REFERENCES

REFERENCES SECTION F

F1: PRESSURE IN STATIC LIQUIDS

F1-01: FLUID PRESSURE VS. DEPTH
Daniel E. Beeker, Depth Dependence of Pressure, TPT 28, 486-488 (1990).
Alpha E. Wilson, The Hydrostatic Paradox, TPT 33, 538-539 (1995).

F1-02: FLUID PRESSURE VS. DEPTH - ANEROID GAUGE
Lecture Demonstration Information Sheet.

F1-03: PASCAL'S VASES
Instructions For The Uses of Nos. 1023 and 1026 Pascal Vases, Welch Scientific Co. Skokie, Ill.
Laurence E. Dodd, The Hydrostatic Paradox: Phases I and II, AJP 23, 113-118 (1955).

F1-04: EQUILIBRIUM TUBES
Albert A. Bartlett, The Hydrostatic Paradox Revisited, TPT 35, 288-289 (1997).
James S. Walker, The hydrostatic paradox: Simple geometries, explicit calculations, TPT 36, 378-379 (1998).

F1-05: DOES WATER SEEK ITS OWN LEVEL
B. Denardo, W. Wright, B. Barber, and C. Folley, A Rotating U-Tube Experiment, AJP 58, 631-635, (1990).

F1-06: WATER SEEKS ITS OWN LEVEL
None.

F1-11: HYDRAULIC PRESS
Hein-Werner Hydraulic Jack, Manufacturer's Instructions.

F1-12: PASCAL'S LAW - COILED TUBE PARADOX
A. A. Bartlett and Robert Stoller, The paradoxical manometer, TPT 19, 41-42 (1981).
Father John Milton and Ellen Springer, Doing Physics: Walkway forces and Physics phun ideas, TPT 20, 328-329 (1982).

F1-13: CONSTANT WATER PRESSURE
Wallace A. Hilton, Little Thinkers: Mental Gymnastics, TPT 2, 139 (1964).
J. H. Wales, Device for Constant Flow of Liquids, Science, Volume 79, No. 2059, March 1934, pp. 545-546.
E. L. McCarthey, Mariotte's Bottle, Science, Vol. 80, N0. 2065, July 27, 1934, page 100.
E. L. McCarthey, Digest of Periodical Literature: Mariotte's Bottle, AJP 2, 184-185 (1934).
W. G. Cutler, Constant Rate of Flow Apparatus, AJP 27, 185 (1959).
Feredoon Behroozi and Brian Lambert, A Simple Problem in Hydrodynamics with a Surprising Solution, TPT 35, 318-319 (1997).
J. A. Maroto, J. de Dios, and F. J. de las Nieves, Use of a Mariotte bottle for the experimental study of the transition from laminar to turbulent flow, AJP 70, 698-701 (2002).

F1-14: PISTON DIAMETER VS. TRAVEL - WORKING MODEL
None.

F1-15: PRESSURE GLOBE
Arbor Scientific

F1-21: LIPLESS STRAW
None.

F2: BUOYANCY

F2-01: ARCHIMEDES PRINCIPLE
Operating Instructions, Cenco-Miller Archimedes' Bucket and Cylinder, Cenco No. 071942-009, Cenco Scientific Co., Chicago, Ill.
John M. Chilton, An Interesting Application of Archimedes' Principle, AJP 16, 57 (1948).
Jack Willis and Donald F. Kirwan, Easily-Performed Experiment Illustrating the Effect of the Buoyant Force of Air on Laboratory Weighings, AJP 42, 910-911 (1974).
Gordon E. Jones and W. Paul Gordon, Removing the Buoyant Force, TPT 17, 59-60 (1979).
R. E. Vermillion, Derivations of Archimedes' principle, AJP 59, 761-762 (1991).
Iain MacInnes and Rory McPherson, The Hydrostatic Balance Revisited, TPT 34, 500 (1996).
Thomas Bruce Daniel, Archimedes principle without the kings crown, TPT 36, 557 (1998).
Jeffrey Bierman and Eric Kincanon, Reconsidering Archimedes' Principle, TPT 41, 340-344 (2003).

