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Non-®,-periodic macroscopic quantum interference in one-dimensional parallel Josephson
junction arrays with unconventional grating structure
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A theoretical study is presented for a numbkof Josephson junctions connected as a one-dimengibbal
parallel array in such a manner that there Are 1 individual superconducting loops with arbitrary shape
formed. In the resistive array mode, for bias currdnts ., all Josephson junctions in the array oscillate at the
same magnetic field dependent frequengywhich is, in generalnot a  ,-periodic function of the strength of
magnetic fieldB. Within the range of validity of the resistively and capacitively shunted junct®@S)
model the periodicity ofvg is controlled by the array geometry alone and does not depend on the distribution
of the array junction parameters. In the overdamped junction regigis, for certain types ofinconventional
grating structuresa unique function around a sharglobal minimum atB=0. Thisfilter property does not
apply for regular gratings and superconducting quantum interference dé&@tsD’s). Computer simula-
tions of the full nonlinear array dynamics reveal that the qualitative macroscopic quantum interference prop-
erties of unconventional arrays are governed, irrespective of the strength of inductive couplings, by a complex
structure factoiSy(B) which can be determined analytically. Also, the performance of magnetometers based
on 1D arrays with unconventional grating structure can be significantly better than the performance of con-
ventional SQUID’s. In particular, 1D arrays with unconventional grating structure should provide a technically
rather unsophisticated precision measuremeratbsblutestrength and orientation of external magnetic fields.
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[. INTRODUCTION This is the fundamental nonstationary Josephson relation
which governs the physics of weak superconductiVigor
So-called weak links, or Josephson junctions, are the bd->I, there flows, in addition to the dissipationless supercur-
sic active elements of superconductor quantum electronicgentls, also a dissipative normal currehf in the junction,
A key feature of a weak link between two superconductors, Whose physical origin is the transfer of singlenpaired
and 2, is the property that there can flow a dissipationles§lectrons. o .
macroscopic supercurreh(¢) due to the tunneling of Coo- _ Within the range of validity of the RCSJ modethe dis-
per paird with charge 2. This supercurrent depends on sipative current may be described with sufficient accuracy as
the gauge invariant phase differencer=©,— 0 a superposition of an ohmic current, characterized by a par-
5 ) o2 allel ohmic shunt resistand®, and a displacement current,
+(2e/h) [1(ds,A) of the macroscopic BCS pairing wave _ - . : ) .
: . : . ~~~ which is characterized by a parallel geometric shunting ca-
functions on either side of the weak link. Josephson junc

. de with modern fabricat hnicRiefen h PpacitanceC describing electric polarization inside the tunnel-
tions made with modern fabrication tgc niqueten have a ing barrier. The total junction curremtis then
sandwich type layered geometry, with a thin nonsupercon-

ducting tunneling barrier in the middle between two thick ] 5
superconducting electrodes. In recent time also other types of I=lcsing(t) + 5 pdip(D)+ 52 dre(t). @
weak links, for example, of the bicrystal type, became im- )

portant in high-temperature superconductst&or an ideal The time average

S-I-Sjunction the supercurrent is connected to the phase dif-

ferencep across the tunneling barrier by(¢) =1.Sine. The (V)=1
supercurrenk, flows stationary provided it does not exceed a t
characteristic critical current., the so-called Josephson . . . .
critical current, which determines the maximum dissipation—IS the dc voltage part of the, in general, not sinusoidal volt-

less current that can flow across a tunneling barrier. In gen"Elge signal/(t) across the electrodes of a Josephson junction.

eral,| . depends on the material properties of the junction, or{:or a strongly overdamped junctio@;=0, one finds, assum-

temperatureT, and also on magnetic fieB=rotA. Apply- "9 @ constant bias current>1;, a relatively simple
b 9 PPY  formule? (V)=R\1=12,

ing to a Josephson junction a bias curremtith a constant _ o
strengthl >1., there appears a rapidly oscillating voltage ~The dc voltage(V) is connected to the oscillation fre-
signalV(t) across the junction, which determines the rate ofduéncyw=2mv of the voltage signal/(t) by

change of the time dependent phase differep(® accord- h v="2e(V). @

ing to
This result for the voltage response functiri) of a weak
link suggests a spectroscopic interpretation. When a Cooper
h dyp(t)=2eV(t). (1) pair is transferred from the superconducting side 1 to the

Lo e(t)—¢(0)
ml?Jodt V(t )_Z_e“mf 3

— t—o
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superconducting side 2 of the junction, under conditions a)
wherel>1., a microwave photon with energye2V) is re- Lop
leased in the form of one quantum of electromagnetic radia- 0.k
) . A
tion (Josephson radiatién >
As far as macroscopic quantum interference is concerned, 3 0.6
it was actually knowhlong before the discovery of the Jo- 0.4}

sephson effects, that magnetic flux threading the area of a

superconducting ring, made out of a material that is thick 02

compared to the magnetic penetration depthshould be 0.0[,

guantized in units of the flux quantudhyg=h/2e. This is a

consequence of a theoretical argument first employed by b)

Onsageét in the context of the quantization of circulation in Lop

superfluid“He. The macroscopic wave function of particles A 08

moving round a closed loop displays necessarily an integer 206

multiple of wavelengths over the full length of a closed orbit. 3 7

So, the electric current circulating in such a superconducting 041 ok 3

ring is quantized, which in turn implies the quantization of 02'/@7—'»}” & a o /
the total magnetic flux threading the area of that fifigech- 00 = éy/ 4

nical applications of the physics of weak superconductivity

include ultrasensitive quantum interferometers, which indeed
combine the aforementioned Josephson effects with flux Lol
guantization.

