
Path Integrals

Path integrals were invented by Feynman (while a graduate student!) as an alternative

formulation of quantum mechanics. Our goal in this chapter is to show that quantum

mechanics and quantum field theory can be completely reformulated in terms of

path integrals. The path integral formulation is particularly useful for quantum field

theory.

1 From Quantum Mechanics to Path Integrals

Before discussing field theory, we derive the path integral for the quantum mechanics

of a single particle with position q and conjugate momentum p. The corresponding

quantum operators are denoted by p̂ and q̂, and satisfy

[q̂, p̂] = i,

[q̂, q̂] = [p̂, p̂] = 0.
(1.1)

(We use units where h̄ = 1.) In this chapter, we will always use hats to distinguish

quantum operators from classical quantities in order to emphasize the distinction. We

use the standard ‘bra-ket’ notation of Dirac for quantum states, so we write equations

such as

q̂|q〉 = q|q〉, (1.2)

which says that |q〉 is the eigenstate of the operator q̂ with eigenvalue q.

In quantum mechanics, the state of the system at the time t is specified by a ket

vector |ψ(t)〉. The state ket evolves in time according to the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉. (1.3)

Suppose that at some initial time t = ti the system is prepared in the state |ψ0〉. As

long as the Hamiltonian has no explicit dependence on time, we can write a formal

solution to the Schrödinger equation:

|ψ(t)〉 = e−iĤ·(t−ti)|ψ0〉, (1.4)

where the exponential of an operator is defined by its power series:

eΩ̂
def
=

∞∑
n=0

1

n!
Ω̂n. (1.5)
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Eq. (1.4) can be checked by differentiating both sides with respect to t and verifying

that |ψ(t)〉 as defined by Eq. (1.4) satisfies the Schrödinger equation, and also the

correct boundary condition

lim
t→ti

|ψ(t)〉 = |ψ0〉. (1.6)

We call the solution Eq. (1.4) ‘formal’ only because is no easier to evaluate the

exponential of the Hamiltonian than it is to solve the Schrödinger equation. The

real use of Eq. (1.4) is for proving general results.

The quantity

Û(t, ti)
def
= e−iĤ·(t−ti) (1.7)

that appears in Eq. (1.4) is called the time evolution operator. If we know this

operator, it is clear that we know everything there is to know about the way the

system evolves in time. It is also sufficient to find the matrix element of Û between

arbitrary position eigenstates

〈qf |Û(tf , ti)|qi〉. (1.8)

This quantity is sometimes called the time evolution kernel. (Note that the final

state appears on the left. We will always write our expressions so that ‘later times

are on the left.’)

We begin our derivation of the path integral by dividing the time interval from ti
to tf into N equal intervals of length

∆t =
tf − ti
N

. (1.9)

(We will eventually take the limit N → ∞, ∆t → 0.) We write the time evolution

operator as

e−iĤ·(t−ti) = e−iĤ∆te−iĤ∆t · · · e−iĤ∆t︸ ︷︷ ︸
N factors

. (1.10)

We then insert a complete set of states between each of the factors above using the

completeness relation

1 =
∫
dq |q〉〈q|. (1.11)

In this way, we obtain

〈qf |Û(tf , ti)|qi〉 =
∫
dqN−1 · · ·

∫
dq1

× 〈qf |e−iĤ∆t|qN−1〉〈qN−1|e−iĤ∆t|qN−2〉 · · · 〈q1|e−iĤ∆t|qi〉.
(1.12)

2



The integration variables q1, . . . , qN can be viewed as the positions at time intervals

∆t along a path from qi to qf . In this sense, Eq. (1.12) already has the form of an

integral over paths. We will eventually take the limit where N → ∞ (and ∆t → 0),

so we really are summing over all paths in some sense.

We define

Tq′,q
def
= 〈q′|e−iĤ∆t|q〉, (1.13)

so that we can write

〈qf |Û(tf , ti)|qi〉 =
∫
dqN−1 · · ·

∫
dq1Tqf ,qN−1

TqN−1,qN−2
· · ·Tq1,qi

. (1.14)

If we regard Tq′,q as a ‘matrix’ with ‘indices’ q′ and q, this gives the time evolution

kernel as a product of matrices. (The ‘indices’ are integrated over rather than summed

because they are continuous.) T is called the transfer matrix of the system.

