Laser Interferometer Gravitational-Wave Detectors

Peter Shawhan

Physics 798G April 10, 2007

Interferometers as gravitational wave detectors

Existing and planned detectors

Instrumentation details (with focus on LIGO)

- Vacuum system
- Laser
- Optical layout
- Mirrors
- Vibration isolation
- Servo controls

Interferometer operation

A Laser Interferometer as a Gravitational-Wave Detector

Measure difference in effective arm lengths to a fraction of a wavelength

Antenna Pattern of a Laser Interferometer

Directional sensitivity depends on polarization of waves

A broad antenna pattern ⇒ More like a microphone than a telescope

Comparison with Resonant Gravitational-Wave Detectors

Interferometers...

- can be made larger
- are not so limited by thermal noise
- are sensitive over a wider frequency band, including low frequencies
- cost more to build and operate

Existing and Planned Detectors

LIGO Hanford Observatory

Located on DOE Hanford Nuclear Reservation north of Richland, Washington

Two separate interferometers (4 km and 2 km arms) coexist in the beam tubes

LIGO Livingston Observatory

Located in a rural area of Livingston Parish east of Baton Rouge, Louisiana

One interferometer with 4 km arms

British-German project, located among fields near Hannover, Germany

French-Italian project, located near Pisa, Italy

3 km arms

LCGT (Large-scale Cryogenic Gravitational-wave Telescope)

Planned to be constructed inside Kamioka mine

Funding being requested from Japanese government

Current Sensitivities for Gravitational-Wave Strain

Even with 4-km arms, the length change due to a gravitational wave is *very* small, typically $\sim 10^{-18} - 10^{-17}$ m

Wavelength of laser light = 10^{-6} m

Need a more sophisticated interferometer design to reach this sensitivity

- Add partially-transmitting mirrors to form resonant optical cavities
- Use feedback to lock mirror positions on resonance

Need to control noise sources

- Stabilize laser frequency and intensity
- Use large mirrors to reduce effect of quantum light noise
- Isolate interferometer optics from environment

LIGO Beam Tube

Stainless steel, ~1 m in diameter, welded into 2 km lengths Serrated baffles installed inside to disperse scattered light Baked to drive off adsorbed water vapor

Vacuum System

Vacuum System

Pre-Stabilized Laser

Based on a 10-Watt Nd:YAG laser (infrared)

Uses additional sensors and optical components to locally stabilize the frequency and intensity

Final stabilization uses feedback from average arm length

LIGO / VIRGO / TAMA Optical Layout (not to scale)

GEO 600 Optical Layout

No Fabry-Perot cavities, but dual recycling

Made of high-purity fused silica

- Largest mirrors are 25 cm diameter, 10 cm thick, 10.7 kg
- Surfaces polished to ~1 nm rms, some with slight curvature
- Coated to reflect with extremely low scattering loss (<50 ppm)

A Mirror in situ

Use multiple photodiodes to handle increased light

And fast shutters to protect photodiodes when lock is lost !

Compensate for radiation pressure in control software

Correct thermal lensing of mirrors by controlled heating

Vibration Isolation

Optical tables are supported on "stacks" of weights & damped springs

Wire suspension used for mirrors provides additional isolation

Active Seismic Isolation at Livingston

Hydraulic external pre-isolator (HEPI)

Signals from sensors on ground and cross-beam are blended and fed into hydraulic actuators

Provides much-needed immunity against normal daytime ground motion at Livingston

Optical cavities must be kept in resonance

Need to control lengths to within a small fraction of a wavelength – "lock" Nearly all of the disturbance is from low-frequency ground vibrations

Use a clever scheme to sense and control all four length degrees of freedom

Modulate phase of laser light at very high frequency

Demodulate signals from photodiodes

Disentangle contributions from different lengths, apply digital filters

Feed back to coil-and-magnet actuators on various mirrors

Arrange for destructive interference at "antisymmetric port"

Length Sensing and Control

UNIVERSITL

Alignment Sensing and Control

Feedback Basics

High frequency: servo has no effect; measure just the input disturbance

Low frequency: measure the combination of input disturbance and servo; can infer input disturbance

Summary of Noise Sources

U of Maryland Phys 798G, 10 April 2007

Data Collection

Shifts manned by resident "operators" and visiting "scientific monitors"

