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Introduction: 


There are many sources that may contribute to an approximately homogenous, isotropic background of gravitational waves, including compact objects such as black holes and neutron stars, or more exotically, string cosmology phenomena. In this paper we will only consider that background of waves that start as fluctuations in the early universe, and are subsequently amplified by inflation. This is the gravitational analog of the Cosmic Microwave Background (CMB) electromagnetic waves, in that vacuum fluctuations are responsible for its structure. Some of these primordial gravity waves should be amplified by the expansion of the universe to a level possibly measurable by LIGO or other detectors. The main purpose of this paper will be to explain how this amplification occurs.  


Before doing this, we provide some brief remarks about the motivation for studying these waves. This kind of background is expected to yield information about the very early universe, including the state of the universe during inflation and possibly even before. The universe is transparent to gravity waves in a radiation-dominated phase, but not to electromagnetic waves; hence gravity waves probe earlier times than the CMB, times not measurable in any other way. Seeing farther back in time means seeing higher energies, as well. Gravity waves may probe to times when the energy of the universe was comparable to the Grand Unified scale; observations would aid in constructing Grand Unified Theories. Also, any observation of quantum effects in the gravitational field would be valuable. Finally, of course, LIGO may register this background, and it is important that this signal be distinguished from noise. 

Quantization:


The spectrum of the gravity wave background is computed by treating the waves as excitations of a field in some background curved spacetime and quantizing that field. The gravity wave field is a small perturbation to the background, so there are no problems with infinities. Fields are quantized in curved spacetimes by constructing a Fock space for the field just as in Minkowski space. 


However, coordinate invariance means we are free to choose any basis for the Fock space. Each basis has its own creation and annihilation operators, a† and a, so the number operator a†a is only well defined with respect to a particular choice of coordinates. In a flat or nearly flat region of spacetime, for example, the Minkowski coordinates of an observer at rest present a natural choice, and hence a natural number operator to consider.   

So the fields are expanded in terms of the creation and annihilation operators in the standard way, but there is a different expansion for each region of spacetime we consider. Comparing each expansion may show that given some fixed state, different numbers of quanta appear in different regions. If this number increases with time, then it can be interpreted as an amplification.


This basic mechanism can be illustrated by the example of a quantum mechanical pendulum, the length of which changes over some interval of time, (t. If (t is long compared to 1/(, where ( is the frequency of the pendulum, then no new modes are created. For instance, if the pendulum is in the first excited state before then it will remain in the first excited state after such an adiabatic transition. However, if the transition is very short, then to find the final state we must expand the initial state in terms of the energy eigenstates that correspond to a time after the length has been varied: 

|n, (i> =  ((k|k, (f>

The coefficients (k determine how many quanta are present in the final state; the probability of the state being observed in the mode with k quanta is |(k|2. Since the initial and final eigenstates are not the same, modes that were not excited initially can become excited in the final state. Thus there is an analogy: the initial and finals states of the Fock space correspond to the initial and finals states of the pendulum. The period of the lengthening of the pendulum corresponds to the period of phase transition of the spacetime.

As an explicit example of quantizing a field in curved spacetime, we consider a scalar field in the two-dimensional metric 


ds2 = a2(() [d(2 - dx2], where a2(() = A + B tanh((() 

This example follows Birrell and Davies, Section 3.4. This metric is explicitly flat for ( ( ±(, so the particle interpretation is valid in these regions. The metric is different in each region, however, so we must expand the states of the early region in terms of those of the late. First, expand the scalar field ( in terms of creation and annihilation operators:

  (-(x, () = ([aku-k(x) + a†ku-*k(x)]          u-k = e-ik(x (-k(()
( ( -(
    (+(x, () = ([Aku+k(x) + A†ku+*k(x)]      u+k = e-ik(x (+k(()    ( ( +(,

where [ak, a†k’] = [Ak, A†k’] = (kk’, the usual commutation relations.  


The equation of motion for a massive, “minimally coupled” scalar field in curved spacetime is just the Klein-Gordon equation,  [� + m2]( = 0. Acting this operator on each mode of ( yields a differential equation for (.
    �uk = g(( (( (( uk = g(( (( (( uk =  a-2((( (( – (x (x) uk = a-2((( + k2 () e-ik(x,  so 

    a2[� + m2] ( (() = (((() + (k2 + a2 m2)((() = 0. 


This is the equation for a modified simple harmonic oscillator, and in the far future or past, the modification can be neglected. This is expected since these regions are flat. In these regions, the oscillator frequencies and Minkowski modes are 

  ( = [k2 + m2(A-B)]1/2       u‑k ~ eikx –i((                  as ( ( - (
    w = [k2 + m2(A+B)]1/2      u+k ~ eikx –iw(                  as (  ( + (. 

