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Search for spin-mass interaction

The Standard Model predicts a violation of CP symmetry in strong
interaction, which has not been observed.

= To solve this “strong CP puzzle,” the axion has been proposed
(Peccei and Quinn, 1977; Weinberg, 1978; Wilczek, 1978).

The axion mediates spin-mass interaction (SMI).

= Potential between an electron and an unpolarized nucleon:
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where < 3 x 1019 and A is in meters.
The axion Is a strong candidate for cold dark matter.

Search for SMI complements the cavity search for the axion.

= Unlike the cavity experiment, these experiments do not assume
any population of the axion.
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Two ways to search for SMI

Modulate o and search for effect
on r using a motion sensor.

Ritter et al. (1993):

Torsion balance with a modulated
spin source

= 99,1 <5x10%, 1>10cm

Modulate r and search for effect
on o using a susceptometer.

Ni et al. (1994, 1999).

SQUID susceptometer with a
moving source mass

= (99, <7 x 10, 1> 3 cm.
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U. Wash. experiment

The spin pendulum

. large net electron spin D - gold-plated
- magnetically shielded

- negligible external

magnetic field 4 mirrors

- more spins

- greater symmetry
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Experimental

limits on SMI
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S/C accelerometer experiment

Torque between a polarized source with an electron spin density p,
and a test mass of nucleon density p:

9 71 dl 1 A A 1 1 —r/A
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= Problem: | = 0 identically for any closed loop of spin.

Spin source: A toroid with alternating sections of two high-x materials
with spin contrast (e.g., A: Magnifer 7904, B: NdNi).

Due to quenching of L, ois always parallel to J in transition metals.
whereas o can be anti-parallel to J in rare-earth magnets.

= Problem: All rare-earth magnets are hard.

Force sensor: A superconducting differential angular accelerometer
with magnetically levitated test masses.
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Experimental design

Horizontal cross section Vertical cross section

I -— 38.3mm-—

Test mass
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Construction of the apparatus

Spin source in shield

Sensing
coil form

Test mass
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Noise and error reduction

Intrinsic noise:
Perform a resonance experiment to suppress the SQUID noise limit:

S (1) 8% KaT , Kely | 8y KT
’ I Q Qeff I Q

Common-mode balance and axis alignment:

By adjusting currents in the sensing and alignment circuits, angular
and linear accelerations are rejected to 10> and 5 x 108 m-L,

, Quf = @7

Dynamic error compensation:

Angular and linear accelerometer outputs are used to compensate
the residual acceleration sensitivity to 108 and 5 x 10t m,

Nonlinearity noise:

This noise is reduced to < 10> by stiffening the translational modes
by applying feedback to the test masses.
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Expected resolution of SMILE

10'25 TTT T T T \\'\\.\\H| T T T [ ——
o Ni et al. (1999) “~~__ @
= T S -
u % % i

o 30L < <
R 5
o |2 8
Z & £
—_ ] %) —|
a 2 3
2 - > -
©) = a
O 10°%°[ B B

2 s
i) i)
L _TQU ______________ 3 -

10_40 L1 | | \ [ R L1l

10 1073 1072 10t
RANGE A (m)

« Soft rare-earth material is assumed.
= Without it, a factor of 100 loss in sensitivity.
= Experiment shelved in favor of the 1/r? law test.
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Status of G measurement
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Principle of the experiment

Planetary system of the source and test masses: GM/r3 = «?.
= The differential accelerometer is used as a null detector.
— Straightforward to measure M and o to <10-°.

Superconducting levitation of the test masses.
= No anelasticity associated with a suspension fiber.

Superconducting differential accelerometer.
= Low thermal (T = 4.2 K) and amplifier (SQUID) noise.
= Both linear and angular acceleration are rejected to >10°.

Optical interferometry for distance measurement.

— Test mass separation is measured to <100 nm in situ at low
temperature.
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Design of the experiment
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Absolute length measurement

Multi-frequency interferometry (3~5 frequencies).
= With tunable CW dye laser, £8.8 nm accuracy demonstrated
between up to 1 cm distance.

Frequency scanning interferometry, developed for alignment of
ATLAS tracker.

= ~250 nm accuracy demonstrated for 0.2~1.5 m distances.

Null detection with frequency scanning interferometry.
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Error budget and expected resolution

Error source Error (m s2) AG/G
Instrument 2.5 x 1015 3.4 x 108
Seismic 1x 1014 1.4 x 107
Source mass metrology 8.5 x 1015 1.2 x 107
Source mass position 3.6 x 1014 4.9 x 107
Test mass metrology 8.1 x 1015 1.1 x 107
Gradiometer baseline 1.5 x 1014 2.1 x 107
Mass calibration 1.5 x 1014 2.1 x 107
Turntable wobble <1016 <10-°
Source driven acceleration <1017 <1010
Angle measurement <1016 < 10”7
Temperature fluctuations 1x 1015 1.4 x 10-8
Others <1015 <108
Total 4.5 x 1014 6.2 x 107
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