friendly precision pendulum, TPT 37, 390-393 (1999).
Art Stinner and Don Metz, Pursuing the ubiquitous pendulum, TPT 41, 25-30 (2003).
APPLICATION TO CLOCKS
Douglas A. Bateman, ACCURACY OF PENDULUMS And Many Factors That Influence It, National Association of Watch and Clock Collectors Bulletin Vol. 36 #3, pp 300-312 (June 1994).
John E. Carlson, The Pendulum Clock, TPT 29, 8-11 (1991).
THE MASS ON SPRING SYSTEM
John W. Dewdney, Simple Pendulum Equivalent to Spring-Mass System, AJP 26, 341-341, (1958).
Francis W. Sears, A Demonstration of the Spring-Mass Correction, AJP 37, 645-648 (1969).
Eduardo A. Jagla and Diego A. R. Dalvit, Null-lenght springs: Some curious properties, AJP 59, 434-436 (1991).
J. M. Nunes da Silva, Renormalization vibrations of a loaded spring, AJP 62, 423-426 (1994).
THE PHYSICAL PENDULUM
Joseph Priest and Larry Potts, Computer Analysis of a Physical Pendulum, TPT 28, 413-415, (1990).
Charles J. Reidl, Jr., Moment of Inertia of a Physical Pendulum, TPT 34, 114-115 (1996).
Alan Cromer, Many oscillations of a rigid rod, AJP 63, 112-121 (1995).
James E. Kettler, A variable mass physical pendulum, AJP 63, 1049-1051 (1995).
David A. Giltinan, David L. Wagner, and Thomas A. Walkiewicz, The physical pendulum on a cylindrical support, AJP 64, 144-146 (1996).
R. W. Robinett and P. E. Sokol, Investigating Physical Pendula with K'NEXTM, TPT 34, 427-429, (1996).
The Pendulum in the 21st Century- Relic or Trendsetter?, by Randall D. Peters
EXOTIC HARMONIC OSCILLATORS
Jorge B. Sztrajman, An exotic harmonic oscillator: The frequency depends on initial conditions, AJP 58, 159-160 (1990). Note missing plus sign in equation (5).
William T. Doyle, Comment on "An exotic harmonic oscillator," by J. B. Sztrajman [Am. J. Phys. 58, 159-160 (1990)], AJP 59, 373-374 (1991).
Alan Cromer, The x^3 Oscillator, TPT 30, 249-250 (1992).
John Kroening, Letter: Question about x^3 oscillator, TPT 30, 326 (1992).
Chris Hirata and David Thiessen, The Period of F=-kx^nx Harmonic Motion, TPT 33, 562-564 (1995).
A. Dobrovolskis, Rubber Band Pendulum, AJP 41, 1103-1105 (1973).
Allen L. King, Oscillations of a Loaded Rubber Band, AJP 42, 699-701 (1974).
Bruce Denardo and Richard Masada, A Not-So-Obvious Pendulum Experiment, TPT 28, 51-52 (1990).
George Matous and John Matolyak, Teaching Important Procedures with Simple Experiments, TPT 29, 541-542 (1991).
Thomas A. Walkiewicz and David L. Wagner, Symmetry Properties of a Ring Pendulum, TPT 32, 142-144 (1994).
David L. Wagner, Thomas A. Walkiewicz, and David A. Giltinan, The partial ring pendulum, AJP 63, 1014-1017 (1995).
Thomas Moses and Natalie L. Adolphi, A new twist for the conical pendulum, TPT 36, 372-373 (1998).
Jose M. Vaquero, An old apparatus for physics teaching: Escriches pendulum, TPT 38, 424-425 (2000).
Rand S. Worland and Matthew J. Moelter, Two-dimensional pendulum experiments using a spark generator, TPT 38, 489-492 (2000).

G1-11: COMPARISON OF SHM AND UCM
D. M. Bennett, Apparatus for the Demonstration of Simple Harmonic Motion, AJP 30, 470 (1962).
Desmond N. Penny, A nonuniform circular-motion experiment, TPT 38, 483-486 (2000).

G1-12: PENDULUM AND ROTATING BALL
None.

G1-13: MASS ON STRING
Art Stinner and Don Metz, Pursuing the Ubiquitous Pendulum, TPT 41, 25-30 (2003).

G1-14: PENDULA WITH DIFFERENT MASSES
None.

G1-15: PENDULA WITH 4 TO 1 LENGTH RATIO
None.

G1-16: PENDULA WITH LARGE ANGLE OSCILLATION
George E. Owen and Daniel C. Mckown, An Experiment Illustrating the Elliptic Integral of the First Kind, AJP 19, 188, (1951).
James L. Anderson, Approximations in Physics and the Simple Pendulum, AJP 27, 188-189, (1959).
Harry H. Denman, Amplitude-Dependence of Frequency in a Linear Approximation of the Simple Pendulum Equation, AJP 27, 524-525, (1959).
Malcolm K. Smith, Precision Measurement of Period vs. Amplitude for a Pendulum, AJP 32, 632-633, (1964).
Douglas J. Haddad, Instructional Uses of the Computer: Simple Pendulum Experiment, AJP 36, 273, (1968).
M. I. Molina, Simple Linearizations of the Simple Pendulum for Any Amplitude, TPT 35, 489-490 (1997).
Richard B. Kidd and Stuart L. Fogg, A simple formula for the large-angle pendulum period, TPT 40, 81-83 (2002).
L. Edward Millet, The Large-Angle Pendulum Period, TPT 41, 162-163 (2003).

G1-17: PENDULA WITH LARGE ANGLE OSCILLATION - PORTABLE
None.

G1-18: PENDULA WITH FORCE SCALE
James OConnell, Tension in a pendulum string, TPT 40, 24-25 (2002).
Ben Szapiro, Simple-pendulum lab with a twist, TPT 40, 158-162 (2002).

G1-19: CARTESIAN COORDINATES OF CIRCULAR MOTION
None.

G1-20: PENDULUM RELEASE CONUNDRUM
None.

G1-31: HOOKES LAW AND SHM
Lecture Demonstration Records Sheet.
Exerts from Physics 117 lab.
Carlos Esparza-Barrera, Energy considerations in a vertical spring, TPT 37, 250 (1999).