In this paper we investigate macroscopic quantum inter- A 03
ference phenomena in one-dimensioftD) parallel arrays Eo.s.
of Josephson junctions with unconventional grating struc- Y /=7
ture, i.e., multiple-loop configurations that are characterized 041 A ’: A
by an intrinsic nonperiodicity of the geometry of the struc- 0.2-/%7[% B o /
ture. For such multiple-loop configurations the interference [ - éy/ ’
effects are generated by the phase-sensftisaperposition 00 3 1 0, 1 5 3
of a mesoscopic number of macroscopic array junction cur- @ /g,

rents in the presence of an external magnetic field. The Jo- _ )
sephson junctions in the array are required tesbert junc- (1'?'6- 1. Voltage responsg/,y) in units of I R vs external flux
tions such that any spatial variations of the gauge invarianf  through largest area elememtof interferometer wittN (over-
phase differences along the barriers of the weak links can b ampedju_nct}ons for bias currerit=1.1NI, and van|sh|_ng_|nduc-
safely neglected. Then the array junctions are well describel’® °°“E"”9- @ Symmetr'ca! SQUID N:.Z)‘ ®) p?r'Od'C 1D
by the RCSJ model as stated in E2) which provides, e.g., arra_y (N=11),(c) 1D array with unconventlongl gratlng structure
o L . (N=18). The loop areas ifc) are randomly distributed between
a successful desprlptlon for rgS|st|ver shunted rbw_unc- 0.1 and 1.08 | but with same total area as {b).
tions or highT, bicrystal junctiong. The use ofshort junc-
tions ensures that the nonlinear array dynamics is dominated
by the collective effects we want to study and not by the=(B,a)=|B||a/cosa be the magnetic flux threading the ori-
intrinsic dynamics of the individual junctions. entated area elemeatof the superconducting SQUID loop,
In Sec. Il we briefly summarize the basic properties ofwhere« is the angle between the normal vector of the ori-
standard single loop two-junction superconducting quantunentated area element and the magnetic field veBtas de-
interference device$SQUID’s) and periodic multiple loop picted schematically in Fig.(&). The total magnetic field
parallel 1D arrays, i.e., geometrical configurations with con-B=B(")+ B(?) is then a superposition of thgimary external
ventional grating structures. In Sec. Ill we focus on the basi¢nagnetic field BY), which generates the fluxd®
properties ounconventionagrating structures. Then, in Sec. :(B(l), a) one wants to detect, and secondarymagnetic
IV, we present a unified theoretical description of general 1Dxield B(®) that results from the screening currégt circulat-
parallel arrays, and we discuss analytical as well as numering in the SQUID loop. The total flux in the loop is given by
cal results. In Sec. V we briefly discuss the noise propertiegp = p®+ H @), with &= — LI, whereL denotes the in-
of unconventional arrays. Finally, Sec. VI is devoted to theductance of the loop. Depending on the secondary flux term
discussion of our results and future perspectives. ® @ there exists an optimal size, | for any SQUID loop if
the parameters are optimized with respect to the sensitivity
of the deviceé'® A dimensionless measure for the inductance
of a single loop is8, =LI./®,. The voltage response func-
Consider, as indicated schematically in Figa)la stan- tion(V,,) of the SQUID, i.e., the time average of the rapidly
dard two junction SQUID(for simplicity with symmetric  oscillating voltage signaV,,(t) across the nodesandy of
junction parametejsunder the dc current bids>2l.. Such the circuit, is a®y-periodic function of the strength of ex-
a device is actually a flux-to-voltage transdutdret ® ternal magnetic field, see Fig(d. Therefore, awo junction

I. CONVENTIONAL GRATING STRUCTURES
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SQUID cannot be directly employed as a detectoab$o- spreads in the parameters of the individual array junctions
lute strength of external magnetic field. (see Sec. IV.

A straightforward extension of the standard two junction In contrast to devices with conventional grating struc-
SQUID is sketched in Fig. (b). This is a 1D array ofN  tures, the uniqueness of the voltage response function of un-
adjacent Josephson junctions connected in paraifeThe  conventional arrays allows such devices to be directly em-
area elements of th—1 SQUID loops are all equal, i.e., ployed as detectors of absolute strength of e_xternal magnetic
a,=a_for all n. The voltage response signéV,,) vs field. It should be possible, e.g., by measuring control cur-
strength|B™M)| of external magnetic field of suchperiodic ren{s) flowing through the wires of a set of suitably orien-
array has the same periaBly than a standard two junction t@téd compensation c@), to reconstrucabsolutestrength,
SQUID with loop areda,|, see Fig. tb). Such a device, orientation gnd even the phase.of an incident primary mag-
therefore, can also not be used as a detectoatsfolute  netic field signal, i.e., to determine the full vec®(t).