To proceed further, we assume that the Hamiltonian has the form

Ĥ =
p̂2

2m
+ V (q̂). (1.15)

This describes a particle moving in a potential V (q). We evaluate the transfer matrix

with the help of the matrix identity

eA+B = eAeB
(
1− 1

2
[A,B] + · · ·

)
(1.16)

This generalizes the multiplicative property of the exponential that holds for com-

muting numbers with correction terms that depend on commutators of the matrices.

Using this identity we have

e−iĤ∆t = e−i∆tp̂2/(2m)e−i∆tV (q̂) (1 + commutator terms) . (1.17)

The commutator terms are O(∆t2), and can therefore be neglected in the limit ∆t→
0. We can then evaluate the transfer matrix by inserting a complete set of momentum

eigenstates

Tq′,q =
∫
dp 〈q′|e−i∆tp̂2/(2m)|p〉〈p|e−i∆tV (q̂)|q〉

=
∫ dp

2π
e−ip(q′−q)e−iH(p,q)∆t. (1.18)

Here we have used

〈p|q〉 =
1

(2π)1/2
e−ipq, (1.19)
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and the identities

f(q̂)|q〉 = f(q)|q〉, 〈p|f(p̂) = 〈p|f(p), (1.20)

which hold for an arbitrary function f . Notice what has happened in Eq. (1.18): we

have used the completeness relation to replace the operators p̂ and q̂ with integrals

over classical quantities p and q.

Substituting Eq. (1.18) into Eq. (1.14), we obtain

〈qf |Û(tf , ti)|qi〉 =
∫
dqN−1

dpN−1

2π
· · ·

∫
dq1

dp1

2π

∫ dp0

2π

× exp

{
i

N−1∑
n=0

∆t
[
pn
qn+1 − qn

∆t
−H(pn, qn)

]}
.

(1.21)

In the continuum limit N →∞, ∆t→ 0, we can identify

qn+1 − qn
∆t

→ q̇(t),
N−1∑
n=0

∆t f(tn) →
∫ tf

ti
dt f(t). (1.22)

We can then write Eq. (1.21) in the compact form

〈qf |Û(tf , ti)|qi〉 =

q(tf )= qf∫
q(ti)= qi

d[p]d[q] eiSH[p,q], (1.23)

where

SH[p, q] =
∫ tf

ti
dt
[
p(t)q̇(t)−H(p(t), q(t))

]
, (1.24)

and we have used the abbreviations

d[p]
def
=

N−1∏
n=0

dpn

2π
, d[q]

def
=

N−1∏
n=1

dqn. (1.25)

Eq. (1.23) is called a path integral (or functional integral) because the integral

is over all ‘phase-space paths’ (p(t), q(t)). The path q(t) must satisfy the boundary

conditions q(ti) = qi, q(tf ) = qf , while the path p(t) is completely unconstrained and

is not related to q(t) (or q̇(t)) in any way. We emphasize that p(t) and q(t) are defined

by integrating over the values of p(t) and q(t) independently at each value of t, so the

paths that contribute to the functional integral are in general highly discontinuous.

It is often useful to have an intuitive picture of the path integral as stating that a
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quantum particle samples ‘all possible paths,’ but it is important to remember that

the integral is not restricted to ‘physical’ paths in any sense.

The quantity S[p, q] defined in Eq. (1.24) is called the Hamiltonian action of

the system.1 Note that S[p, q] is a number that depends on the full phase space path

from ti to tf . S[p, q] is therefore a ‘function of a function,’ or a functional. We will

write the arguments of functionals in square brackets to emphasize this point.

The Hamiltonian form of the path integral is not used much in practice. We

can obtain a simpler form of the path integral by carrying out the integral over the

momenta. To do this, we go back to the transfer matrix for finite ∆t. We must

therefore compute

Tq′,q =
∫ dp

2π
exp

{
i(q′ − q)p− i∆t

[
p2

2m
+ V (q)

]}
. (1.26)

This integral is not well-defined because the integrand does not fall off as p → ±∞.

(The same problem occurs in the q integral.) However, the integral can be defined by

analytic continuation.