F2-02: CARTESIAN DIVER
Julius Sumner Miller, Extensions of the Cartesian Diver Experiment, AJP 22, 235-236, (1954).
John Satterly, Rate of Rise of Small Air Bubbles in Water, AJP 23, 387 (1955).
R. Stuart Mackay, Automatic Cartesian Diver, AJP 26, 403-404 (1958).
Robert N. Jones, The Cartesian Diver, TPT 11, 345, (1973).
Jack Willis and Donald F. Kirwan, Easily-Performed Experiment Illustrating the Effect of Buoyant Force of Air on Laboratory Weighings, AJP 42, 910-911 (1974).
Haym Kruglak, The Rising Cartesian Diver, TPT 13, 68-69, (1975).
Martin Gardner, Physics Trick of the Month: The Cartesian Matches, TPT 28, 478 (1990).
Sheng-ping He, Se-yuen Mak, and Eqing Zhu, Depth dependent Cartesian divers, AJP 61, 938-940 (1993).
Robert M. Graham, An Extremely Sensitive Cartesian Diver, TPT 32, 182-183 (1994).
Instructions for Use of Cat Nos. 1040 and 1042 Cartesian Diver, Welch Scientific Co., Skokie, Ill.
Instructions for Use of Cat No. 1040 Cartesian Diver, Welch Scientific Co., Skokie, Ill.
Arliss Benham, Consultant, Fun With "Diving Tony", Consumer Affairs Dept., Battle Creek, MI.
J. Guemez, C. Fiolhais, and M. Fiolhais, The Cartesian diver and the fold catastrophe, AJP 70, 710-714 (2002).
D.A. May and J.J. Monaghan, Can a single bubble sink a ship? AJP 71, 842-849 (2003).

F2-03: CARTESIAN DIVER - EXPLICIT VERSION
Robert M. Graham, An Extremely Sensiive Cartesian Diver, TPT 32, 182-183 (1994).
Hasan Fakhruddin, Cartesian diver and riser, TPT 41, 53 (2003).

F2-04: BUOYANCY - SPHERE AND WATER
None.

F2-05: BUOYANCY - BOAT AND ROCK
C. Frank Griffin and Peter N. Henriksen, Physics challenges, TPT 18, 135-136 (1980).
Christo Popov, A Boat, a Stone, and Another, TPT 34, 327-328 (1996).

F2-06: BUOYANCY - SINKING BOAT
George M. Koehl, Archimedes' Principle and the Hydrostatic Paradox - Simple Demonstrations, AJP 17, 579-580 (1949).
G. M. Koehl, Simple demonstration experiments, Proceedings of the AAPT, AJP 17, 231-232 (1949).
Meiners, Physics Demonstration Experiments, Section 16-2.5 and 16-2.6, pp. 378-379.

F2-07: BUOYANCY - PEPSI AND DIET PEPSI
Joel Achenbach, Why Things Are, Coke? How Sweet It Is!, Washington Post, Wash., DC.
Walter Roy Mellen, Oscillations of Eggs and Things: Behavior of objects in fluids having densities that increase with depth, TPT 32, 474-475 (1994).

F2-08: BUOYANCY - BATTLESHIP IN BATHTUB
None.

F2-09: BUOYANCY - BALLOON IN HEAVY GAS
None.

F2-10: BUOYANT BUBBLES
John Satterly, Rate of Rise of Small Air Bubbles in Water, AJP 23, 387 (1955).
Gerald F. Hinderholtz, Buoyant Bubble, TPT 16, 490, (1978).
Frederick W. Kantor, Floating Balloons and Soap Bubbles on an Air-Freon 12 Gas Interface, TPT 1, 82-83, (1963).
Charles Waiveris, Soap Bubbles on a Cold Day, TPT 32, 404-405 (1994).

F2-11: HYDROMETER
Ellis D. Noll, Confronting the buoyant force, TPT 40, 8-10 (2002).

F2-12: HOT AIR BALLOON
David Keeports, How does the potential energy of a rising helium-filled balloon change?, TPT 40, 164-165 (2002).

F2-13: BUOYANCY - EXPANDING BALLOON CONUNDRUM
Mark Talmage Graham, Investigatign gases' masses in impecunious classes, TPT 40, 144-147 (2002).

F2-21: REACTION TO BUOYANT FORCE
Meiners, Physics Demonstration Experiments, Section 8-1.8, pp. 139-140.
David A. Ward, Finding the Buoyant Force, TPT 32, 114-115 (1994).
Ronald Ebert, Letter: Does the Buoyant Force Depend on the Weight or Density, TPT 32 262-263 (1994).
Van E. Neie, Letter: Beware of Greeks Bearing Pan Balances, TPT 33, 6 (1995).
David A. Ward, Letter: Ward Responds, TPT 33, 6-7 (1995).