strength of magnetic field.
IV. UNIFIED THEORETICAL DESCRIPTION OF 1D

PARALLEL JOSEPHSON JUNCTION ARRAYS

Iil. UNCONVENTIONAL GRATING STRUCTURES The nth Josephson junction in the array has, within the

A more general quantum interference device is obtained@nge of validity of the RCSJ model, optional individual
when the area elements, of the N—1 loops in the array Jjunction parameter®,, C,, andl.,. The corresponding
differ in size and, possibly, in orientation, as depicted schecurrentl, flowing through thenth Josephson junction is,
matically in Fig. 1c). If the sizes|a,| of the orientated area according to Eq.(2), determined by the gauge invariant
elementsa, of the individual superconducting loops are cho- phase_ difference,(t) across that junction. Th_e total current
sen in such a way that for a finite external magnetic figfd | flowing through the nodes andy, respectively, of the
a coherent superposition of the array junction currésee  Circuit is then obtained from Kirchhoff's rule as tighase
Sec. IV) is prevented, the voltage response funciug,) vs sensitivesuperposition of the individual junction currerits
|B®)| becomes nonperiodic. From the analogy to optical in- N
terference patterns we call such configurations unconven- I=2
tional grating structures. n=1

An example for the effects of unconventional grating on
the voltage response function is shown in Fi¢c)1The ar- The gauge invariant phase differenegsof adjacent Jo-
eas of the different array loops are chosen randomly betweesephson junctions in the array are not independent, but are
0.1a | and 1.0a |, while the total area of the array is the connected to each other by the condition of flux quantization
same as for the periodic array, Fighl The maximum loop )
size coincides with the corresponding optimal loop size of a ™
standard two junction SQUID, i.e., max=|a.|. By this, ‘P”+1_‘P”:¢TO<B’ ay)mod 2. ©®)
the response function of the unconventional array shown in
Fig. 1(c) is comparable to the response functions shown irHiere|a,| is the area of the superconducting loop connecting
Figs. Xa) and 1b). adjacent Josephson junctions numberedhandn+1, re-

The distribution of the array loop sizes has two propertiesspectively, andB denotes the magnetic field threading the
that prevent for a finite external magnetic fi@4") the co-  orientated area elemeaj of this loop. Equatior(6) applies
herent superposition of the array junction currents. First, théluite generally, provided the superconducting material, out
loop sizes aréncommensurabld.e., there exists no greatest Of which the connecting loops are made, is thick compared to
common divisor(GCD). Second, the size of the smallest the magnetic penetration depth In this case there exists a
loop |amy| Strongly differs from the size of the largest loop Path inside the wire connecting, say, junctionwith its
|amad, and the sizes of all other loops are distributed betweemeighbor junctionn+1, on which the superfluid velocity
|aminl and |amad in such a way that no distinct loop size is field vs becomes negligibly small. Sd,V®=2eA along
preferred. The first property of the distribution prevents anythis path.

(strong periodicity of the response function. The second Since all junctions in the array are connected in parallel,
property ensures that no significant partially coherent supeithe rapidly oscillating voltagé/,(t) at the electrodes of a
position of the array junction currents takes place, i.e., thaparticular Josephson junction, numberechas the array, is
there exist no finite values @) for which additional sig- related to the signaV,,(t) between the nodesandy of the
nificant antipeaks in the voltage response function do occuf€ircuit by
If these two necessary conditions are fulfilled by the loop

size distribution, the voltage response signdl,,) Vs _

strength of magnetic field of the unconventiongl ju)rl1>ction ar- Vi) =Vi(t)+ L {(ds (). @)

ray becomes, under a suitable dc current biaa unique

function of |B®)| around its narrow global minimum at By Faraday’s law the electric field along an integration
|IBM|=0. This feature of the voltage response function ofpathx—n—y, that starts at nodg, traverses the tunneling
unconventional arrays does only depend on the distributiobarrier of thenth Josephson junction just once, and then
of the array loop sizes. It does not depend on parametderminates at nodsg is directly connected to the time deriva-

l¢nSin@,(t)+ . (5

iCn , h
Z_eﬂt+ﬁ’9t en(t)

—nN—=y
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tive of the flux threading the area elements of the 1D array. 1 N

Once the signaVq(t) =(%/2e)d.¢4(t) is known the other aC:N E < an, (12b
voltage signals/,,(t) across the electrodes of timh junc-
tion follow from

Vi 1(t) = Vi(t) = (B(1), ay). ®8) 2=0. (129

Taking into account the Biot-Savart type inductive
coupling$?**among the currents flowing in the circuit pro-
hibits further simplification. However, in the limit of vanish-

ing inductance the problem can be treated analytically. Thi
will be done in the following Sec. IV A. The full probiem, sive function of strength and orientation of magnetic figld

for arbitrary inductive couplings, will then be discussed in and it is strongly affected by the choice of the individual area
Sec. IVB. elementsa,,,. In general,|Sy(B)| is also very sensitive to

permutations among the,’s.
In the overdamped junction regim€=0, under condi-
tions where a constant curremtis biased such that 1
If all array loop inductance parametgBs are small, i.e., =|Sy(B)|/Iy=sinag, and assuming for simplicity a homo-
B, <1 for all n=1,... N—1, the currents flowing in the geneous static magnetic fieRl(as well as time independent

array do not generate a significant secondary magnetic fiel@'éa elementa,,), one finds an exact solution of EQ.0) for