One way to make the expressions above well-defined is to evaluate the time-

evolution kernel for imaginary values of the initial and final times. That is, we

consider the quantity

〈qf |Û(−iτf ,−iτ0)|qi〉 = 〈qf |e−Ĥ·(τf−τ0)|qi〉. (1.27)

Repeating the steps above, we find a transfer matrix

Tq′,q =
∫ dp

2π
exp

{
i(q′ − q)p−∆τ

[
p2

2m
+ V (q)

]}
. (1.28)

This integrand is exponentially damped for large p, so the integral converges. For

reasons that will become clear later, this is called the Euclidean time approach.

In this approach, we must analytically continue back to real time at the end of the

calculation to obtain physical results.

An equivalent approach is to perform the analytic continuation by evaluating the

time evolution kernel at initial and final times with a small negative imaginary part:

〈qf |Û(tf (1− iε), ti(1− iε))|qi〉 = 〈qf |e−iĤ·(tf−ti)(1−iε)|qi〉. (1.29)

Here ε is a positive quantity that is taken to zero at the end of the calculation. The

quantity ε is therefore treated as an infinitesimal that is relevant only when it is

1This action also appears in the variational formulation of classical Hamiltonian dynamics.
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needed to make expressions well-defined. For example, in this approach the transfer

matrix becomes

Tq′,q′ =
∫ dp

2π
exp

{
i(q′ − q)p− i∆t(1− iε)

[
p2

2m
+ V (q)

]}
. (1.30)

This integral is well-defined as long as ε > 0 because the coefficient of p2 in the

exponent has a negative real part that suppresses the integrand as p→ ±∞.

We now perform the integral over p in Eq. (1.30). The integral has the form of a

generalized Gaussian integral∫ ∞

−∞
dp e−

1
2
Ap2+Bp, Re(A) > 0. (1.31)

We can evaluate this integral by completing the square in the exponent

−1
2
Ap2 +Bp = −1

2
A
(
p− B

A

)2

+
B2

2A
(1.32)

and shifting the variable of integration to p′ = p−B/A:∫ ∞

−∞
dp e−

1
2
Ap2+Bp = eB2/(2A)

∫ ∞

−∞
dp′ e−

1
2
Ap′2 = eB2/(2A)

(
2π

A

)1/2

. (1.33)

This trick for doing Gaussian integrals will be used repeatedly. Applying this formula,

we obtain

Tq′,q =
(

m

2πi∆t

)1/2

exp

{
i∆t(1− iε)

m
2

(
q′ − q

∆t(1− iε)

)2

− V (q)

}. (1.34)

Note that the time always appears with a small negative imaginary part. Omitting

the iε factors for brevity, the time-evolution kernel is

〈qf |Û(tf , ti)|qi〉 =
(

m

2πi∆t

)N/2 ∫
dqN−1 · · ·

∫
dq1

× exp

{
i

N−1∑
n=0

∆t

[
m

2

(
qn+1 − qn

∆t

)2

− V (qn)

]}
.

(1.35)

Note that there is one factor

C =
(

m

2πi∆t

)1/2

(1.36)

for each q integral, with one factor left over. We therefore define the path integral

measure to be

d[q]
def
=

N−1∏
n=1

(
Cdqn

)
. (1.37)
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Taking the continuum limit ∆t→ 0, we obtain

〈qf |Û(tf , ti)|qi〉 = C

q(tf )= qf∫
q(ti)= qi

d[q] eiS[q], (1.38)

where

S[q] =
∫ tf

ti
dt
[
m

2
q̇2(t)− V (q(t))

]
(1.39)

is the Lagrangian action, the integral of the Lagrangian over the path q(t). Note

that the measure factor C is highly divergent in the continuum limit. However, this

divergence is in the overall normalization of the path integral, and we will see that it

drops out of physical quantities.

One immediate consequence of the path integral is that it gives a different way of

looking at the classical limit of quantum mechanics. Suppose that there is a solution

q(t) to the classical equations of motion with q(ti) = qi, q(tf ) = qf . The fact that it

is a classical solution means that the action is stationary, i.e.

δS

δq
= 0 (1.40)

evaluated along the path. The path integral is over all paths, not just the classical

path. However, paths that are close to the classical one have an action close to the

classical path, and therefore add coherently, while paths that are far from the classical

path tend to interfere destructively.