F2-22: BUOYANCY PARADOX - ACCELERATED FRAME
H. F. Meiners, Apparatus Notes: Accelerated Coordinate System, AJP 33, Vol. 9, xi-xii (1965).
Hans Welton, Mechanical Paradox, AJP 34, 172, (1966).
Richard Breslow, Apparent Weightlessness in Free Fall, TPT 12, 366 (1974).
Hewitt, Figuring Physics, TPT 35, 290-291 (1997).
Ronald Newburgh, A demonstration of Einstein's equivalence of gravity and acceleration, European Journal of Physics 29, 209-214 (2008).

F2-23: BUOYANCY PARADOX - INVERTED BLOCK
Paul Hewitt, Figuring Physics, TPT 25, 243-244 (1987).

F2-24: ACCELERATED BUOYANT BALL
Johannes A. Van den Akker, Generalized Archimedes' principle, AJP 58, 1106-1108 (1990).

F2-25: BALANCE PARADOX - BUOYANCY WITH CROSSOVER
Hewitt, Figuring Physics (Question with Cartoon), TPT 27, 496, (1989).

F2-26: BUOYANCY PARADOX - BALL IN TWO LIQUIDS
Boon Leong Lan, Don't Run Naked and Shout "Eureka!" Yet, TPT 38, 125 (2000).

F2-31: BUOYANT BALLS IN BEANS
Robert B. Prigo, Liquid Beans, TPT 26, 101, (1988).
Rolf G. Winter, On the Difference between Fluids and Dried Beans, TPT 28, 104 (1990).

F2-32: FLOATING SQUARE BAR
Walter P. Reid, Floating of a Long Square Bar, AJP 31, 565-568 (1963).
G. Worsnup, Floating a cylinder in water, The Mathematical Gazette, June 1981, pp. 123-126.
R. Delbourgo, The floating plank, AJP 55, 799-802 (1987).
Paul Erdos, Gerard Schibler, and Roy C. Herndon, Floating equilibrium of symmetrical objects and the breaking of symmetry. Part 1: Prisms, AJP 60, 335-345 (1992).
Paul Erdos, Gerard Schibler, and Roy C. Herndon, Floating equilibrium of symmetrical objects and the breaking of symmetry. Part 2: The cube, the octahedron, and the tetrahedron, AJP 60, 345-356 (1992).
Brian R. Duffy, A bifurcation problem in hydrostatics, AJP 61, 264-269 (1993).
Marie Baehr, How Stable is Stable?, TPT 32, 470-473 (1994).
Ludwik Kowalski, Letter: How Does Stable Become Unstable?, TPT 33, 70 (1995).
Peter M. Hall, Letter: The Flip Side of Buoyancy, TPT 33, 7 (1995).
Marie Baehr, Letter: Baehr Responds, TPT 33, 7 (1995).

F2-41: DENSITY - SLOPE OF MASS VS. VOLUME GRAPH
None.

F3: SURFACE TENSION

F3-01: SURFACE TENSION - JOLLY BALANCE
Instructions for Use of Nos. 4061 and 4062 Jolly Balance, and No. 4063 Surface Tension Frame, Sargent-Welch Scientific Co., Skokie, Ill.
Gulay Yenicay, L. I. School for Gifted, DEMONSTRATIONS ON SURFACE TENSION.
J. Pellicer, V. Garc?a-Morales, L. Guanter, M. J. Hernandez, and M. Dolz, On the experimental values of the water surface tension used in some textbooks, AJP 70, 705-709 (2002).

F3-02: SURFACE TENSION - BALLOONS
Sutton, Demonstration Experiments in Physics, Demonstration M-239. Pressure within a Bubble - Two-bubble Paradox.
A. L. King and C. P. Sargent, Proceedings of the AAPT: Rubber balloons, AJP 16, 362-363 (1948).
Julius Sumner Miller, Pressure within a bubble, AJP 20, 115 (1952).
John Satterly, Replies to Inquiring Letters, AJP 20, 379-380 (1952).
D. R. Merritt and F. Weinhaus, The pressure curve for a rubber balloon, AJP 46, 976-977 (1978).
F. Weinhaus and W. Barker, On the equilibrium states of interconnected bubbles or balloons, AJP 46, 978-982 (1978).
Debbie Kiladze, The Idea Bank Collation, Idea No. 490: Confrontation in Science: Surface Tension.