B@. In this limit of vanishing array inductance3=B(")  the phase difference(t):
holds. Then it follows directly from Eq(6) that one can

The complex functiorBy(B) =|Sy(B)|e'’N®), as defined in
Eqg.(11), denotes the characterisstructure factorof the 1D
garallel Josephson junction array. It is an extremely respon-

A. 1D parallel arrays with vanishing inductance

eliminate from Eq(5) all phase variableg,(t) in favor of a 7 J2—|Sy(B)|?
single phase variable, say(t) = ¢,(t). In this case the prob- V1(t)— 0t¢(t) n(
lem of N coupled Josephson junctions is mapped onto a vir- J + |SN(B)|5|”(wBt— ag)’

tual singleJosephson junction model. With(t) = ¢4(t) and

N
E 2 | (9a) For a static magnetic fielB the voltage response function
N = o (V) measured between the nodeandy of the circuit is
equal to the dc part of the rapidly oscillating voltage signal

[y

1 1N V4 (t). All Josephson junctions in the 1D array oscillate at
RN nz,l R (9b)  the same frequenayg=2m vg, which is related tqV,,) by
N
1 h 2 2
C=3 2, Cn (99 3678= (VD =IRVI-ISUB)P=(Vyy). (19
TNzi 1 (9d) The oscillation frequencyg of such a local oscillator is
2el R’ even more sensitive to changes of strength or orientation of

the external magnetic fielB than the structure factor of the
_|_ (99 array itself, sincéSy(B)| enters into Eq(14) quadratically.
NI’ The Einstein-Planck relation determining the enekgpf a

h | lar diff il ion d . h radiated photonE=h vg, suggests then an analogy to an
there results &calar differential equation determining the 5 ificial atom with a tunable energy level distanée

phase differences(t): =2e(V,,).
: 2 For )E)):as currentsly<|Sy(B)| in the presence of static
ISW(B)[SinL A1)+ 6u(B) ]+ TN(RC I+ ) (1) magnetic field$, Eq. (10) possesses a time-independent so-
2 5 lution for which the voltage respondg (t) vanishes. In this
=In g Tn(RCA(B, ac)+ (B, ag)). (100 case, the magnetic field dependent critical current of the 1D
0 parallel Josephson junction array is given Ky .|Sy(B)|.
Here we have introduced the definitions So, the subcritical diffraction pattern of a parallel array con-
LN . o 1 sisting of N—1 different loops wg\‘ arb|itrary shape is di-
. l rectly proportional to the modulusSy(B)| of the complex
Sn(B)= N Z | F{ 2 (B, am>} 1D structure factoiSy(B).
Consider, as in Sec. I, a periodic array, consistingNof
and —1 identical SQUID loops, such théB, a,)=®=(B, a ),
no1 andR,=R,C,=C,l.;,=I. independent on the junction in-
a (129  dexn. Then the structure factoBy(B)= S becomes a
n=1 Rym=o simple geometrical series

n=1

024511-4


Admin
Highlight


NON-®,-PERIODIC MACROSCOPIC QUANTUM . .. PHYSICAL REVIEW B 63 024511
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@,
SRR

3 B 1.0 a)
NSin( 2 exp{m(bo(N 1)}. (15 | D)
T, 0.8} 5)

Figure Xb) shows the voltage response of a periodic array/A
with N=11 overdamped Josephson junctions according t 20.6}
Eqg. (14). One observes the narrowing proportional tbl bf -
the width of the voltage response sigdaJX¥) around its 0.4}+F
minima. Note the periodicity propers,, ~ *®|=|S{| for [ }o.9
all N=2. ForN=2 Eq.(14) is the periodic voltage response 02k
of a symmetric two junction SQUID in the overdamped junc- o7
tion regimé [see Fig. 13)]. [

A structure factor with a much longer period is obtained ~ 0.0[ % 0 10 20 30 40
in a parallel junction array where the orientated area ele P P P S S
ments increase in size according tdireear relation -3 2 -1 0 (I)(l} 1 2 3

(o]

an=(2m—-1)a. (16)

For simplicity, identical junction parametefs,, C,, and
I, are assumed. Then

FIG. 2. Voltage responsg/,y) in units of ;R vs external flux
®W through largest area elemeat for a Gaussian array withl
=18 (overdampedjunctions for bias current=1.1N I, and vari-
ous inductive coupling$a) 8. =0, (b) 8. =0.3, and(c) B8, =0.7.

