
Paik-1

Lecture 21
Search for Spin-Mass Interaction
and Precision Measurement of G

Ho Jung Paik

University of Maryland

May 10, 2007 

Physics 798G Spring 2007



Paik-2

Search for spin-mass interaction

• The Standard Model predicts a violation of CP symmetry in strong 
interaction, which has not been observed.
⇒ To solve this “strong CP puzzle,” the axion has been proposed 

(Peccei and Quinn, 1977; Weinberg, 1978; Wilczek, 1978).

• The axion mediates spin-mass interaction (SMI).
⇒ Potential between an electron and an unpolarized nucleon:

where θ ≤ 3 × 10−10 and λ is in meters.

• The axion is a strong candidate for cold dark matter.

• Search for SMI complements the cavity search for the axion.
⇒ Unlike the cavity experiment, these experiments do not assume 

any population of the axion.
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Two ways to search for SMI

• Modulate σ and search for effect 
on r using a motion sensor.

Ritter et al. (1993): 
Torsion balance with a modulated 
spin source 
⇒ |gsgp | ≤ 5 × 10–27, λ ≥ 10 cm

• Modulate r and search for effect 
on σ using a susceptometer.

Ni et al. (1994, 1999):
SQUID susceptometer with a 
moving source mass 
⇒ |gsgp | ≤ 7 × 10–29, λ ≥ 3 cm. 
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U. Wash. experiment
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Experimental limits on SMI

Heckel et al. (2006):
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S/C accelerometer experiment

• Torque between a polarized source with an electron spin density ρs
and a test mass of nucleon density ρN:

⇒ Problem: I = 0 identically for any closed loop of spin.

• Spin source: A toroid with alternating sections of two high-μ materials
with spin contrast (e.g., A: Magnifer 7904, B: NdNi). 

Due to quenching of L, σ is always parallel to J in transition metals. 
whereas σ can be anti-parallel to J in rare-earth magnets.

⇒ Problem: All rare-earth magnets are hard.

• Force sensor: A superconducting differential angular accelerometer 
with magnetically levitated test masses.  
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Experimental design
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Construction of the apparatus
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Noise and error reduction

• Intrinsic noise: 
Perform a resonance experiment to suppress the SQUID noise limit:

• Common-mode balance and axis alignment:
By adjusting currents in the sensing and alignment circuits, angular 
and linear accelerations are rejected to 10−5 and 5 × 10−8 m−1.

• Dynamic error compensation:
Angular and linear accelerometer outputs are used to compensate 
the residual acceleration sensitivity to 10−8 and 5 × 10−11 m−1.

• Nonlinearity noise: 
This noise is reduced to ≤ 10−5 by stiffening the translational modes 
by applying feedback to the test masses.
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Expected resolution of SMILE
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Ground Experiment

SMILE
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• Soft rare-earth material is assumed.
⇒ Without it, a factor of 100 loss in sensitivity.
⇒ Experiment shelved in favor of the 1/r2 law test.
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Status of G measurement
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Principle of the experiment

• Planetary system of the source and test masses: GM/r3 = ω2. 
⇒ The differential accelerometer is used as a null detector.
⇒ Straightforward to measure M and ω to <10−6.

• Superconducting levitation of the test masses.
⇒ No anelasticity associated with a suspension fiber.

• Superconducting differential accelerometer.
⇒ Low thermal (T = 4.2 K) and amplifier (SQUID) noise.
⇒ Both linear and angular acceleration are rejected to ≥105.

• Optical interferometry for distance measurement.
⇒ Test mass separation is measured to <100 nm in situ at low 

temperature.
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Design of the experiment

Top view of the experiment
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Absolute length measurement

• Multi-frequency interferometry (3~5 frequencies).
⇒ With tunable CW dye laser, ±8.8 nm accuracy demonstrated 

between up to 1 cm distance.

• Frequency scanning interferometry, developed for alignment of 
ATLAS tracker.
⇒ ~250 nm accuracy demonstrated for 0.2~1.5 m distances.

• Null detection with frequency scanning interferometry.

21

2

21 )1(4

λλ
λ

λλ

−
=⇒

+===Δ

n

nnRd



Paik-15

Error budget and expected resolution

Error source  Error (m s−2) ΔG/G
Instrument  2.5 × 10−15 3.4 × 10−8

1.4 × 10−7

1.2 × 10−7

4.9 × 10−7

1.1 × 10−7

2.1 × 10−7

2.1 × 10−7

< 10−9

< 10−10

< 10−7

1.4 × 10−8

< 10−8

6.2 × 10−7

Seismic  1 × 10−14

Source mass metrology 8.5 × 10−15

Source mass position 3.6 × 10−14

Test mass metrology 8.1 × 10−15

Gradiometer baseline 1.5 × 10−14

Mass calibration 1.5 × 10−14

Turntable wobble < 10−16

Source driven acceleration < 10−17

Angle measurement < 10−16

Temperature fluctuations 1 × 10−15

Others < 10−15

Total 4.5 × 10−14
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