F3-03: SURFACE TENSION - SOAP BUBBLES
None.

F3-04: SURFACE TENSION -THREAD ON WATER
Ernest K. Chapin, Surface Tension and Floating Bodies, AJP 24, 178 (1956).
Ernest K. Chapin, The Strange World of Surface Film, TPT 4, 271-275, 286 (1966).
Richard Marble, Floating Objects, TPT 10, 67-68, (1972).
James T. Schreiber, Barroom Physics, Part II, TPT 13, 418-428, (1975).

F3-05: SURFACE TENSION -THREAD IN FRAME
None.

F3-06: SURFACE TENSION - NEEDLE ON WATER
None.

F3-11: SURFACE TENSION - CAPILLARY TUBES
Paul O. Scheie, The upward force on liquid in a capillary tube, AJP 57, 279-280 (1989).
J. B. T. McCaughan, Comment on "The upward force on liquid in a capillary tube," by Paul O. Scheie [Am. J. Phys. 57, 279-280 (1989), AJP 60, 87-88 (1992).
Thomas B. Greenslade, Jr., Capillary Phenomena: Nineteenth Century Textbook Illustrations - LIII, TPT 30, 300-301 (1992).
A. A. Duarte, D. E. Strier, and D. H. Zanette, The rise of liquid in a capillary tube revisited: A hydrodynamical approach, AJP 64, 413-418 ((1996).

F3-21: SURFACE TENSION - WATER AND ALCOHOL IN SAND
None.

F3-22: SURFACE TENSION - AT THE 'BEACH'
None.

F3-31: WATER BELL
None.

F4: FLUID IN MOTION

F4-01: VISCOSITY OF LIQUIDS
Metin Yersil, A Simple Demonstration of Terminal Velocity, TPT 29, 334-335 (1991).

F4-02: VISCOSITY OF AIR
None.

F4-03: NON-NEWTONIAN FLUID
PHENOMENA: Great Gobs of Gluep, Washington Post, HORIZON, July 10, 1996.
Jearl Walker, The Flying Circus of Physics WITH ANSWERS, John Wiley and Sons, New York (1975, 1977), Non-Newtonian fluids, Sections 4.122 through 4.131.
Jearl Walker, The Amateur Scientist: "Serious Fun with Polyox, Silly Putty, Slime, and Other Non-Newtonian Fluids," Scientific American, November 1978.

F4-04: SILLY PUTTY
David A. Kratz, Chemistry in the Toy Store, Silly Putty, Community College of PA., (1988).

F4-05: PARACHUTE TOY
David Auerbach, The parachute paradox, AJP 62, 1041 (1994).

F4-11: LAMINAR AND TURBULENT FLOW OF AIR
None.

F4-12: UNMIXING - GLYCERIN AND DYE
John P. Heller, An Unmixing Demonstration, AJP 28, 348-353, (1960).
Drawing of apparatus designed by Eugene Merzbacher, RPI and UNC.

F4-13: FLUID FLOW MODEL
None.

F4-14: WIND TUNNEL
Robert H. Stinson, Classroom demonstration of streamline and turbulent flow, AJP 59, 1051-1052 (1991).
Jose A. Manzanares and Salvador Mafe, Streak line and path of a particle in introductory fluid mechanics, AJP 62, 179-181 (1994).
Parviz Moin and John Kim, Tackling Turbulence with Supercomputers, Scientific American Volume 276 Number 1, January 1997.

F4-15: FLYING BIRD MODEL
Jacqueline Thorpe, 2 Scientists Build Plane That Flaps Its Wings and Flies Like a Bird, Washington Times, (1-1-92).

F4-21: LIQUID IN SPINNING SPHERE
Lecture Demonstration Information Sheet.
D. James Baker, Jr., Demonstrations of Fluid Flow in a Rotating System, AJP 32, 647-652 (1966).

F4-22: SPINNING WATER BUCKET
Lecture Demonstration Information Sheet.
Marian Fecko, Newton's pail in Einstein's lift, AJP 62, 258-259 (1994).

F4-23: WATER PENDULUM
None.