G1-32: MASS ON SPRING - WITH STAND
Clifton Bob Clark, Vibrating Spring Experiment, AJP 25, 322-323 (1957).
Herman Erlichson, The Verical Spring-Mass System and Its "Equivalent," TPT 14, 573-574, (1976).
F. Alan McDonald, Deceptively Simple Harmonic Motion, A Mass on a Spiral Spring, AJP 48, 189-192, (1980).
Robert L. Wildey, A Correction for a Spring Mass in the Ubiquitons Centripetal Force Experiment of Freshman Physics, AJP 57, 1098-1102, (1989).
Ernesto E. Galloni and Mario Kohen, Influence of the Mass of the Spring on Its Static and Dynamic Effects, AJP 47, 1076-1078, (1979).
T. W. Edwards and R. A. Hultsch, Mass Distribution and Frequencies of a Verical Spring, AJP 40, 445-449, (1972).
J. G. Fox and J. Mahanty, The Effective Mass of an Oscillating Spring, AJP 38, 98-100, (1970).
P. Mohazzabi and J. P. McCrickard, On the Spring Constant of a Close-Cooled Helical Spring, AJP 57, 639-641, (1989).
F. J. Milford, A Simple Mechanics Problem, AJP 23, 385-386, (1955).
F. W. Sears, A Demonstration of the Spring-Mass Correction, AJP 37, 645-648, (1969).
Lawrence Ruby, Equivalent mass of a coil spring, TPT 38, 140-141 (2000).
Nathaniel R. Greene and Ryan J. Dunn, A conical springwhich end up?, TPT 38, 228-231 (2000).
Robert Weinstock, Previous coil springs, TPT 38, 259 (2000).
Jose Flores, Guillermo Solovey, and Salvador Gil, Variable mass oscillator, AJP 71, 721-725 (2003).

G1-33: MASSES AND SPRINGS WITH SPIDER
None.

G1-34: AIR TRACK- SIMPLE HARMONIC MOTION
None.

G1-35: MASS ON SPRING - EFFICIENT MODEL
None.

G1-36: MASS ON SPRING WITH FORCE MEASUREMENT
None.

G1-37: MASS ON SPRING WITH ULTRASONIC RANGER
James C. Kernohan, Another Use for the Sonic Ranger, TPT 36, 126-127 (1998).

G1-41: TORSIONAL PENDULUM
Apparatus Description, Order No. 110611, Klinger Scientific Co., Jamaica, NY.

G1-42: LARGE TORSIONAL PENDULUM
Directions for use of Cat. No. 75260 Torsion Pendulum, Central Scientific Co., Chicago, Ill.

G1-43: KLINGER TORSIONAL VIBRATION MACHINE
Apparatus Description, Order No. 110611, Klinger Scientific Co., Jamaica, NY.

G1-51: INVERTED PENDULUM SPRING
George W. Horton, A Pendulum of Sorts, AJP 35, 65-66, (1967).

G1-52: STRINGLESS PENDULUM
Daniel T. Gillespie, Simple Harmonic Motion Of a Round Body Rolling on a Concave Curve, AJP 52, 180-182, (1984).
Carl Helrich and Thomas Lehman, A rolling pendulum bob: Conservation of energy and partitioning of kinetic energy, AJP 47, 367-368, (1979)

G1-53: SHM - CAN IN WATER TANK
Lecture Demonstrations Information Sheet with Calculations.

G1-54: MASS'S DOUBLE PENDULUM
M. Kesteven, On the mathematical theory of clock escapements, AJP 46(2), 125-129 (1978).

G1-55: INERTIA BALANCE
William Schriever, A New Inertia Balance and Operational Definition of Mass, AJP 5, 202-205, (1937).
Selective Experiments in Physics, Dynamical Comparison of Masses, Central Scientific Co., Chicago, Ill. (1940).
Lecture Demonstrations Records Form.
Apparatus Description, Cenco-Schriever Inertia Balance

G1-56: INVERTED PENDULUM - SABER SAW
F. M. Phelps, III and J. H. Hunter, Jr., An Analytical Solution of the Inverted Pendulum, AJP 33, 285-295, (1965).
Leon Blitzer, Inverted Pendulum, AJP 33, 1076-1078, (1965).
S. G. Joshi, Inverted Pendulum With Damping, AJP 34(6), 533, (1966).
F. M. Phelps, III and J. H. Hunter, Jr., Reply to Joshi's Comments on a Damping Term in the Equations of Motion of the Inverted Pendulum, AJP 34(6), 533-535, (1966).
Douglas J. Ness, Small Oscillations of A Stabilized, Inverted Pendulum, AJP 35, 964-967, (1967).
Herbert W. Jones, A Quick Demonstration of the Inverted Pendulum, AJP 37, 941 (1969).
Henry P. Kalmus, The Inverted Pendulum, AJP 38, 874, (1970).
M. M. Michaelis and T. Woodward, An inverted liquid demonstration, AJP 59, 816-821 (1991).
B. Duschesne, C. W. Fischer, C. G. Gray, and K. R. Jeffrey, Chaos in the motion of an inverted pendulum: An undergraduate laboratory experiment, AJP 59, 987-992 (1991).
H. J. T. Smith and J. A. Blackburn, Experimental study of an inverted pendulum, AJP 60, 909-911 (1992).
James A. Blackburn, H. J. T. Smith and N Gronbech-Jensen, Stability and Hopf bifurcations in an inverted pendulum, AJP 60, 903-908 (1992).
James A. Blackburn, H. J. T. Smith and N Gronbech-Jensen, Erratum: "Stability and Hopf bifurcations in an inverted pendulum [Am. J. Phys. 60, 903-908 (1992)], AJP 61, 475 (1993).
D. J. Acheson and T. Mullin, Upside-down Pendulums, Nature, Vol 366, 215-216, Nov 18, 1993.
D. J. Acheson, A Pendulum Theorem, Proc. Royal Society of London, A443, 239-245, (1993).
P. N. Murgatroyd, The magnetic analogue of the inverted pendulum, AJP 62, 281-282 (1994).
N. Alessi, C. W. Fischer, and C. G. Gray, Measurement of amplitude jumps and hysteresis in a driven inverted pendulum, AJP 60, 755-756 (1992).
Michael J. Moloney, Inverted pendulum motion and the principle of equivalence, AJP 64, 1431, (1996)

G1-57: INVERTED PENDULUM - SPEAKER - DRIVEN
Henry P. Kalmus, The Inverted Pendulum, AJP 38, 874, (1970).
Eugene I. Butikov, On the dynamic stabilization of an inverted pendulum, AJP 69, 755-768 (2001).
Michael J. Moloney, The gravity-defying pendulum, TPT 40, 356-357 (2002).