The initial modes u-k can be expanded in terms of the final modes u+k. This is known as a Bogoliubov transformation, and the expansion coefficients ((k and (k) are the Bogoliubov coefficients. 

    (-k = (​k(+k + (k((+-k)*,             where (Birrel and Davies)

    |(k|2 = sinh2[((( + w)/2(]  / (sinh[((w/()] sinh[(((/()])

    |(k|2 = sinh2[((( - w)/2(]  / (sinh[((w/()] sinh[(((/()])

(Due to the simple k-dependence of u- and u+, summing over all modes uk is not required.)    


The total number of quanta detected in some mode in the far future is given by acting the future number operator for that mode, Ak†Ak on the past state. If the past state is taken to have nk quanta in a single mode, k, it can be written as |nk>- = (ak†)n|0>-, where |0>- is the vacuum state at ( = -(. 

     Ak†Ak = [(k a†k - (kak][(*k ak - (*ka†k] = |(k|2ak†ak + |(k|2 aka†k - (k(k*ak2 - (k*(ka†k2  

          = |(k|2 + (|(k|2 + |(k|2) ak†ak - (k(k*ak2 - (k*(ka†k2            (using the commutation relation)

          = |(k|2 + (1 + 2|(k|2) ak†ak - (k(k*ak2 - (k*(ka†k2         

(using |(k|2 - |(k|2 = 1, see Birrell and Davies).

Acting this operator on |nk+2>-, |nk>-​​​, and |nk-2>- will show that the third and fourth terms will mutually cancel. The important action of Ak†Ak on |nk>-​ is then​​​ 

 Ak†Ak (a†)n|0>- = [|(k|2 + (1 + 2|(k|2) ak†ak] (ak†)n|0>- = |(k|2 + (1 + 2|(k|2) ( nk. 

In particular, if |nk>- is the vacuum state |0> (nk = 0), there are |(k|2 quanta detected in the far future; even a vacuum state is transformed into an excited state by the transition.   


At very high frequencies, on the other hand, there will be a cutoff. As k grows large, w and ( both approach k, and |(k|2 ( sinh2[((k-k)/(] (  0. This cutoff will depend on (: for smaller (, a higher cutoff can be reached. So, not only is there a cutoff, but it depends on the characteristic time of the transition. This is similar to the case of the pendulum. 


The same ideas apply to models of the universe. The one assumed in the literature (Allen, Grishchuk, Maggiore) is a Friedmann-Robertson-Walker model which supposes that the universe was initially in some unknown state, but with a scale factor extremely small compared to the current Hubble radius. The universe then undergoes an era of rapid expansion (known as inflation, or a de Sitter (dS) phase), during which a(t) ~ eHt, or in terms of (, a(() = -1/(H(). This ends near some conformal time (* and instantly switches over to a radiation dominated (RD) era, when a(t) ~ t1/2, or a(() = (( – 2(*)/ H((*)2. This functional form is chosen to join smoothly with the dS scale factor at (*. Such an instantaneous transition is not physically realistic and will not provide an upper cutoff that would be expected for the amplified radiation.


We consider for now only the quanta created during the dS-RD transition, but in the models there is a further transition from the radiation dominated to a matter dominated phase (MD) taking place at some (eq > (*. We take the phase observed now, at time t0, to be MD
, and note a(t) ~ t2/3 for MD. This will not only create additional quanta at lower frequencies, but will have observational consequences on the measured frequencies. We will return to this point later.


To find how many quanta are created, we expand the gravity wave (in transverse-traceless coordinates) in terms of creation and annihilation operators:

  hTTab- =  ((kab[akuk-(()e-ik(x + a†kuk-*(()e+ik(x]


(dS)

   hTTab+ =  ((kab[Akuk+(()e-ik(x + A†kuk+*(()e+ik(x]

            (RD)

Here (kab is a polarization tensor only depending on the direction of k. In this case, the + and – labels refer not to infinity, but simply to before and after the dS-RD transition. It will turn out to be simpler to use the functions (±(() = a(()u±(()


Plugging these expansions into the Einstein equations treated to linear order in hab yields         (k((() + (k2 - a((()/a(())(k(() = 0. 

Qualitatively, this is similar to the scalar field example above, in that the equation is a modified simple harmonic oscillator. The “pump field” a(/a represents the work put into the wave by the expansion of the universe, and modes for where this work is significant will be amplified.  