F4-24: HILSCH VORTEX TUBE
R. Hilsch, The Use of the Expansion of Gases in A Centrifugal Field as Cooling Process, The Review of Scientific Instruments, vol. 18(2), 108-1113, (1947).
C. L. Stong, The "Hilsch" Vortex Tube, The Amateur Scientist, Scientific American, November 1958, 514-519.
J. J. Van Deemter, On the Theory of the Ranque-Hilsch Cooling Effect, Applied Science Research 3, 174-196.

F4-25: CYCLONE IN A BOTTLE
Joseph Guidry and H. T. Hudson, Tempest in a Fruit Jar, TPT 28, 494 (1990).

F4-31: SIPHON
Little Thinker, Mental Gymnastics (Siphon Pump), TPT 2, 139-140, (1964).
Thomas B. Greenslade, Jr., A Potpourri of Siphons, TPT 15, 425-426, (1977).
E. C. Watson, Reproductions of Prints, Drawings, and Paintings of Interest in the History of Physics, AJP 22, 390-393, (1954).
A. Potter and F. H. Barnes, The Siphon, Physics Education, 362-367, (Sept. 1971).
Henry S. Badeer and James W. Hicks, Role of Viscous Resistance in Siphon Flow, TPT 28, 558-559 (1990).
Raymond E. Benenson, The Hyphenated Siphon, TPT 29, 188 (1991).

F4-32: SIPHON - CHAIN MODEL
None.

F4-33: PYTHAGOREAN CUP
Wikipedia entry on "Pythagorean cup", http://en.wikipedia.org/wiki/Pythagorean_cup, accessed 15:23 EDT 12 June 2007.
"Pythagoras, Mathematician, Philopsopher & Musician", http://www.anema.gr/pythagoras.html, accessed 15:26 EDT 12 June 2007.

F4-34: SIPHON BALANCE
Laurence E. Dodd, The Siphon Balance, AJP 23, 313-317, (1955).

F4-41: DRUM AND CANDLE
Douglas C. Jenkins, A Thanksgiving Turkey Shoot - Physics Style, TPT 26, 516-517 (1988).

F4-42: SMOKE RINGS USING GARBAGE CAN
None.

F4-51: VACUUM PUMP MODEL
None.

F4-52: FORCE PUMP MODEL
None.

F4-53: ARCHIMEDES' SCREW
Resat Akoglu, An improved Archimdes pump, TPT 40, 550-552 (2002).

F4-61: HERO'S FOUNTAIN
Thomas B. Greenslade Jr., Hero's Fountain, TPT 20, 169, (1982).
Jeff Brooks III, The Air-ram Jet Pump - An Improved Hero's Fountain, TPT 21, 318, (1983).
C. L. Stong, Amateur Scientist Col., Scientific American, 215, 138, (Dec. 1966).
HERO, Asimov's Biographical Encyclopedia, 40, (1982).
Bill Norwood, Verbal Presentation of Hero's Fountain, Physics is Phun.
J. R. Kuyper Jr., Hiero's Fountain, Lecture Demonstrations, (Aug 15, 1991).
P. P. Ong, Hero's Fountain: Reversible Model, TPT 30, 437-437 (1992).
Virgil E. Stubblefield, Hero's Fountain: Quick and Squirty, TPT 30, 437 (1992).
Richard M. Heavers, The Salt Fountain, TPT 32, 524-525 (1994).

F4-62: HYDRAULIC RAM
Lecture Demonstrations Description Sheet.

F4-63: MARRIOTTE'S BOTTLE
Sutton, Demonstration Experiments in Physics, Demonstration M-314. Water Parabolas.
Julius Sumner Miller, Very Real Demonstration of Pascal's Principle, AJP 25, 326 (1957).
Lester G. Paldy, The Water Can Paradox, TPT 1, 126 (1963).
Richard E. Haney, Demonstrations of "Weight," AJP 31, 391-392 (1963).
Roy H. Biser, The Water Can Explored Again, TPT 4, 304-305, (1966).
Eric Weissman, The Water Flask with Unequal Holes, AJP 34, 1126-1128 (1966).
E. J. Ansaldo, On Bernoulli, Toricelli, and the syphon, TPT 20, 243-244 (1982).
Richard E. Berg, Derivation of equations for our apparatus.