G1-58: LOADED PENDULUM
None.

G1-59: BIFILAR PENDULUM
Paul F. Bartunek, Some Interesting Cases of Vibrating Systems, AJP 24, 369-373, (1956).
John W. Then, Bifilar Pendulum - An Experimental Study for the Advanced Laboratory, AJP 33, 545-547, (1965).
Richard M. Sutton, An Experimental Encounter with Bifilar Pendula, AJP 21, 408, (1953).
S. M. Lee, The Double-Simple Pendulum Problem, AJP 38, 536 (1970).
Robert J. Whitaker, Harmonographs. I. Pendulum design, AJP 69, 162-173 (2001).

G1-60: CHAOS - TWO BIFILAR PENDULUM
W. Stadler, Am. J. Phys 50, 595-598 (1982).
Stephen F. Felszeghy, On the adequacy of Newtonian particle mechanics for solving the rigid double pendulum problem, AJP 53, 230-232 (1985).
W. Stadler, Rebuttal to "On the adequacy of Newtonian particle mechanics for solving the rigid double pendulum problem," [AJP 53, 230-232 (1985)], AJP 53, 233-234 (1985).
Shinbrot, Grebogi, Wisdom, and Yorke, Chaos in a Double Pendulum, AJP 60, 491-499, (1992).
Supplemental Information Sheet, T. Shinbrot, (1989).
R. B. Levien and S. M. Tan, Double pendulum: An experiment in chaos, AJP 61, 1038-1044 (1993).
Richard V. Mancuso and Elise M. Somerset, Changing of the State of a Diode and Chaos, TPT 35, 31-33, (1997)
Azad Siahmakoun, Valentina A. French, and Jeffrey Patterson, Nonlinear dynamics of a sinusoidally driven pendulum in a repulsive magnetic field, APJ 65, 393-400, (1997)
Jeffrey L. Rogers, Dynamics of a System of Two Coupled Non-Linear OScillators, The Journal of Undergraduate Research in Physics, vol. 11, no. 1, pp 21-24 (1992).
Woodrow L. Shew, Hanna A. Coy, and John F. Lindner, Taming chaos with disorder in a pendulum array, AJP 67(8), 703-708 (1999).

G1-71: LISSAJOUS FIGURES - SAND PENDULUM
Luiz Borello, New Method for Demonstrating the Addition of the Isochronous and Perpendicular Vibratory Motions, AJP 15, 93-94, (1947).
R. H. Romer, A Double Pendulum "Art Machine," AJP 38, 1116-1121 (1970).
Chris Chiaverina, A Laser Spirograph for Under $3, TPT 28, 606 (1990).
Robert J. Whitaker, A note on the Blackburn pendulum, AJP 59, 330-333 (1991).
K. David Pinkerton, Laser Light Fantastic Lissajous Figures, TPT 29, 168-169 (1991).
O. Herrera, Mechanical Device to Draw Lissajous Figures, TPT 29, 284-285 (1991).
Thomas B. Greenslade, Jr., All about Lissajous Figures, TPT 31, 364-370 (1993).
Instructions for use of No. 833 Sand Pendulum.
Lecture Demonstration Chart of Various Lissajous Figures
Demonstration Experiments in Physics, Sand Pendulum for Compound Wave Form and Lissajous Figures.
Thomas B. Greenslade, Jr., Devices to Illustrate Lissajous Figures, TPT 41, 351-354 (2003).

G1-72: LISSAJOUS FIGURES - X-Y RECORDER
Thomas B. Greenslade, Jr., The Double-Elliptic Harmonograph, TPT 36, 90-91 (1998).
Robert J. Whitaker, Harmonographs. II. Circular design, AJP 69, 174-183 (2001).

G1-73: LISSAJOUS FIGURES - FOURIER SYNTHESIZER
Frank G. Karioris, Projection Sine-Sine Grid and Lissajous Figures, TPT 13, 294-295, (1975).
E. Y. C. Tong, Lissajous Figures, TPT 35, 491-492 (1997).

G1-74: LISSAJOUS FIGURES - LASER AND LOUDSPEAKER
D. J. Ballegeer, J. E. Drumheller,L .D. Kirkpatrick, and M. Rugheimer, A Laser Spirograph, TPT 20, 415-418, (1982).
John M. D'Mura, Three-Dimensional Lissajous Figures, TPT 27, 98-101, (1989).

G1-81: OUIJA WINDMILL
Gordon J. Aubrecht II, A Mechanical Toy: The Gee-Haw Whammy-Diddle, TPT 20, 614, (1982).
D. P. Jax Mulder, Childredn's Toys, TPT 18, 134-135, (1980).
Susan S. Welch, What Makes it Turn?, TPT 11, 303, (1973).
Robert W. Leonard, An Interesting Demonstration of the Combination of Two Linear Harmonic Vibrations to Produce a Single Elliptical Vibration, AJP 5, 175-176, (1937).
Elibabeth R. Laird, A Notched Stick, AJP 23, 472-473, (1955).
Julius Sumner Miller, The Notched Stick, AJP 23(3), 176, (1955).
G. David Scott, Control of the Rotor on the Notched Stick, AJP 24, 464-465, (1956).

G1-82: PENDULUM WAVES
Richard E. Berg, Pendulum Waves, A Demonstration of Waves Using Pendula, AJP 59, 186-187 (1991).
W. Weiler, Physikbuch: Machs Wellenmaschine, Esslingen and Munchen: Verlag von J. F. Schreiber, (1912). Note: This is a nice device, but is not related to the pendulum waves apparartus; it is used strictly to demonstrate waves.
James A. Flaten and Kevin A. Parendo, Pendulum waves: A lesson in aliasing, AJP 69, 778-782 (2001).
James Flaten and Ronnie Cooper, Illustrating Traveling Wave Patterns Using Sets of Uncoupled Pendula or Resurrecting Mach's Wave Machine, unpublished manuscript.

G1-83: PENDULUM WAVES - COMMERCIAL VERSION
The Science Source.

G2: RESONANCE AND COUPLED OSCILLATIONS

G2-01: MASS ON SPRING - HAND HELD
Shirin Haque-Copilah, Extremely simple demonstration of forced oscillation, AJP 64, 507-508 (1996).