17) Np—1 identical SQUID loops with sizéa, |. For a useful

. . . comparison, both arrays should occupy about the same total
T?Slmtal area occupled2 by such @au_55|an array is  graq- N—1)%a,=(Np—1)a, . Also the largest area element
Sh-1(2m—1)[ay[=(N-1)%ay], where g, is the smallest i, the Gaussian array should coincide with the area element
area element, andN,lz(Zl\_l—3)a1 is the Ia}rgest area eIe—. of an optimal single SQUID loop, i.eay_,=4a, . Both re-
ment. The class of Ga_ussmn arrays prowde_s an '”te_’resnr&hirements together imply foxp>1 that the Gaussian array
example of a nongeneric unconvent|o_nal grating. (_)bwouslyhaS the double number of junctions compared to a corre-
the first necessary property of a generic unconventional armaynonding periodic junction arrayN=2Np. Figure Za)

is not fulfilled, because the loop area sizag| of the array shows the voltage response of a Gaussian array M8

are commensurable. However, the second necessary propegyerdamped junctions as a function of the applied magnetic
concerning the distribution of the_ area sizes is prese(’see! flux @y, =d® through the largest area element according to
Sec. Il). Consequently, a Gaussian array displays a periodigq (14, |t differs substantially from the voltage response of
voltage response, though, possibly, the period may becomge corresponding periodic array with identical loop areas as
rather long. To determine the period of .the Gaussian array comparison of Figs.(ib) and Fig. 2a) reveals. The voltage
consider a case where the flux threading the area of thPesponse of the Gaussian array possess a peribd-@
smallest elemend, is equal to a rational multiple of half a imes Jarger than the voltage response of the corresponding
flux quantumi(B, a;) = (M/N)(Po/2). Then the largest area perigdic array, while the steepness of the voltage transfer
element in the arrayy -, is threaded by a fluby=(1  fynctionV,=a(V)/ad® around the remaining antipeaks is
—3/2N)M @,. In this case the structure factd®y(B)  preservedsee Fig. 2)]. It is remarkable that for Gaussian

n=0

N—1
SN(B)=% > exr{Zwi%nz .

(I) H 1 . . . .
ES& " may be determined using a result of Gdfiss arrays there occur no significant additional antipeaks due to a
partially coherent superposition of the array junction cur-
1 gl N rents
Lo E e (M/N)n? _ 2 e~ m(N/M)M? . . )
N = INM o In general, the necessary conditions for a generic uncon-

(18) ventional array described in Sec. Illl are not sufficient to
achieve a voltage response function for which all additional
Note the periodicity|Sf\‘q)M+(b2N)|=|S(N¢M)|, with period  significant antipeaks due to a partially coherent superposition
®,y=(2N—-3)®,. Remarkably, forM =2, andN=N;N, of the array junction currents disappear totally. By investi-
being the product of two prime numbeks, andN,, there  gating several different unconventional gratings and the cor-

holds the factorization responding structure factors we observed, that for some area
distributions additional antipeaks with voltage swings that
S('? = (— 1) DNz~ DGR G(P) (190  are not much smaller than the voltage swings for totally co-
1 2

herent superposition do occur in the voltage response func-

Apparently, such Gaussian arrays are governed by the lawt®n. Their number decreases with increasing number of ar-
of number theoryquadratic residués). ray loops. However, up to now, we did not find a direct link

Compare now a Gaussian array, Wih- 1 area elements between the area size distribution of these arrays and the

as described in EJ16), with a periodicarray, consisting of occurrence of the additional antipeaks. The problem is that
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the number of combinations of array junction currents whichmagnetic field generated by the bias current induces, possi-
can lead to a partially coherent superposition increases exp®dly, additional flux into the loops of the array.

nentially with increasing number of array loops. From the The inductance matrixC may be interpreted as the ‘in-
analytical results obtained for Gaussian arrays we feel thaluctance’ matrix of the screening currents, while the matrix
this problem, at least for some special configurations, may bé1 describes the redistribution of the bias current including
solved using number theory. This point, however, needs furthe current enhancement at the array edges due to, in general

ther investigation. nonsymmetric, Meissner screening effects. The inductance
matrices£ and M depend on the geometry of the network
B. Inductive 1D parallel arrays and also on the geometry of the current leads. They can be

" . . calculated using Ampe’s law. The coefficients., ,, of £
[f the crltlca_l currents of the array junctions are not sm'all(and analogously of\1) can be computed from the coeffi-
or if the loop inductances are not negllg|ple, i.e., if the 'n'cientsL’,ﬁm of the dual inductance matrig*, as explained in
ductance parametg$, of the largest loop in the array be- greater detail, for example, in Refs. 12,16—-18. As a matter of

comes B, =1 or larger, the self- and mutual inductances . . .
present in the array cannot be neglected and the Biot-Savz;r?Ct’ the inductive couplings among the loop curreiftsas

. . A
type inductive couplings among the currents flowing in thedVen by. the dual |nduct|o_n coefficients; may b.e ex-
array need to be taken into account. pressed in terms of thid— 1 independent array junction cur-

In this case the magnetic fieBl in Eq. (6) is a superpo- rentsl,, . ’INil' since these currents span a bé.‘SiS. of.the
sition of the primary external magnetic fieR(") as gener- (N—1)-dimensional state space of the current distribution.
H * — * * 1 H
ated by external sources, and the secondary magnetic fielfith 1" =(I7,....IT ) denoting the corresponding vector

B, which is induced by all currents flowing in the circuit of the eddy loop currents in the array one finds="7I,
where 7 is a linear (dua) transformation connectind