F5: PRESSURE IN MOVING FLUIDS

F5-01: TOY CAR AND BALL - COANDA EFFECT
Robert P. Bauman and Rolf Schwaneberg, Interpretation of Bernoulli's Equation, TPT 32, 478-488 (Nov. 1994).

F5-02: BALL ABOVE MOVING CART - COANDA EFFECT
None.

F5-03: THIN METAL SHEETS - COANDA EFFECT
R. D. Edge, String and Sticky Tape Experiments, TPT 16, 105, (1978).
Harold Cohen and David Horvath, Two Large-Scale Devices for Demonstrating a Bernoulli Effect, TPT 41, 9-11 (2003).
Clifford Swartz, Bernoulli and Newton, TPT 41, 196-197 (2003).
David Schmidt, ScientificAmerican.com: Ask the Experts: Why does the shower curtain move toward the water?, www.sciam.com (30 June 2004).

F5-04: LARGE BALL AND FUNNEL - COANDA EFFECT
R. L. Hartman, Bernoulli's Law Demonstrator, AJP 34, 445 (1966).

F5-05: SMALL BALL AND FUNNEL - COANDA EFFECT
None.

F5-06: BEACH BALL - COANDA EFFECT
Glenn F. Powers, Bernoulli's Principle on a Grand Scale, TPT 7, 116-117, (1969).
Kirk T. McDonald, Levitating beachballs, AJP 68, 388-389 (2000).

F5-07: SPOOL AND CARDBOARD
Chris Waltham, Sarah Bendall, and Andrzej Kotlicki, Bernoulli levitation, AJP 71, 176-179 (2003).

F5-08: MARBLE IN WATER JET
None.

F5-09: HAIRDRYER AND PING PONG BALL - COANDA EFFECT
None.

F5-10: CHIMNEY DRAW WITH WATER
Julius Sumner Miller, On Demonstrating Bernoulli's Principle, AJP 22, 147-148 (1954).
Nathaniel R. Greene and Matthew R. Dworsak, Bernoulli at the gas pump, TPT 39, 346-347 (2001).

F5-11: AIRPLANE WING
Instruction Sheet for Leybold Airplane Wing Model
Blaine E. Sites, Airplane Model To Show Forces, AJP 12, 171-172, (1944).
J. M. Wild, Airplane Flight, TPT 4, 295-299 (1966).
Klaus Weltner, A comparison of the explanations of the aerodynamic lifting force, AJP 55, 50-54 (1987).
David Auerbach, On the problem of explaining lift, AJP 56, 853 (September 1988).
Klaus Weltner, Response to "On the problem of explaining lift" [Am. J. Phys. 56, 853 (1988)], AJP 56, 853 (1988).
Norman F. Smith, Bernoulli and Newton in Fluid Mechanics, TPT 10, 451-455 (1972).
Klaus Weltner, Aerodynamic Lifting Force, TPT 28, 78-82 (1990).
George Gerhab and Charles Eastlake, Boundary Layer Control on Airfoils, TPT 29, 150-151 (1991).
Klaus Weltner, Bernoulli's Law and Aerodynamic Lifting Force, TPT 28, 84-86 (1990).
Robert P. Bauman and Rolf Schwaneberg, Interpretation of Bernoulli's Equation, TPT 32, 478-488 (Nov. 1994).
Cliff Schwartz, Editorial: Numbers Count, TPT 34, 536 (1996).
Chris Waltham, Flight without Bernoulli, TPT 36, 457-462 (1998).
Kenneth W. Ford, The physics of soaring, TPT 38, 8-14 (2000).
Charles N. Eastlake, An aerodynamicist's view of lift, Bernoulli, and Newton, TPT 40, 166-173 (2002).
David E. Anderson and Scott Eberhardt, Understanding Flight, McGraw Hill, New York, Chapter 2: How Airplanes Fly, pages 15-17. (also see link below)
John D. Anderson, Jr., Ludwig Prandtl's Boundary Layer, Physics Today 58 #12, 42-48 (December 2005).
Web Sites supporting the Newton's third law explanation of lift:
Web Sites supporting the Bernoulli explanation of lift:

F5-12: BERNOULLI'S PRINCIPLE?
None.

