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Outline

► Interferometers as gravitational wave detectors

► Existing and planned detectors

► Instrumentation details (with focus on LIGO)
► Vacuum system
► Laser
► Optical layout
► Mirrors
► Vibration isolation
► Servo controls

► Interferometer operation
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Demonstration Interferometer
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A Laser Interferometer as a 
Gravitational-Wave Detector

Measure difference in effective arm lengths to a fraction of a wavelength

Beam splitter

Mirror

Mirror

Photodetector

Laser

Responds to one 
polarization projection

Strain h =  ΔL / L
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Antenna Pattern of a
Laser Interferometer

Directional sensitivity depends on polarization of waves

“×” polarization “+” polarization RMS sensitivity

A broad antenna pattern
⇒ More like a microphone than a telescope
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Comparison with Resonant 
Gravitational-Wave Detectors

Interferometers…

► can be made larger

► are not so limited by thermal noise

► are sensitive over a wider frequency band, 
including low frequencies

► cost more to build and operate
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Existing and Planned Detectors
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LIGO Hanford Observatory

Located on DOE Hanford Nuclear Reservation north of Richland, Washington

Two separate interferometers (4 km and 2 km arms) coexist in the beam tubes
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LIGO Livingston Observatory

Located in a rural 
area of Livingston 
Parish east of 
Baton Rouge, 
Louisiana

One interferometer
with 4 km arms
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GEO 600

British-German project, located among fields near Hannover, Germany
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VIRGO

French-Italian project, located near Pisa, Italy

3 km arms
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LCGT (Large-scale Cryogenic 
Gravitational-wave Telescope)

Planned to be constructed inside Kamioka mine

Funding being requested from Japanese government
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Current Sensitivities for
Gravitational-Wave Strain
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Design Requirements

Even with 4-km arms, the length change due to a gravitational 
wave is very small, typically ~ 10−18 – 10−17 m

Wavelength of laser light = 10−6 m

Need a more sophisticated interferometer design to reach this 
sensitivity

► Add partially-transmitting mirrors to form resonant optical cavities
► Use feedback to lock mirror positions on resonance

Need to control noise sources
► Stabilize laser frequency and intensity
► Use large mirrors to reduce effect of quantum light noise
► Isolate interferometer optics from environment
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LIGO Beam Tube

Stainless steel, ~1 m in diameter, welded into 2 km lengths
Serrated baffles installed inside to disperse scattered light
Baked to drive off adsorbed water vapor
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Vacuum System

4 km laser
4 km antisymm
photodiode

2 km laser

Hanford shown 
(Livingston only has 
one interferometer)2 km antisymm

photodiode



U of Maryland Phys 798G, 10 April 2007
17

Vacuum System
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Pre-Stabilized Laser

Based on a 10-Watt Nd:YAG laser (infrared)

Uses additional
sensors and optical
components to
locally stabilize the
frequency and
intensity

Final stabilization uses feedback from average arm length
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LIGO / VIRGO / TAMA Optical Layout
(not to scale)
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Main interferometer has 
three additional semi-
transparent mirrors to 
form optical cavities

Input optics stabilize 
laser frequency & 
intensity, and select 
fundamental mode

End mirror
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GEO 600 Optical Layout

No Fabry-Perot cavities, but dual recycling
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Mirrors

Made of high-purity fused silica

Largest mirrors are 25 cm diameter, 10 cm thick, 10.7 kg

Surfaces polished to ~1 nm rms, some with slight curvature

Coated to reflect with extremely low scattering loss (<50 ppm)
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A Mirror in situ
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Handling High Laser Power

Use multiple photodiodes to handle increased light
And fast shutters to protect photodiodes when lock is lost !

Compensate for radiation pressure in control software

Correct thermal lensing of mirrors by controlled heating

Under-heat 
Correction

Over-heat 
Correction

CO2
Laser

Viewport Mirror
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Vibration Isolation

Optical tables are 
supported on “stacks”
of weights & damped 
springs

Wire suspension used 
for mirrors provides 
additional isolation
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Active Seismic Isolation at  Livingston

Hydraulic external pre-isolator 
(HEPI)

Signals from sensors on ground 
and cross-beam are blended and 
fed into hydraulic actuators

Provides much-needed immunity 
against normal daytime ground 
motion at Livingston
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Servo Controls

Optical cavities must be kept in resonance
Need to control lengths to within a small fraction of a wavelength – “lock”
Nearly all of the disturbance is from low-frequency ground vibrations

Use a clever scheme to sense and control all four length degrees
of freedom

Modulate phase of laser light at very high frequency
Demodulate signals from photodiodes
Disentangle contributions from different lengths, apply digital filters
Feed back to coil-and-magnet actuators on various mirrors

Arrange for destructive interference at “antisymmetric port”
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Length Sensing and Control
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Alignment Sensing and Control
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Feedback Basics

High frequency: servo has no effect; 
measure just the input disturbance

Low frequency: measure the 
combination of input disturbance and 
servo; can infer input disturbance
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Summary of Noise Sources
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2002 2003 2004 2005 2006 2007

LIGO Science Runs

S1 S2 S3 S4 S5
Duty factors: (so far)

H1 59 % 74 % 69 % 80 % 73 %
H2 73 % 58 % 63 % 81 % 77 %
L1 43 % 37 % 22 % 74 % 62 %

?
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Data Collection

Shifts manned by resident “operators” and visiting “scientific monitors”
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