B=BM+B®). (200 =(l1,...,In_1) with I*. So, £ is connected taC* by £
N " =L*T.
The currents flowing in the array are a superposition of the Defining the state vector of thi network variables by
externally fixed bias currert which is, in general, not ho- =(¢1, - .. @), We rewrite the condition of flux quantiza-

mogeneously distributed among the array junctions, and th
array loop screening currents induced by the total magnetic
field B. 27 (1)1 a(2)
For current biased 1D parallel arrays, consistingNof N¢=%(<I) +®), (23
—1 loops and altogetheX Josephson junctions there flow ) ) )
altogetherN array junction currents. One of these junction Where®'”’=((B, &), ... (B"”, ay_,)) denotes the vec-
currents, sayly, may be determined in terms of the other tor of primary magnetic flux. In E¢23) the network matrix
N—1 junction currents, using current conservation N r_epresents the distribution of tht_a Jo;ephson Jgnctlons
within the array. For our 1D parallel junction arrayéis a
N di-diagonal (N—1)X N rectangular matrix with nonvanish-
1= 1,. (21)  ing elementsV, , given by, ,=—1 and\N, ,.1=1 [see
n=1 Eq. (6)].
The remaining N—1 independent junction currents UYSINg the RCSJ modefsee Eq.(2)], the system of
I1, ... In_, constitute theN— 1 degrees of freedom of the COUPled network equations for the phase varialigl) in
system. They may be expressed, e.g., by using the RC$j€ array can be stated, fo=1,... N, in the form of a
model, by the gauge invariant phase differencecoupled nonlinear system of differential equations
@1, ... ,¢n_1 at the corresponding Josephson junctions of ()
the array. si (1) ]+ TN(RC 2+ ;) @n(t) = —
Now, the secondary fielB(®) generates a secondary mag- e
netic flux ®{?=(B@), a,) threading the area elemeat of ~ where, for simplicity, we have assumed identical array junc-
the array. WithZ and M denoting the inductance matrices tion parameters. Fon=1,... N—1 the right hand side
of the array, the vector of secondary magnetic fil)  In.(¢) denotes the corresponding component of the vector
=(q)(12), o ,q)(NQl), may be expressed in the form I(¢) of array junction currents, which follows combining
Eqgs.(22) and(23) in terms of the matrix inverse of in the
®D=— Lo+ Mo], (22) form

on, Eq.(6), using obvious notation in matrix form

. (29

where I=(l4, ... Iy_-1) is a (N—1)-dimensional vector
that represents the discrete current distribution within the
array due to theN—1 independent array junction currents,
andJ is a vector which describes in what manner the bia
current is fed into and extracted from the array. If the bias N-1

currentl is fed into and out of the array in a homogeneous In()=1— Z Ih(e) (26)
manner there simply hold$=(1/N)(1,1, . ..,1).However, n=1

if the bias current is fed into the array inhomogeneously, thaising Eq.(21).

®
I(¢)=£10M0J+£1o[<13(1)— Z—;Ngo}. (25)

SFor the last component=N, we find
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In the continuum limit, i.e., sending the areas of the arrayinto the individual superconducting winethat governs the
loops to zero while the lateral length of the configurationspatial current distribution. Therefore, there exists an implicit
persists, Eq.(24) describes a single so calleone- relation betweerC and the structure factdy of the array.
dimensional long Josephson junction. In this casg,(t) While the details of the voltage response are governed,by
transforms according toe,(t)— ¢(X,,t)— ¢(X,t) with it turns out that the structure factor concept introduced in
(,D(X,t) denoting the gauge invariant phase difference acros§ec. IVA is very h9|pr| to characterize the basic interfer-
the extended junction, anxl denoting the coordinate along €nce properties of diﬁergnt array configurations without the
the extended barrier. Equatid®4) is then comparable with need of(extendeg numerical computations. _

the standard continuum Ferrel-Prange equafiofalso In orgler to exemplify t_he effects o_f finite array inductance
known as the sine-Gordon mo&&l However, there are two we again use the Gaussian array. Figure 2 shows the voltage

(1) i
main differences between the sine-Gordon model and OJﬁZZOQIZ?;\éEy) vosf ti)ge(rsrlailsg?aan)arr;hrf?)??/lggotuh:irlw?er?((:atiS\:e
model.(i) The sine-Gordon model cannot be used to describ& ) ) B o S y for. )
- - . couplings in the limit of vanishing capacitance, i.€5=0.
nonperiodicstructures(ii) In order to compute solutions of

. ) " Both the antipeak afY)=0, and the long periodicity of
the sine-Gordon equation, the boundary conditions and th uch arrays are preserved for finite inductive coupling. As

initial current density distribution of the bias current have to : : .
be introduced by hand. For our model this is not the case-Z, Norcases: the difference miak,)—minVy,) (and
y : €herewith the transfer factdry) decreases. If the inductive

The solutions of Eq(24) automatically satisfy all boundary ¢4 pjings are not too strong the linewidth of the minimum
conditions. In particular, the effects of the ‘discrete’ Meiss—<vxy> around®®=0 scales proportional to I/ Also for

ner screening in the array are automatically taken into acfinjte inductive coupling(and constant bias curremy the
count in our calculations. voltage responséV,,) shows an asymmetry unddr®—