F5-21: VENTURI TUBE WITH MANOMETERS
F .E. Kester, Another Demonstration of the Bernoulli Principle, AJP 13, 349, (1945).
W. W. Sleator, Check and Proofs of the Bernoulli Equation, AJP 17, 110-113 (1949).
Lance Breger, A simplified derivation of Bernoulli's equation of hydrodynamics, TPT 20, 248-249 (1982).
Mario Iona, Letter: Beyond Bernoulli, TPT 21, 282 (1983).
Instruction Sheet for Central Scientific , Cat No. 76462, Bernoulli's Principle Apparatus, Chicago, Ill.
Robert P. Bauman, An alternative derivation of Bernoulli's principle, AJP 68, 288-289 (2000).
Blueprint of apparatus.

F5-22: VENTURI TUBE WITH PING PONG BALLS
Instruction Sheet for Central Scientific, Cat. No. 76462, Bernoulli's Principle Apparatus, Chicago, Ill.

F5-23: VENTURI TUBE WITH WATER - GAUGES
David H. Martin, Misunderstanding Bernoulli, TPT 21, 37 (1983).
Henry S. Badeer and Costas E. Synolakis, The Bernoulli - Poiseuille Equation, TPT 27, 598-601, (1989).
Henry S. Badeer, Flowtube Misnomers: Time to Rectify, TPT 32, 426-427 (1994).
Lecture Demonstrations Instructions Sheet for Venturi Tube with Water.
Lecture Demonstrations Bernoulli Principle Derivations and Unit Conversions.

F5-24: VENTURI TUBE WITH WATER - MANOMETERS
None.

F5-31: MAGNUS EFFECT - FLETTNER'S SHIP
Thomas B. Greenslade, Jr., A Forgotten Magnus-Effect Demonstration, TPT 44, 552, (2006).
George Barnes, A Fletttner Rotor Ship Demonstration, AJP 55, 1040-1041, (1987).
Albert Einstein, Essays in Science, The Flettner Ship, 92-97, Philosophical Library, NY.
Thomas B. Greenslade, Jr., A Forgotten Magnus-Effect Demonstration, TPT 9, 43-44, (1971).
A. B. Murphy, Comment on "A Flettner Rotor Ship Demonstration" by G. Barnes, AJP 57(2), 181-182, (1989).

F5-32: CURVE BALL
The Science of Swing: producing swing (a curve ball) by a cricket bowler (pitcher).
T. Asai, M. J. Carr?, T. Akatsuka and S. J. Haake, The curve kick of a football I: impact with the foot, Sports Engineering 5, 183-192 (2002).
M. J. Carr?, T. Asai, T. Akatsuka and S. J. Haake, The curve kick of a football II: flight through the air, Sports Engineering 5, 193-200 (2002).
Lyman J. Briggs, Effect of Spin and Speed on the Lateral Deflection (Curve) of a Baseball; and the Magnus Effect for Smooth Spheres, AJP 27, 589-596, (1959).
R. E. Worley, Bernoulli Demonstration, TPT 3, 320, (1965).
Norman F. Smith, Bernoulli and Newton in Fluid Mechanics, TPT 10, 451-455 (1972).
Questions Students Ask: The Cylindrical Wing, why does it fly?, TPT 16, 662 (1978).
R. D. Edge, String and Sticky Tape Experiments, TPT 18, 308-309, (1980).
George Barnes, Demonstrating Curved Trajectories of a Spinning Ball, TPT 19, 403, (1981).
John A. Perkins, Spinning a 1600 rpm Surprise Toward Home, Wash. Post, A3, Oct 18, 1993, with E. Schrier and W. Allman ref.
Lecture Demonstrations: Curve Ball Explanation Sheet.
Robert G. Watts and Ricardo Ferrer, The lateral force on a spinning sphere: Aerodynamics of a curveball, AJP 55, 40-44 (1987).
A. Terry Bahill, David G. Baldwin, and Jayendran Venkateswaran, Predicting a Baseball's Path, American Scientist 93, 218-225, (May-June 2005).
MATERIALS AND SCIENCE IN SPORTS, Edited by: F.H. (Sam) Froes and S. J. Haake: Dynamics: Sports Ball Aerodynamics: Effects of Velocity, Spin, and Surface Roughness, by Rabindra D. Mehta, NASA Ames Research Center, Moffett Field, California, USA and Jani Macari Pallis, Cislunar Aerospace, Inc., San Francisco, California, US; Pages 185-197 (Figure 4, page 190). Publisher: TMS. 184 Thorn Hill Road, Warrendale PA 15086-7514. (724) 776-9000.

F5-41: WINDBAG
None.