Exercise: Show that the classical equation of motion for the Lagrangian

L = 1
2
m(q)q̇2 − V (q). (1.41)

is given by

mq̈ + 1
2
m′q̇2 + V ′ = 0, (1.42)

where m′ = dm/dq, etc. (This shows that a position-dependent mass for a particle

gives rise to a frictional force.) If you have difficulty with this problem, you may

want to review the classical variational principle.

We can use the path integral to give an expression for the ground state wavefunc-

tion of the system. Consider

〈qf |Û(0,−T (1− iε))|qi〉 = 〈qf |e−iĤT e−εĤT |qi〉, (1.43)
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where ε > 0 is taken to zero at the end of the calculation. Note that this is equivalent

to the iε prescription that was used to make the path integral well-defined above.

Inserting a complete set of energy eigenstates, we get

〈qf |Û(0,−T (1− iε))|qi〉 =
∑
n

e−iEnT e−εEnT 〈qf |n〉〈n|qi〉. (1.44)

Taking T →∞, the ε-dependent term suppresses the contribution of all excited states,

leaving only the contribution from the ground state n = 0:

〈q|Û(0,−T (1− iε))|qi〉 → eiE0Tψ0(qf )ψ
∗
0(qi). (1.45)

Viewed as a function of qf , this gives the ground state of the system up to a (singular)

normalization factor. Therefore, we can write

ψ0(qf ) = N
q(0)=qf∫

d[q] eiS[q]. (1.46)

Here, the integral is over all paths from ti → −∞ with the iε prescription is under-

stood, and N is a (singular) normalization factor. The fact that the iε prescription

projects out the ground state will be used frequently in the following.

The singular normalization factors should not bother you too much. Conceptually,

they arise for the same reason as non-normalizable states in quantum mechanics, and

we will see how to deal with them when we start using the path integral to compute

physical quantities.

2 From Path Integrals to Quantum Mechanics

We now reverse the procedure above and show how to reconstruct the operator form of

quantum mechanics from the path integral. That is, we attempt to define a quantum-

mechanical evolution operator by the path integral with a given action.

There is one generalization of the previous section that will be needed here. In

the discussion above, the path integral measure is independent of q (see Eq. (1.36)).

A simple example of a quantum-mechanical system with a nontrivial path integral

measure is given by a particle with a position-dependent mass, defined by the La-

grangian

L = 1
2
m(q)q̇2 − V (q). (2.1)

The canonical momentum is

p =
∂L

∂q̇
= m(q)q̇, (2.2)
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so the classical Hamiltonian is

H =
p2

2m(q)
+ V (q). (2.3)

There is an ambiguity in writing the quantum Hamiltonian arising from the fact that q̂

and p̂ do not commute. There are infinitely many Hermitian operator generalizations

of the classical kinetic term, e.g.

p̂
1

2m(q̂)
p̂,

1

4m(q̂)
p̂2 + p̂2 1

4m(q̂)
,

1

2

(
1

m(q̂)

)1/2

p̂2

(
1

m(q̂)

)1/2

, (2.4)

etc. All of these have the same classical limit, but they differ at the quantum level.

This situation is refered to as an operator ordering ambiguity. There is nothing

deep going on here: different operator orderings give different theories, so we just

have to pick one (or let experiment decide). We will choose the theory defined by the

quantum Hamiltonian

Ĥ = p̂
1

2m(q̂)
p̂+ V (q̂). (2.5)

The path integral for this system can be derived following the steps of the previous

section. It is convenient to order the operators in Ĥ so that p̂ is always to the left of

q̂ (‘Weyl ordering’). Using the canonical commutation relations, we obtain

Ĥ =
1

2
p̂2m(q̂)− i

2
p̂
m′(q̂)

m2(q̂)
+ V (q̂). (2.6)

This is not look Hermitian, but of course it is. We can now write the transfer matrix

as

Tq′,q = 〈q′|e−iĤ∆t|q〉 =
∫
dp 〈q′|p〉e−iĤ∆t|q〉

=
∫ dp

2π
eip(q′−q)−iH̃(p,q)∆t, (2.7)

where

H̃(p, q) =
p2

2m(q)
− i

2

m′(q)

m2(q)
p+ V (q). (2.8)