For the 1D parallel arrays witlinconventional grating — @), This asymmetry is due to the asymmetry of the mag-
structure under consideration we computed the inductanceetic self-field generated by the bias current. In practice,
matrices£ and M assuming an array geometry similar to however, this self-field can be suppressed by using the
that shown in Fig. (o), i.e., a thin film geometry with super- method of bias reversalFor underdamped array junctions
conducting leads with rectangular cross section. Also, wehe voltage response function shows a number of additional
restricted to homogeneous feeding of the bias current. Thezatures which will be discussed elsewh&e.
kinetic inductancé of the currents flowing in the interiori of As far as disorder is concerned, we find that the voltage
the superconducting leads was taken into account by contesponséV,,) of Gaussian arrays is very responsive to add-
puting for a finite magnetic penetration depth and a fixedng small random fluctuations to the size distribution of the
typical value of the current the current density within thearea elements, so thé¥,,) becomes nonperiodic, and dis-
leads. Then we took the linear approximation of this currenplays a pronounced antipeak only arouh€)=0. All other
density and used the corresponding current density profilperiodic antipeaks for finite external magnetic field disappear
for the computation of the inductance matrices. Changing theompletely if the sum of the random size fluctuations ap-
geometry of the network leads or the current density profilgproaches the size of the smallest loop in the afaaly In this
within the leads, did not give significant variations in our case a Gaussian array becomes a generic unconventional ar-
results if the arrangement of the array junctions within theray.
leads is not generating strong asymmetries in the current This scenario is different for periodic arrays. If we perturb
density. the area sizes starting from a periodic array, we find for small

By numerically integrating the network E(R4) we com-  perturbations, i.e., the sum of the size fluctuations is much
puted the voltage response function,,) of various parallel  smaller thana, |, that the periodic antipeak pattern of a pe-
junction arrays with unconventional grating structures, andiodic grating[see Fig. 1b)] gets actually modulated by the
this for weak, medium and strong inductive couplings. Inaperiodic grating pattern defined by the size fluctuations. So,
order to allow a direct comparison with a two junction the pattern is characterized Ily,-periodic antipeaks with
SQUID we use the parametg , i.e., the inductance param- different voltage swings. For increasing amplitude of the size
eter of the largest area elememt, as a dimensionless mea- perturbations some of the antipeaks disappear in an irregular
sure for the inductance of the array. In all cases we observeghanner. It is clear, that for large perturbations, i.e., if the
that the qualitative behavior of the voltage respo(¥g,)  sum of the size fluctuations is comparablddg|, we finally
does not get affected by the presence of inductive couplingsnd up with a generic unconventional grating structure, too.
In particular, the periodicity properties of the voltage re-
sponse(V,y) and the characteristic interference properties
around zero field are preserved. Also, additional significant
antipeaks due to a partially coherent superposition of the |n view of applications, we briefly discuss in this section
array junction currents do not occur. This can be understooghe energy resolution, i.e., the sensitivity, of magnetometers
by the fact that the inductance matukis a function of the based on 1D parallel junction arrays with unconventional
geometry of the array, because it is the geométvgether grating structures. As a starting point we recall the discus-
with the London equations describing the penetration of fieldsion presented in Ref. 4 for a conventional SQUID. Assum-

V. NOISE PROPERTIES
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ing uncorrelated Nyquist noise sources located at the indinonperiodic with a pronounced antipeak only aro@w0.
vidual Josephson junctions, e.g., for shunted junctions at thehis property is shown to be directly related to the distribu-
shunt resistors, for frequenci¢sof the noise sources well tjon of the array loop sizes and independent of spreads in the
below the Josephson frequeney, the currents flowing individual array junction parameters. For special unconven-
through a single junction produce a white voltage noise withtjonal grating structures the voltage response has a periodic-
spectral densitys,(f). With vg denoting the transfer func- jty that is much larger thad,. It is shown that the period
tion of a single two-junction SQUID, the noise energy percan be directly controlled by the loop size distribution with-

unit bandwidth can be expressed as out any loss of sensitivity. In view of applications of uncon-
ventional arrays as magnetometers the energy resolution of
sv(f) such devices is discussed. It is shown, that this energy reso-