G2-02: FORCED HARMONIC MOTION WITH DAMPING - LARGE
Lecture Demonstration Circuit Diagram for Motor Speed Control.
F. Bueche and C. Pavelka, An Advanced Undergraduate Laboratory Experiment for Studying the Motion of Forced Vibration, AJP 32, 857-859 (1964).
Sema'an I. Salem and Earl R. Ault, Mechanical Resonance (Experiment), AJP 32, 914-915 (1964).
H. L. Armstrong, The Oscillating Spring and Weight - An Experiment Often Misinterpreted, AJP 37, 447-449 (1969).
Gaylord T. Hageseth, Forced Oscillations and Magnetic Resonance in the Introductory Laboratory, AJP 37, 529-531 (1969).
James E. Gilson and Olaf A. Boedtker, A Damped Harmonic Motion Experiment for Use in Undergraduate General Physics Laboratories, AJP 37, 1157-1158 (1969).
William A. Jeffers, Jr., Phase Diagrams for the Overdamped Oscillator, AJP 39, 1210-1212 (1971).
G. M. Gruber and E. E. Baart, Laboratory experiment on forced linear oscillations, AJP 43, 926-927 (1975).
Mildred Allen and Erwin J. Saxl, The Period of Damped Simple Harmonic Motion, AJP 40, 942-944 (1972).
John D. Garrison, On the Solution of the Equation for Damped Oscillation, AJP 42, 694-695 (1974).
Frank S. Crawford, Damping of a simple pendulum, AJP 43, 276-277 (1975).
John D. Garrison, Erratum: "On the Solution of the Equation for Damped Oscillation," [Am. J. Phys. 42, 694-695 (1974)], AJP 43, 463 (1975).
J. Morris Blair, Precision timing applied to a driven mechanical oscillator, AJP 43, 1076-1078 (1975).
S. Balasubramanian and R. Fatehally, Comment on "On the solution of the equation for damped oscillation," AJP 44, 705 (1976).
J. Morris Blair, Erratum: "Precision timing applied to a driven mechanical oscillator," J. Morris Blair, [Am. J. Phys. 43, 1076-1078 (1975)], AJP 44, 187 (1976).
G. Bonera, C. I. Massara, and M. Villa, Simple experimental introduction to harmonic oscillations, AJP 44, 1121-1123 (1976).
Mark A. Heald, How do you know when you've got critical damping?, AJP 46, 989-993 (1978).
P. G. L. Leach, Note on the time-dependent damped and forced harmonic oscillator, AJP 46, 1247-1249 (1978).
Erhard Feige, Thomas B. Clegg, and John W. Poulton, A new optical transducer to measure damped harmonic motion, AJP 51, 954-955 (1983).
Carl Barratt, Resonance in a vibrating spring, AJP 52, 1148-1150 (1984).
J. L. Hunt, Forced and damped harmonic oscillator experiment using an accelerometer, AJP 53, 278-279 (1985).
James A. Blackburn, S. Vik, and Binruo Wu, Driven pendulum for studying chaos, Rev. Sci. Instrum. 60, 422-426 (1989).
E. Marega, Jr., L. Ioriatti, and S. C. Zilio, Harmonic generation and chaos in an electromechanical pendulum, AJP 59, 858-859 (1991).
Lorenzo Basano and Pasquale Ottonello, Digital pendulum damping: The single-oscillation approach, AJP 59, 1018-1023 (1991).
Delmar Permann and Ian Hamilton, Self-similar and erratic transient dynamics for the linearly damped simple pendulum, AJP 60, 442-450 (1992).
W. Herreman, The Transient Phenomena of Forced Vibrations, TPT 29, 187-188 (1991).
R. L. Kautz, Chaos in a computer-animated pendulum, AJP 61, 407-415 (1993).
William B. Case, Time-delay oscillator and instability: A demonstration, AJP 62, 227-230 (1994).
Lawrence Ruby, Comment on "Chaos in a computer-animated pendulum," by R. L. Kautz [Am. J. Phys. 61, 407-415 (1993)], AJP 62, 472 (1994).
F. L. Curzon, A. L. H. Loke, M. E. Lefrancois, and K. E. Novik, Parametric instability of a pendulum, AJP 63, 132-136 (1995).
Randall D. Peters, Resonance response of a moderately driven rigid planar pendulum, AJP 64, 170-173 (1996).
Chris A. Gaffney and David Kegan, Beats in an oscillator near resonance, TPT 40, 405-407 (2002).
Michael C. LoPresto and Paul R. Holody, Measuring the damping constant for under-damped harmonic motion, TPT 41, 22-24 (2003).

G2-03: RESONANCE IN TORSIONAL PENDULUM - PROJECTION
Instruction Manual, Cat. No. 11 1124, Klinger Scientific Co., Jamaica, NY.
Lecture Demonstratio Data Sheet: Amplified vs. Motor Voltage

G2-04: DAMPED OSCILLATIONS
P. H. Miller, Jr., On Quantitative Measurement of a "Two-Minute" Egg, AJP 24, 581, (1956).
Frank S. Crawford, Damping of a simple pendulum, AJP 43, 276-277 (1975).
Michael C. Lopresto and Paul R. Holody, Measuring the Damping Constant for Underdamped Harmonic Motion, TPT 41, 22-23 (2003).

G2-05: AIR TRACK - DRIVEN AND DAMPED OSCILLATIONS
Thomas B. Greenslade, Jr., TPT Notes: Damped Simple Harmonic Motion on a Linear Air Track, TPT 7, 395-396, (1969).
Rebecca A. Koopmann and S. Maleki, Physics on an Air Track, TPT 27, 112-115, (1989).
Lorenzo Basano, Pasquale Ottonello, and Valeria Palestini, Ripples in the energy of a damped oscillator: The experimental point of view, AJP 64, 1326-1329, (1996)
Clifton Bob Clark and Clifford E. Swartz, Analytic Solution for the Oscillator with Classical Friction, TPT 34, 550-554, (1996)

G2-06: FRAHM'S FREQUENCY METER
None.

G2-07: PSYCHOACOUSTIC VIBRATION TRANSDUCER
Lecture Demonstration Analysis Sheet.