The ‘extra’ term compared to Eq. (2.3) is a result of the operator ordering we have

chosen. Performing the p integral, we obtain

Tq′,q = C(q) exp

{
i∆t L

(
q,
q′ − q

∆t

)}
, (2.9)
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where

L̃(q, q̇) = 1
2
m(q)q̇2 +

i

2

m′(q)

m(q)
q̇ − (m′(q))2

8m3(q)
+ V (q). (2.10)

Again, the ‘extra’ terms come from the operator ordering. The measure factor is

C(q) =

(
m(q)

2πi∆t

)1/2

. (2.11)

The Lagrangian appearing in the path integral is not the same as the classical La-

grangian we started with. This should not worry us, since we should a priori allow

all possible terms consistent with symmetries (and restricted by experimental data if

we are attempting to describe the real world).

Another feature of this example is the fact that the measure factor depends on q.

The path integral for this system can then be written

〈qf |Û(tf , ti)|qi〉 = C(qi)

q(tf )= qf∫
q(ti)= qi

d[q] eiS[q]. (2.12)

Here the measure is defined by

d[q] = lim
N→∞

N−1∏
n=1

C(qn)dqn, (2.13)

where the time interval from ti to tf is discretized into N steps as before. The fact

that the measure factor in Eq. (2.12) involves qi rather than qf originates in the fact

that we chose to order the quantum Hamiltonian so that p̂ is to the left of q̂, rather

than the other way around. It is clear that physical quantities should not depend on

this choice, and we will see that indeed the measure factor C(q) cancels out when we

compute physical quantities.

We want to see if we can define the time evolution operator using the right-hand

side of the path integral Eq. (2.12) with the generalized measure. (Eq. (2.12) defines

the matrix elements of the time evolution operator for a complete set of states, which

is the same as defining the operator.) In order to define a consistent time evolution,

the operator Û(tf , ti) defined by the path integral must be unitary, and it must satisfy

the ‘time composition rule’

Û(tf , ti) = Û(tf , t)Û(t, ti) (2.14)
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for any t. This just says that the result of evolving from ti to tf can be split into

a time evolution from ti to t, followed by time evolution from t to tf . In terms of

matrix elements, Eq. (2.14) is equivalent to

〈qf |Û(tf , ti)|qi〉 =
∫
dq 〈qf |Û(tf , t)|q〉〈q|Û(t, ti)|qi〉. (2.15)

To check this, we write the left-hand side using the transfer matrix

〈qN |Û(tN , t0)|q0〉 def
=
∫
dqN−1 · · · dq1 TqN ,qN−1

C(qN−1) · · ·Tq1,q0C(q0) (2.16)

=
∫
dqn

(∫
dqN−1 · · · dqn+1 TqN ,qN−1

C(qN−1) · · ·Tqn+1,qnC(qn)
)

×
(∫

dqn−1 · · · dq1 Tqn,qn−1C(qn−1) · · ·Tq1,q0C(q0)
)
.(2.17)

Note that the measure factors simply pair up with the transfer matrices. With the

identification Eq. (2.12), this shows that the path integral definition satisfies the time

composition rule Eq. (2.15). It works just because the integral over all paths from qi
to qf is equal to the integral over all paths from qi to q, followed by the integral over

all paths from q to qf , provided that we integrate over all intermediate positions q.

The last thing we need to show is that the time evolution operator is unitary. This

is far from obvious from the definition Eq. (2.12). Even though the measure factor eiS

is a phase, the path integral is a sum of phases, which not in general unitary. Once

again, our starting point is the formulation of the time evolution operator in terms

of the transfer matrix, Eq. (2.16), where the transfer matrix is given by

Tq′,q = exp

{
i∆t L

(
q,
q′ − q

∆t

)}
. (2.18)

We make the connection to the operator formalism by looking for an operator T̂

with the property that

〈q′|T̂ |q〉 = Tq′,q. (2.19)

Note that the operator T̂ is not diagonal in q space, so it must be a function of both

q̂ and p̂. To find T̂ , we use the fact that p̂ acts as a translation operator for q, i.e.