€o(f)= 27 lution can be expected to increase substantially with increas-

ing number of array junctions. With regard to white voltage
wherelL is the inductance of the single SQUID lodCon-  noise, the scaling factor for the noise energy per unit band-
sider now a periodic array witN junctions for which each width was determined to be N/
array loop has an inductancelofind for which the inductive The theoretical description of unconventional grating
couplings between different array cells are not too strongstructures developed in Sec. IV A, allows us, by means of the
These inductive couplings depend on the geometry of thatructure factor, to determine the basic qualitative interfer-
array. For the ladderlike array of Fig(l the intercell cou- ence properties of the voltage response analytically even in
plings are not negligible. However, it is clear that array ge-the case of inductive arrays. Therefore, the structure factor
ometries can be found for which the intercell couplings aremay be a very helpful tool to construct arrays with specific
substantially reduced, while the functional array grating isvoltage response functions.
preserved. IIN is the number of array junctions, the voltage In presenting results, we have restricted ourselves on ar-
noise of such an array scales witfN, since the noise rays with planar geometries for which the orientated area
sources are uncorrelated. The spectral density of the voltagdementsa,, all possess the same orientation. However, the
noiseSy(f) of the array therefore scales with The voltage structure factor concept introduced in Sec. IV A applies quite
transfer functionVy of the array also scales witN. This  generally also for arrays for which the area elements have
scaling behavior can be directly determined by solving thedifferent orientation. In particular, if a vector basis of the
transcendental equations following from E@$4) and (15  three-dimensional space can be generated from thgaget
for aV/9® and #?V/ad2. Now, combining the scaling be- the 1D array becomes sensitive to théentationof the ex-
havior of the voltage noise and the scaling behavior of théernal magnetic field. By measuring the control currents
transfer function leads for the noise energy of the periodidlowing through a set of suitably orientated compensation
array (f) to the expression coils, this would allow theabsolutemeasurement of all three
cartesian components of an external magnetic field.
The problem of additional antipeaks in the voltage re-
e(f)= N¢ eo(f), (28 sponse function due to a partially coherent superposition of
the array junction currents is still open. As discussed in Sec.
where « is a constant proportionality factor depending onlV, we found some grating structures for which such addi-
inductive intercell couplings. The noise energy from Nyquisttional antipeaks appear even for lafgeThis feature may be
noise therefore scales for a periodic array wittN.1This  connected to somgidder quasi-periodicity of the structure
scaling behavior does not change for unconventional gratinactor and may be solved using number theory. Also, the
structures. If the loop sizes of the array loops are differentGaussian array which was used to exemplify the effects of
i.e.,Li#L;, only the constant proportionality facterin Eq.  unconventional grating has some remarkable additional fea-
(28) changes, since depends on the structure facﬁf@") of  tures which are connected to number theory. All of these
the unconventional array. The scaling behavior of the voltagéeatures, however, need further investigation.
transfer functionV,, is independent of the particular struc-  The noise properties of unconventional gratings discussed
ture factor. in Sec. V indicate that, at least for oW devices, magne-

This concludes our discussion of the noise properties ofometers based on the 1D parallel arrays may have a very
unconventional arrays with respect to white voltage noise. Iigh sensitivity without being much complicated to fabricate.
Sec. VI we will discuss possible advantages of unconvenTogether with the uniqueness of the voltage response func-
tional arrays with respect to other noise sources, i.g., 1/tion this property may be suitable to design robust and reli-
noise by moving flux vortices. able superconducting electronic devices of different kind.

In addition to the white noise discussed in Sec. V, the
noise properties of high-transition-temperature SQUID’s are
often determined by low frequencyflhoise generated by

We have shown that parallel 1D arrays of Josephson junamoving flux vortices trapped in the superconducting bulk
tions with unconventional grating structures may have propmaterial from which the devices are built up. In particular, if
erties that differ significantly from those of conventional additional bulk material is used to focus the flux induced by
configurations. Under certain conditions, the voltage re-an external magnetic field into the SQUID loop thi$ fibise
sponse function of generic unconventional arrays becomeascreases substantially because of the large number of

LU(I,,

VI. DISCUSSION
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trapped vortices. Unconventional grating structures may helPeriodic arrays do not possess any kind of structural stabil-
to solve this problem. In order to achieve the same magnetiity. If the loop sizes are not perfectly identical, the response
field resolution as, e.g., a conventional high-SQUID’'s  function shows an irregular periodicity with antipeaks of dif-
with washer desigfifor an array much less superconducting ferent voltage swing. In practice, it can therefore not be ex-
bulk material is needed. This strongly reduces the number gbected that periodic arrays possess a suitable mode of opera-
trapped flux vortices. In addition, due to inhomogeneities intion.
the superconducting bulk material, the motion of these vor- Based on our theoretical work, together with e we
tices is at most only partially correlated. Therefore, the aboveecently started to carry out first experiments on arrays with
used argument concerning the summation of voltage noisenconventional grating structures. The experimental results
generated by uncorrelated noise sources should also hold fap to now confirm our theoretical predictions concerning the
the flux noise produced by uncorrelated moving flux vorti-magnetic field dependence of the voltage response function
ces. Therefore, the signal to noise ratio can be expected teery well>> However, additional experiments have to be car-
increase with increasing number of array loops, even if movried out and the noise properties have to be measured.
ing flux vortices are present. To conclude with regard to applications, magnetometers
In view of high-T. devices, another advantage may bebased on 1D parallel Josephson junction arrays with uncon-
that the requirements on unconventional grating structuregentional grating structures may stimulate the development
with respect to the spread of the junction parameters and thef new types of robust superconducting quantum interferom-
loop sizes are low. From our discussion in Sec. IV A it caneters, which, e.g., would allow a technically rather simple
be inferred that the performance of the device is determinegrecision measurement adbsolute strength of magnetic
by the mean values of the junction parameters only. Eveffields.
large parameter spreads should not influence proper opera-
tion. This claim was confirmed by various numerical simu-
lations with different structure factors and different param-
eter spreads. If the unconventional array is designed such We thank R. P. Huebener, R. Kleiner, and T. (ke for
that the voltage response function antipeak Bat0 is  useful discussions. Support by “Forschungsschwerpunktpro-
unique, deviations in the sizes of the loops are not criticagramm des Landes Baden-Wttemberg” is gratefully ac-
(see Sec. IV B This situation is different for periodic arrays. knowledged.
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