G2-08: DRIVEN NON-LINEAR OSCILLATOR
Lecture-Demonstration data sheet and graph for our setup.
Donald P. Stockard, Tracy L. Johnson, and Francis W. Sears, Study of Amplitude Jumps, AJP 35, 961-963 (1967).
J. N. Fox and J. J. Arlotto, Demonstration Experiment Using a Dissectable Aharmonic Oscillator, AJP 36, 326-330 (1968).
James A. Warden, Demonstration of Amplitude Jumps, AJP 38, 773-774 (1970).
John Thomchick and J. P. McKelvey, Anharmonic vibrations of an "ideal" Hooke's law oscillator, AJP 46, 40-45 (1978).
H. J. Janssen, R. Serneels, L. Beerden, and E. L. M. Flerackers, Experimental demonstration of the resonance effect of an anharmonic oscillator, AJP 51, 655-658 (1983).
E. L. M. Flerackers, H. J. Janssen, and L. Beerden, Piecewise linear anharmonic LRC circuit for demonstrating "soft" and "hard" spring nonlinear resonant behavior, AJP 53, 574-577 (1985).
Thomas W. Arnold and William Case, Nonlinear effects in a simple mechanical system, AJP 50, 220-224 (1982).
William Case, Parametric instability: An elementary demonstration and discussion, AJP 48, 218-221 (1980).
Andrea Prosperetti, Subharmonics and ultraharmonics in the forced oscillations of weakly nonlinear systems, AJP 44, 548-554 (1976).
Ralph Baierlein: Newtonian Dynamics, Duffing's Equation without Damping, pp. 82, 86-87.
Nicholas B. Tufillaro, Nonlinear and chaotic string vibrations, AJP 57, 408-414 (1989).
Ian R. Gatland, Theory of a nonharmonic oscillator, AJP 59, 155-158 (1991).
Collin L. Olson and M. G. Olsson, Dynamical symmetry breaking and chaos in Duffing's equation, AJP 59, 907-911 (1991).
Roset Khosropour and Peter Millet, Demonstrating the bent tuning curve, AJP 60, 429-432 (1992).
N. Alessi, C. W. Fischer, and C. G. Gray, Measurement of amplitude jumps and hysteresis in a driven inverted pendulum, AJP 60, 755-756 (1992).
Robert H. Romer, Reading the equations and confronting the phenomena - The delights and dilemmas of physics teaching, AJP 61, 128-142 (1993). (See pp. 138-139).
K. Weltner, A. S. C. Esperidiao, R. F. S. Andrade, and G. P. Guedes, Demonstrating different forms of the bent tuning curve with a mechanical oscillator, AJP 62, 56-59 (1994).
R. Dorner, L. Kowalski, and M. Stein, A nonlinear mechanical oscillator for physics laboratories, AJP 64, 575-580 (1996).

G2-09: FORCED HARMONIC MOTION WITH SONAR
None.

G2-11: RESONANT SAW BLADES - HAND DRIVEN
None.

G2-12: BARTON'S PENDULUMS
Ross L. Spencer and Richard D. Robertson, Mode detuning in systems of weakly coupled oscillations, AJP 69, 1191-1197 (2001).

G2-21: COUPLED PENDULA
Apparatus Description, Cat. No. 84915 Resonance Pendulums, Central Scientific Co., Chicago, Ill.
Leonard O. Olsen, Coupled Pendulums: An Advanced Laboratory Experiment, AJP 13, 321-324, (1945).
Luiz Borello, New Method for Demonstrating the Addition of Two Isochronous and Perpendicular Vibratory Motions, AJP 15, 93-94, (1947).
C. R. Kannewurf and Harald C. Jensin, Coupled Oscillations, AJP 25, 442-445, (1957).
F. Bueche and C. Pavelka, An Undergraduate Laboratory Experiment for Studying the Motion of Coupled Mechanical Systems, AJP 32, 226-228, (1964).
Monte M. Giles, A Resonance Demonstration, TPT 12, 178-179, (1974).
Jearl Walker, The Amateur Scientist: Strange things happen when two pendulums interact through a variety of interconnections, Scientific America, Volume 253 #4, October 1985.
Pau Chagnon, Deck the Halls: Animated Displays: Coupled Mechanical Oscillators, TPT 30, 275-279 (1992).
H. Ric Blacksten, Apparatus for Teaching Physics: Exploring Resonance Phenomena, TPT 32, 554-555 (1994).
Georg Hansen, Ove Harang, and Richard J. Armstrong, Coupled oscillators: A laboratory experiment, AJP 64, 656-660 (1996).
Lance McCarthy, On coupled mechanical harmonic oscillators, transients, and isolated oscillating systems, AJP 71, 590-598 (2003).

G2-22: BAR - COUPLED PENDULA
J. Morris Blair, Laboratory Experiments Involving the Two-Mode Analysis of Coupled Oscillators, AJP 39, 555-557 (1971).
Joseph Priest and James Poth, Teaching Physics with Coupled Pendulums, TPT 20, 80, (1982).
James Pantaleone, Synchronization of metronomes, AJP 70, 992-1000 (2002).

G2-23: SPRING - COUPLED PHYSICAL PENDULA
Charles A. Sawicki, Inexpensive coupled-oscillations demonstration. TPT 39, 172-173 (2001).

G2-24: COUPLED PENDULA - 100 TO 1 MASS RATIO
J.-P. Richard, Approaching the Quantum Limit with Optically Instrumented Multimode Gravitational-Wave Bar Detectors, Physical Review D (Particles, Fields, Gravitation, and Cosmology), Vol 46, Third Series, No. 6, 15 Sept. (1992).

G2-25: COUPLED PENDULA - 1000:100:10:1 MASS RATIO
See G2-24.

G2-26: COUPLED AIR TRACK GLIDERS
Novel Experiments in Physics: Coupled Linear Oscillator, University of Minnesota - Duluth.
Franklin Miller, Jr., A Laboratory Experiment With Coupled Linear Oscillators, AJP 20, 23-25, (1952).
James D. Louck, Exact Normal Modes of Oscillation of a Linear Chain of Identical Particles, AJP 30, 585-590, (1962).
Henry S. C. Chen, Coupled Oscillators and Normal Coordinates, AJP 35, 924-926, (1967).
David L. Wallach, et al, The Effect of the Mass of the Center spring in One-dimensional coupled harmonic oscillators, AJP 56, 1120-1123, (1988).
Rebecca A. Koopman and S. Maleki, Physics on an Air Track, TPT 27, 112-115, (1989).
Norris W. Preyer, The Coupled Harmonic Oscillator: Not Just for Seniors Anymore, TPT 34, 52-55 (1996).
J. J. Brehm, Features of a nonlinear normal-mode problem, AJP 64, 935-944 (1996).
P. A. DeYoung, D. LaPointe, J. Levy, and W. Lorenz, Nonlinear coupled oscillators and Fourier transforms: An advanced undergraduate laboratory, AJP 64, 898-902 (1996)
Antonino Carnevali and Cynthia L. Newton, Coupled harmonic oscillators made easy, TPT 38, 503-505 (2000).