〈q′|e−i∆qp̂|q〉 = 〈q′|q + ∆q〉 = δ(q′ − q −∆q). (2.20)

From this, we can see that we can write

T̂ =
∫
d(∆q) e−i∆qp̂ei∆tL(q̂, ∆q/∆t). (2.21)
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To check this, we compute

〈q′|T̂ |q〉 =
∫
d(∆q) 〈q′|e−i∆qp̂ei∆tL(q̂, ∆q/∆t)|q〉

=
∫
d(∆q) 〈q′|q + ∆q〉ei∆tL(q, ∆q/∆t)

= ei∆tL(q, (q′−q)/∆t). (2.22)

Note that this defines the matrix elements of T̂ in a complete set of states, so the

solution is unique.

With this result, we can write the path integral as an integral (sum) over inter-

mediate states:

〈qN |Û(tN , t0)|q0〉 =
∫
dqN − 1 · · · dq1 〈qN |T̂ Ĉ|qN−1〉 · · · 〈q1|T̂ Ĉ|q0〉, (2.23)

where Ĉ = C(q̂). This can be written much more compactly as the operator statement

Û(tN , t0) = (T̂ Ĉ)N . (2.24)

That is, T̂ Ĉ is the infinitesmal time evolution operator. We see that Û is unitary if

and only if the operator T̂ Ĉ is unitary.

The operator T̂ defined by Eq. (2.21) is not unitary by itself, since it is an integral

(sum) of unitary operators. Unitarity of T̂ Ĉ is equivalent to

〈q′|(T̂ Ĉ)†(T̂ Ĉ)|q〉 → 〈q′|q〉 = δ(q′ − q). (2.25)

A short calculation analogous to Eq. (2.22) gives

〈q′|(CT̂ )†(CT̂ )|q〉 = C∗(q′)C(q)
∫
d(∆q)

× exp

{
i∆t

[
L
(
q,

∆q

∆t

)
− L

(
q′,
q − q′ + ∆q

∆t

)]}
.

The integral on the right-hand side is a function of q and q′ that is sharply peaked at

q = q′ for small ∆t. The reason is that for q′ 6= q, the phase of the integrand oscillates

wildly, suppressing the value of the integral. The integral becomes more and more

sharply peaked as ∆t→ 0, and we have

〈q′|(CT̂ )†(CT̂ )|q〉 → |C(q)|2 × (sharply peaked function of q′ − q). (2.26)

We can choose C(q) (as a function of ∆t) so that this has unit area in the limit

∆t→ 0, i.e. the integral is equal to δ(q − q′).
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If the measure factor depends on q, it can be rewritten as a correction to the

action:

∏
t

C(q(t)) = exp

{∑
t

C(q(t))

}
→ exp i∆S, (2.27)

where

∆S = − i

∆t

∫
dt lnC. (2.28)

This is a very peculiar contribution to the action: it is imaginary, and diverges in

the continuum limit ∆t → 0. We will be able to understand the significance of

this factor only after we have properly discussed the issue of the continuum limit

(‘renormalization’). The bottom line is that this factor is not present in all reasonable

definitions of the continuum limit.

These arguments are rather formal, since they deal with highly divergent quan-

tities. However, I believe that these considerations capture the reason that path

integrals automatically give rise to unitary time evolution. Later, we will give a rig-

orous argument that the path integral gives rise to unitary time evolution, at least to

all orders in perturbation theory.

3 Generalization to Field Theory

The generalization from 1-dimensional quantum mechanics to quantum field theory is

in principle straightforward: we just have more degrees of freedom! We will illustrate

this with the example of a real scalar field φ(x). The classical Lagrangian is

L = 1
2
∂µφ∂µφ− V (φ) (3.1)

= 1
2
φ̇2 − (~∇φ)2 − V (φ). (3.2)

To pass to the quantum system we must construct the Hamiltonian. The dynamical

variables at a fixed time are the scalar fields φ(~x), with canonically conjugate momenta

φ(~x). The canonical momentum is π = φ̇, and the quantum Hamiltonian is

Ĥ =
∫
d3x

[
1
2
π̂2 + 1

2
(~∇φ̂)2 + V (φ̂)

]
. (3.3)