 
For modes where this work is negligible (those with large values of k), the equation becomes that of a simple harmonic oscillator. However, since u(() = ((()/a((), and a(() is increasing, these high frequency modes will be damped. There must be some cutoff frequency above which the pump field is not effective at amplifying the waves. Setting k2 = a(((*)/a((*) = H((*)2 shows that the upper cutoff is k ~ H((*), the inverse Hubble distance at the time of transition. Thus, amplification only occurs for wavelengths longer than the radius of the universe at time (*, that is, at some point during the transition. 


To actually compute the amplified spectrum, we need the Bogoliubov coefficients for this transition. The solutions for the modes (k turn out to be (from here on, the discussion follows Maggiore):

 (-k(() = a-1(1 – i/k() e-ik(                                                             (dS)

  (+k(() = a-1((k eik( + (k e-ik()                                                        (RD)

Matching at the boundary, (*, gives (k = 1/(2k2(*2). The number of new quanta created in the mode k comes from the same formula as the tanh example: Nk​ = |(k|2 = 1/(4k4(*4) (assuming a vacuum initial state). This is conventionally converted into a spectral density, (GW(f), as follows. 


The k in this expression is that measured by an observer comoving with the spacetime, but on Earth we receive cosmologically redshifted radiation. Define the measured frequency f by 2(f = kphys = k/a(t0). Then k(* = 2(f(*a(t0) = 2(f(*a(t*) [a(t0)/a(t*)] = (2(f/H)(t0/teq)2/3(teq/t*)1/2. Next, define a reference frequency f* by k(* = f/f*. Following Maggiore’s estimates for the transition times and the current times, the result is f* ~ 109(H((*)/10-4 Mpl)1/2 Hz. Plugging in for the number of quanta created, Nk ~ (¼)(f*/f)4. Finally, the gravity wave energy density (GW = 2∫d3k/(2()3[kNk], and the spectral density is defined (GW = (1/(c) d((GW/d(ln(f)), yielding 

(GW ~ 10-13(H((*)/10-4 Mpl)2. H((*)/10-4 Mpl ~ 1 according to the model’s estimates..  

Discussion: 


A flat spectrum for (GW ~ 10-13(H((*)/10-4 Mpl)2​ has been derived. As pointed out before, this is not completely realistic for two reasons. First, the model of an instantaneous transition is not at all appropriate for frequencies above the cutoff frequency; frequencies above some cutoff should be suppressed. Accounting for cosmological redshifting since the time (*, the appropriate cutoff today is the reference frequency f* ~ 109 Hz, since above f*, Nk < 1.      


Second, we have not accounted for the transition from RD to MD. Expanding in modes across these regions, as above, yields a spectrum that goes as f-2 for frequencies below an upper cutoff f**~ 10-16 Hz. This is calculated, as before, for f ~ H((eq) at the time of transition, appropriately redshifted to today. Taking both of these cutoffs into account, we get a spectrum that is flat over a huge range, from 10-16 to 109 Hz. It turns up like 1/f2 for lower frequencies and drops off sharply for higher ones.  


Unfortunately, this signal is well below LIGO’s current sensitivity, as well as its target operating sensitivity. LIGO’s third science run was able to constrain (GW < 8.4 ( 10-4 at 100 Hz, but (GW ~ 10-13 at this frequency, according to the model and estimates for H((*) used in this paper. This is still a higher upper bound than that put on (GW by Big-Bang-Nucleosynthesis; the BBN bound tells us that even integrating over all frequencies, the fraction of the universe’s energy density in gravity waves is less than 1.1 ( 10-5. Nevertheless, it is expected that at target operating sensitivity LIGO will be able to start improving this constraint. (Abbot, et al.) 
 
Setting constraints on (GW is not the only motivation for continuing to look for a stochastic background of gravity waves. Current evidence suggests the universe may currently be dominated by cosmological constant, not matter. Improved models of inflation or quantum theories of gravity may modify the calculations of the background spectrum in testable ways. Lastly, there are other potential sources of a stochastic background which have not yet been ruled out. Abott et al. report upper limits on a background due to rotating neutron stars and pre-big-bang cosmologies at (GW < 9.4 ( 10-4 (f/100Hz)2 and (GW < 8.1 ( 10-4 (f/100Hz)3, respectively. 
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EXTRA:

-Is de Sitter phase is OK as initial flat space (although final MD phase is flat enough). See Birrell and Davies

-How bad an approximation is it to take it as flat?

-Is it Hawking radiation that we see from it? (It’s not thermal…)

-How is this not an answer to the law of increase of entropy(2nd Law)? 

  Entropy increases BECAUSE the universe is expanding BECAUSE the universe expanding creates quanta (or at least causes our detectors to register more quanta)







� Note that this model does not account for recent evidence that the universe’s expansion is currently accelerating.
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