G2-27: COUPLED SERIES MASSES HANGING ON SPRINGS
William Pong, Principal Frequencies of a Double Spring-Mass System, AJP 21, 546-548, (1953).
Henry S. C. Chen, Note on the Principal Frequencies of a Double Spring-Mass System, AJP 25, 311-312, (1957).
Ryan Givens, O. F. de Alcantara Bonfim, and Robert D. Ormond, Direct observation of normal modes in coupled oscillators, AJP 71, 87-90 (2003).

G2-28: PENDULA WITH VARIABLE DRIVER
None.

G2-41: WILBERFORCE PENDULUM
Note: The name "Wilberforce" is sometimes mis-spelled as "Wilburforce." To provide exact replication of references, including recognition of this error, without propagating it one should use the notation "Wilburforce [sic]."
Apparatus Description and Directions for Cat. No. 75495 Wilberforce Loaded Spring, Central Scientific Co., Chicago, Ill.
Apparatus Description and Directions for Use, Wilberforce Pendulum, Leybold-Heraeus, Fed. Rep. of Germany.
Advertisement for "Super Spinnerama," Small Wilberforce Pendulum, B&B Co., 542 N. 114 Street, Wauwatosa, WI 53226.
Apparatus Description and Directions for Cat. No. 346 51 Wilberforce's pendulum, Leybold-Heraeus GMBH.
Robert Erlich, Turning the World Inside Out and 174 other simple physics demonstrations, G.1. Wilburforce [sic] pendulum, pp. 89-90, Princeton University Press (1990).
Norman Feather, Vibrations and Waves, pp. 59-67, Penguin Books (1964).
L. R. Wilberforce, On the Vibrations of a Loaded Spiral Spring, The Fifth Series, Philosophical Magazine Vol. 38, 386-392, (1894).
Mr. John Coenraads, Wilberforce Pendulum, Idea Bank Collation, Idea No. 97.
Richard M. Sutton, ed., Demonstration Experiments in Physics, McGraw-Hill, 135, (1938).
Arnold Sommerfeld, Mechanics of Deformable Bodies, Academic Press, New York, (1950).
Zeitschrift Fur Angew, Zur Theorie der Schraubenfeder, Physik 5, 260-267, (1953).
Reuben Benumof and Mitchel Benumov, Shearing Stress in a Closely Coiled Helical Spring, AJP 21, 62-63, (1953).
Ronald Gabelle, Statics and Dynamics of a Helical Spring, AJP 26, 287-290, (1958).
Ernesto E. Galloni and Mario Kohen, Influence of the Mass of the Spring on Its Static and Dynamic Effect, AJP 47, 1076-1078, (1979).
G. D. Frier and F. J. Anderson, Mx-1. Wilburforce [sic] Pendulum, A Demonstration Handbook for Physics, p. M-61, (1981).
Jim Williams and Rudy Keil, Doing Physics- Physics Activities for Groups, TPT 21, 257, (1983).
Ulrich Kopf, Wilberforce's Pendulum Revisited, AJP 58, 833-837, (1990).
Richard E. Berg and Todd S. Marshall, Wilberforce Pendulum and Normal Modes, AJP 59(1), 32-38, Jan (1991).
Frank G. Karioris, Apparatus for Teaching Physics: Wilberforce Pendulum, Demonstration Size, TPT 31, 314-315 (1993).

G2-42: ELASTIC PENDULUM
Lecture-Demonstration Supplemental Information Sheet: Coupled Spring-Pendulum.
Milani Technical Services, Real- time Simulation Software Programs for Harmonic Motion Studies..., Greenville, Pa.
M. M. Gordon, The Nonlinear Coupling Resonance Exhibited by an Elastic Pendulum, Michigan State University Cyclotron Laboratory Internal Report (1962).
A. Dobrovolskis, Rubber Band Pendulum, AJP 41(9), 1103-1106, (1973).
Allen L. King, Oscillations of a Loaded Rubber Band, AJP 42(8), 699-701, (1974).
M. G. Olsson, Why Does a Mass on a Spring Sometimes Misbehave?, AJP 44(12), 1211, (1976).
Thomas E. Cayton, The laboratory spring-mass oscillator: an example of parametric instability, AJP 45, 723-732 (1977).
J. G. Lipham and V. L. Pollak, Constructing a "misbehaving" spring, AJP 46, 110-111 (1978).
M. G. Rusbridge, Motion of the Spring Pendulum, AJP 48, 146-151, (1980).
William Case, Parametric Instability: An Elementary Demonstration and Discussion, AJP 48, 218-221, (1980).
J. Williams and R. Keil, Doing Physics: Elastic Pendulum, TPT 21, 257, (1983).
H. M. Lai, On the Recurrence Phenomenon of a Resonant Spring Pendulum, AJP 52(3), 219-223, (1984).
Angus Scott, Transfer of Energy in a Spring-Mass Pendulum, TPT 23, 356, (1985).
Walter Roy Mellon, Spring String Swing Thing, TPT 32, 122-123 (1994).
D. M. Davidovic, B. A. Anicin, and V. M. Babovic, The libration limits of the elastic pendulum, AJP 64, 338-342 (1996).

G3: MECHANICAL WAVES - ONE- DIMENSIONAL

G3-01: SHIVE WAVE MACHINE - TRAVELING WAVES
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.
Kenneth D. Skeldon, Janet E. Milne, Alastair I. Grant, and David A. Palmer, Making waves: A classroom torsional wave machine (part I), TPT 36, 392-398 (1998).
Kenneth D. Skeldon, Janet E. Milne, Alastair I. Grant, and David A. Palmer, Making waves: A classroom torsional wave machine (part II), TPT 36, 466-472 (1998).
Thomas B. Greenslade, Jr., Models of traveling waves, TPT 39, 466 (2001).

G3-02: SHIVE WAVE MACHINE - SUPERPOSITION OF PULSES
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.
Michael C. Wittmann, Richard N. Steinberg, and Edward F. Redish, Making sense of how students make sense of mechanical waves, TPT 37, 15-21 (1999).