Note that Lorentz invariance is not manifest in the Hamiltonian, since we implicitly

made a choice of Lorentz frame in defining the canonical momenta.
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Note that there are independent quantum operators φ̂(~x) and π̂(~x) at each spatial

point ~x. To make this well-defined, we can replace the spatial continuum with a

discrete square lattice of points with spacing a:

~x = a · (n1, n2, n3), (3.4)

where n1, n2, n3 are integers. We then have independent operators φ̂~x and π̂~x at each

lattice site. The quantum Hamiltonian then

Ĥ =
∑
~x

a3

1
2
π̂2

~x + 1
2

∑
~j

 φ̂~x+~j − φ̂~x

a

2

+ V (φ̂~x)

 , (3.5)

where ~j runs over the unit lattice vectors (a, 0, 0), (0, a, 0), (0, 0, a).

We now retrace the steps leading up to the path integral. We want to evaluate

the time evolution kernel

〈φf |Û(tf , ti)|φi〉 = 〈φf |e−iĤ(tf−ti)|φi〉, (3.6)

where |φ〉 is an eigenstate of the field operator:

φ̂~x|φ〉 = φ~x|φ〉. (3.7)

(That is, |φ〉 is a simultaneous eigenstate of all of the operators φ̂~x.) We again break

the time interval into N intervals of length ∆t = (tf − ti)/N , and insert a complete

set of states |φ〉 between each interval. In this way, we obtain the Hamiltonian path

integral

〈φf |Û(tf , ti)|φi〉 =

φ(~x,tf )= φf (~x)∫
φ(~x,ti)= φi(~x)

d[π]d[φ] eiSH[φ,π], (3.8)

with Hamiltonian action

SH[φ, π] =
N−1∑
n=0

∆t
∑
~x

a3

[
π~x,n

φ~x,n+1 − φ~x,n

∆t
− 1

2
π2

~x,n

− 1
2

∑
~j

(
φ~x+~j,n − φ~x,n

a

)2

− V (φ~x,n)

]
(3.9)

−→
∫ tf

ti
dt
∫
d3x

[
πφ̇− 1

2
π2 − 1

2

(
~∇φ
)2
− V (φ)

]
, (3.10)
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where we have taking the continuum limit ∆t → 0, a → 0 in the last line. The

measure is

d[φ] =
N−1∏
n=1

∏
~x

dφ~x,n, d[π] =
N−1∏
n=0

∏
~x

dπ~x,n

2π
. (3.11)

We can now do the π (functional!) integral. This is easy because it amounts to a

Gaussian integral for each π~x. The result is the Lagrangian path integral

〈φf |Û(tf , ti)|φi〉 = C

φ(~x,tf )= φf (~x)∫
φ(~x,ti)= φi(~x)

d[φ] eiS[φ], (3.12)

where the action is

S[φ] =
N−1∑
n=0

∆t
∑
~x

a3

[
1

2

(
φ~x,n+1 − φ~x,n

∆t

)2

− 1

2

∑
~j

(
φ~x+~j,n − φ~x,n

a

)2

− V (φ~x,n)

]
(3.13)

−→
∫ tf

ti
dt
∫
d3x

[
1
2
φ̇2 − 1

2
(~∇φ)2 − V (φ)

]
. (3.14)

This is exactly the classical action that we started with. The path integral measure

is

d[φ] =
∏
n

(
C
∏
~x

dφ~x,n

)
, C =

∏
~x

(
1

2πi∆t

)1/2

. (3.15)

Some comments:

• Eq. (3.12) tells us to sum over all evolutions of the field configuration from

the initial field configuration φi at time ti to the final field configuration φf

at time tf . The formula Eq. (3.12) is completely Lorentz invariant (in the

continuum limit) except for the specification of the initial and final states. This

manifest Lorentz invariance is one of the main reasons for using the path integral

formulation of quantum field theory.

• The path integral contains an infinite number of degrees of freedom in the limit

∆t → 0, a → 0. This gives rise to the ultraviolet divergences, which we will

study in detail later. Note however that the path integral for nonzero ∆t and

a is completely well-defined. If we put the system in a finite spatial box (by

imposing periodic boundary conditions, for example), the number of integrals
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is finite, and the integrals can be approximated numerically. This approach

is called ‘lattice field theory,’ and there is currently a major research effort

underway to perform quantum field theory calculations using this approach.
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