G3-03: SHIVE WAVE MACHINE - REFLECTION OF PULSES
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-04: SHIVE WAVE MACHINE - STANDING WAVES
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-05: SHIVE WAVE MACHINE - PARTIAL REFLECTIONS
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-06: SHIVE WAVE MACHINE - IMPEDENCE MATCHING
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-07: SHIVE WAVE MACHINE - TAPERED TRANSFORMER
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-08: SHIVE WAVE MACHINE - FABRY-PEROT INTERFEROMETER
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-09: SHIVE WAVE MACHINE - FREQUENCY FILTERING
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-10: SHIVE WAVE MACHINE - BRANCHING
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-11: SHIVE WAVE MACHINE - RESONANCE ABSORPTION
B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-20: WAVE APPARATUS
Cenco Physics

G3-21: TRANSVERSE WAVES ON A LONG SPRING
None.

G3-22: VELOCITY OF TRANSVERSE WAVE ALONG A BEAD CHAIN
None.

G3-23: TRANSVERSE WAVES ON A LONG SPRING - FREE END
None.

G3-24: SLINKY ON LECTURE TABLE - TRAVELING WAVES
None.

G3-25: SLINKY ON LECTURE TABLE - IMPEDANCE MISMATCH
None.

G3-26: AIR TRACK - LONGITUDINAL WAVES
D. K. Chaturvedi and J. S. Baijal, Normal Modes of Oscillation for a One-Dimensional Diatomic Lattice, AJP 42, 482486 (1972).

G3-27: AIR TABLE - TRANSVERSE AND LONGITUDINAL WAVES
None.

G3-28: SUSPENDED SLINKY
T. W. Edwards and R. A. Hultsch, Mass Distribution and Frequencies of a Vertical Spring, AJP 40, 445-449 (1972).
John F. Spivey, Versatile Mount for Slinky Wave Demonstrator, TPT 20, 52, (1982).
Carl Barratt, Resonance in a Vibrating Spring, AJP 52, 1148-1150, (1984).
Guy Vandegrift, T. Baker, J. DiGrazio, A. Dohne, A. Flori, R. Loomis, C. Steel, and D. Velat, Wave Cutoff on a Suspended Slinky, AJP 57, 949-951, (1989).
Monica Silva Santos, Eduardo Soares Rodrigues, and Paulo Murilo Castro de Oliveira, Spring-mass chains: Theoretical and experimental studies, AJP 58, 923-928 (1990).
E. N. Martinez, Effective mass of a classical linear chain, AJP 61, 1102-1110 (1993).
Apparatus Description, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.

G3-29: SUSPENDED SLINKY - PORTABLE
None.

G3-41: WAVE MODEL - PROJECTION
Apparatus Description.
Richard M. Sutton, ed., Models of Wave Motion, Demonstration Experiments in Physics, 138.

G3-42: TORSIONAL WAVES
Instructions Sheet: Torsional Apparatus for Studying Waves, Leybold Cat. No. 40110., Germany.
Thomas B. Greenslade, Jr., Apparatus for Teaching Physics: Transverse Wave Machine, TPT 27, 508-509 (1989).

G3-43: WHIP
Jearl Walker, Th Flying Circus of Physics WITH ANSWERS, Section 1.77 Whip Crack, and references therein.
David T. Deihl and F. Roy Carlson, Jr., "N Waves" from Bursting Balloons, AJP 36, 441-444 (1968).
Nicolas Lee, Spence Allen, Elizabeth Smith, and Loren M. Winters, Does the Tip of a Snapped Towel Travel Faster than Sound?, TPT 31, 376-377 (1993).

G3-44: WAVE-DRIVEN BUMPER JACK
None.

G3-45: RESONANCE OF WIRES
Robert R. Gibbs, Standing Waves on a Hanging Rope, TPT 36, 108-110 (1998).
W. Herreman, Comments on "Standing waves on a hanging rope", TPT 36, 388-389 (1998).
Ronald Newburgh and G. Alexander Newburgh, Finding the equation for a vibrating car antenna, TPT 38, 31-34 (2000).

G3-46: STANDING WAVES IN A WIRE LOOP
Standing Waves in a Circle, AJP 33(10), xiv, (1965).
Y. K. Vijay, Mechanical oscillations in a circular loop, AJP 64, 1077-1078, (1996).
Danning Bloom and Dan W. Bloom, Vibrating Wire Loop and the Bohr Model, TPT 41, 292-294 (2003).

G3-49: STANDING WAVES KIT
None.

G3-51: ROPE WAVE GENERATOR - FREQUENCY VS. WAVELENGTH
Lecture Demonstrations Instruction Sheet: Suggested Uses for the Wave Generator.

G3-52: ROPE WAVE GENERATOR - ROPE TENSION VS. WAVELENGTH
None.

G3-53: STANDING WAVES IN A STRING
Thomas D. Rossing, Normal modes of a compound string, AJP 43, 735-736 (1975).
John A. Elliott, Nonlinear resonance in vibrating strings, AJP 50, 1148-1150 (1982).
John Abendschan and Dick Speakman, Apparatus for Teaching Physics: Laser-Enhanced Vibrating String, TPT 29, 114-115 (1991).
H. P. W. Gottlieb, Letter: On traveling, vibrating strings (threadlines), AJP 60, 13 (1992).
Jon C. Luke, The motion of a stretched string with zero relaxed length in a gravitational field, AJP 60, 529-532 (1992).
Samantha Parmley, Tom Zobrist, Terry Clough, Anthony Perez-Miller, Mark Makela, and Roger Yu, Vibrational properties of a loaded string, AJP 63, 547-553 (1995).
Ira M. Freeman, Acoustic Behavior of a Rubber String, AJP 26, 369-371 (1958).
Mark Graham, Melde's Experiment with an Aquarium Aerator, TPT 36, 276-279 (1998).
James H. Larson, Beats on a vibrating string, TPT 37, 373 (1999).
Alison Hapka, Handheld standing wave generator, TPT 38, 342 (2000).

G4: MECHANICAL WAVES - TWO- DIMENSIONAL

G4-01: RIPPLE TANK - PORTABLE
Apparatus Description: 16-100 Ealing Ripple Tank, Ealing Corp.
Lecture Demonstration Records Form.

G4-02: RIPPLE TANK
Clarence A. Dyer, The Stroboscopic Ripple Tank as a teachi Aid, AJP 5, 208-210, (1937).
Clifton Bob Clark, Speed of Straight Waves in a Ripple Tank, AJP 27, 478-483, (1959).
H. D. Keith, Simplified Theory of Ship Waves, AJP(25), 466-474, (1957).
Marvin Ohriner, Parabolas in a Ripple Tank, TPT 339, (1967).
Norman E. Anderson, Ripple Tank Photography, TPT 8, 202-203, (1970).
Robert W. Smith, Ripple Tank Projection With Improved Contrast, TPT 10, 533, (1972).
William Allen Barwick, Jr., A "Flaw" in the Ripple Tank Wave Model Of Light, TPT 9, 456-457, (1971).
Cordell, Kligman, Mann, Mosca, Mullady, A Comparative Evaluation of Ripple Tanks, TPT 8, 205-208, (1970).
Yu Hao, Xie Qi-Cheng, Li Zhen-Di, A Ripple Tank Demonstration of the Conditions for Interference of Waves, AJP 56(8), 745-746, (1988).
Richard A. Secco, Wave Interference Patterns Displayed on the Overhead Projector, TPT 29, 284 (1991).

G4-03: RIPPLE TANK - DOPPLER EFFECT
Apparatus Description and Instructions Guide: 2401 RippleTank, Raytheon, Macalaster Scientific Co., Nasua, NH, (1969).

G4-11: SOAP FILM OSCILLATIONS
Marvin Ohriner, Spectacular Bubbles, TPT 7, 456, (1969).
Bernard Sharkey, Soap Films, TPT 3, 67, (1965).

G4-12: STANDING WAVES ON A SOAP FILM
David T. Kagan and Louis J. Buchholtz, Demonstrations of normal modes on a bubble membrane, AJP 59, 376-377 (1991).

G4-13: DRUM HEAD - STANDING WAVES
None.

G4-14: SPOUTING BOWL
None.

G4-21: CHLADNI FIGURES - BOWED
Robert H. Johns, Bow for Vibrating Plates, TPT 12, 500-501, (1974).
A. T. Jones, Sound (van Nostrand, New York) 172-180, (1937).
The Amateur Scientist, About Experiments with Sound for the High-Fidelty Enthusiast, Scientific American 194(1), 120-122, (Jan. 1956).
John M. Pitre, Chladni Plates: How Big Can They Be?, TPT 34, 508-509, (1996).
Boris M. Valiyov and Vladimir D. Yegorenkov, Circles in the sand: methods for reproducing Chladni's figures, Physics Education 408-410 (September 2005).
Thomas D. Rossing, Chladni's law for vibrating plates, AJP 50, 271-274 (March 1982).

G4-22: CHLADNI FIGURES - OSCILLATOR DRIVEN
Harald C. Jensen, Production of Chladni Figures, AJP 25, 203, (1957).
W. M. Pierce, Chladni Plate Figures, AJP 19, 436, (1951).
Harald C. Jensen, Production of Chladni Figures on Vibrating Plates Using Continuous Excitation, AJP 23, 503-505, (1955).
E. R. Pinkston, Lecture Demonstration of Nodal Patterns, AJP 14, 138, (1946).
Mary D. Waller, Interpreting Chladni Figures, AJP 25, 157-158, (1957).
Julius Sumner Miller, Some Observations on Chladni Figures, AJP 18, 534, (1950).
E. R. Pinkston and L. A. Crum, Lecture Demonstrations in Acoustics, JASA 55, 2-6, (1974).
Thomas D. Rossing and Daniel A. Russell, Laboratory observation of elastic waves in solids, AJP 58, 1153-1162 (1990).
P. J. Ouseph, APPARATUS AND DEMONSTRATION NOTES: Chladni plates for overhead projectors, AJP 59, 665-666 (1991).
Lecture Demonstrations: Violin Plate, Blueprint.
Lecture Demonstrations Data for Nickel Tubing and Drive Coil.

G4-31: MOIRE PATTERNS
Isaac Amidror, The Theory of the Moire Phenomenon,Kluwer Academic Publishers, 2000. We do not have the book, but you can find information and pictures at the web site: http://lspwww.epfl.ch/books/moire

G4-32: MOIRE PATTERNS - COLOR
Milton Stecher, The Moire Phenomenon, AJP 32, 247-257, (1964).
Bruce Bernero, The Moire Effect in Physics Teaching, TPT 27

G4-33: GROUP VELOCITY - TRANSPARANCIES
Robert Katz, Group-Phase Velocity Demonstrator, AJP 21, 388-389 (1953).
Eric Mendoza, Storm at Sea - An Illustration of Group Velocity, AJP 22, 208-211 (1954).
P. T. Demos, Device for the Visual Presentation of Group Velocity, AJP 25, 383-384 (1957).
N. F. Barber, Phase Velocity and Group Velocity, AJP 27, 120 (1959).
J. Mawdsely, Demonstrating Phase Velocity and Group Velocity, AJP 37, 842-843 (1969).
John Coenraads, notes: Phase and group velocity, TPT 11, 36-37 (1973).

G4-41: SOLITONS
Instruction sheet for operation of the soliton demonstrator.
J.G.M. Armitage and J. F. Allen, Non-Propagating Solitons (21 August 1987).
P. J. Hansen and D. R. Nicholson, Simple soliton solutions, AJP 47, 769-771 (1979).
Beverley A. P. Taylor, What is a solitary wave?, AJP 47, 847-850 (1979).
Alessandro Bettini, Tullio A. Minelli, and Donatella Pascoli, Solitons in undergraduate laboratory, AJP 51, 977-984 (1983).
M. Olsen, H. Smith, and A. C. Scott, Solitons in a wave tank, AJP 52, 826-830 (1984).
J. Gratton and R. Delellis, An elementary introduction to solitons, AJP 57, 683-687 (1989).
Erik Winkler and Junru Wu, An experiment to study localized excitations - Nonpropagating hydrodynamic solitons, AJP 58, 1100-1104 (1990).
W. Malfliet, Solitary wave solutions of nonlinear wave equations, AJP 60, 650-654 (1992).
C. C. Yan, Soliton like solutions of the Schroedinger equation for simple harmonic oscillator, AJP 62, 147-151 (1994).
Claude Laroche, Thierry Dauxois, and Michel Peyrard, Discreteness effects on soliton dynamics: A simple experiment, AJP 68, 552-555 (2000).
Ron Edge, Solitons, TPT 36, 483-465 (1998).
Antonio B. Nassar, Build your own soliton generator, TPT 36, 498-499(1998).
Eugene I. Butikov, A dynamical picture of the oceanic tides, AJP 70, 1001-1011 (2002).