ENERGY LOSS FROM A FILAMENT o1

There are several effects of which the theory does
not take account.

(a) The resistivity of tungsten does not vary
as T but rather as 72823 This fact alone would
mean that a 7* dependence should show up as an
R*? dependence.

(b) Since the filament is not a black body, ¢;
is not necessarily independent of temperature.
Emission of radiation from tungsten filaments,
in fact, follows a 7°% law implying that the
emissivity follows a T%% faw.?

(c) Since the filament is not a black body, ¢
is not necessarily independent of filament
temperature. Absorption of radiation by tungsten
filaments, in fact, follows a 7% law.?

(d) The thermal conductivity of tungsten
(on which ¢; depends) is temperature dependent,
decreasing with increasing temperature according
to a 7% law.*

(e) It is not proper to talk of the temperature
of the filament since the temperature increases
along the filament from both ends to the center.
Not only does this complicate the radiation and
conduction effects® but it also complicates the
temperature variation of resistance.

It is perhaps surprising that the simple theory,

2 1, Langmuir, Phys. Rev, 8, 302 (1916).
8 Langmuir and Taylor, J. Opt. Soc. Am. 25, 321 (1935).
¢ Langmuir and Taylor, Phys. Rev. 50, 68 (1936).
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F1e. 2. Curve with a double bend formed by com-
bining a fourth power term plus a first power term minus
a constant term.

which ignores the above complications, can lead
to a qualitative understanding of the experi-
mental results. It is the purpose of this note to
suggest that neither the experimental techniques
nor the simple theory are beyond elementary
students.
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Some recent developments in the theory of superconductivity are discussed with emphasis
on the underlying physical ideas. It is proposed that the electron-phonon interaction produces
a strong preference for singlet zero momentum pairs in two-body correlations which can
account for superconductivity and related phenomena.

I INTRODUCTION

N Professor Boorse’s! description of the phe-
nomena characteristic of superconductors
there is a most striking feature. In spite of the

* Work supported in part by the U. S. Atomic Energy
Commission. This paper is the substance of an address
delivered at the annual meeting of AAPT in New York
on January 31, 1958.

YH. A. Boorse, Am. J. Phys. 27, 47 (1959).

complexity and the diversity of the metals in
which superconductivity occurs, there appears a
remarkable simplicity in the way this phenome-
non occurs in all metals. This leads us to hope
that an explanation, at least of the qualitative
features of superconductivity, can be designed
without a consideration of the details of metal
structure—a possibility for which we can be
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grateful since the metals that become supercon-
ductors are so complicated.

In what follows we present a picture of a metal
divested of all its intricacies and by the same
simplification of its individuality. This is perhaps
the simplest picture of a metal which contains
both the normal and superconducting properties.
We do not expect, without further refinement, to
obtain those features explicitly dependent on the
details of metallic structure, but will be satisfied
if we can obtain just those qualitative properties
which are associated with the ideal supercon-
ductor. Our point of view is that the existence of
the superconducting phase is a rather general
property of that system which is common to all
metals, the dense, highly degenerate interacting
electron gas, and that the complications which
make up the details of metal structure can be
ignored for a qualitative understanding.

The properties of this dense, highly degenerate
gas—the valence electrons in a metal—appear to
be well understood at ordinary temperatures. The
solutions of the Schrédinger equation in the
periodic potential produced by the fixed ions in
the uniform background of negative charge of the
valence electrons give the band structure and the
Bloch single particle wave functions. The latter
propagate freely through the metal, unless scat-
tered by phonons or impurities, and one can suc-
cessfully use perturbation theories, beginning with
the Bloch wave functions, in most calculations.

At low temperatures, however, in the many
metals and alloys which become superconductors
this picture seems to break down completely. At
a critical temperature there appears the change
of phase in which the electrical and thermal
properties of these metals which are due to the
valence electrons change radically. Although the
lattice certainly plays a role in determining the
transition temperature, it itself seems to be un-
changed in the superconducting transition. The
numerous experiments which have been per-
formed to study this superconducting phase have
shown that, among other things, one must expect
that the electronic wave functions are highly
correlated, so that the one-particle Bloch func-
tions no longer give an adequate description. It
is further known that the energy of condensation,
the energy required to bring the metal from the
superconducting back to the normal state is ex-
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tremely small compared with the Fermi energy
of the electrons. The ratio of energy of condensa-
tion to the Fermi kinetic energy for a typical
metal would be of the order of 108,

In what follows we shall attempt to present the
motivating ideas, and some of the structure and
consequences of a theory of superconductivity
recently proposed by J. Bardeen, J. R. Schrieffer,
and the author.? We shall attempt further to indi-
cate at least qualitatively the explanation for
some of the phenomena described by Professor
Boorse.!

II. NORMAL METAL

In the Bloch theory of the normal metal,? the
conduction electrons are independent of one
another. Bloch’s theorem states that in the
periodic potential produced by the lattice and the
conduction electrons themselves, the single elec-
tron wave functions will be modulated plane
waves:

ox(8) = U (907, 0

where K=Kk,o; k is the wave vector of the elec-
tron; ¢ is its spin state; £=r,s are the space and
spin coordinates; and Ux(%) is a spinor with the
lattice periodicity. According to the Pauli exclu-
sion principle, the many electron wave function
must be antisymmetric in all of its coordinates.
This means that no two electrons can be in the
same Bloch state ¢x(£), or that the many elec-
tron wave function can be written as

1
X er1(£r)- - exn(En). (2)
The energy of the entire system is then
N
w=% &, 3

=1

where &, is the Bloch energy of the sth single
electron state. The lowest energy for the system
is obtained when the lowest IV Bloch states are
“filled” by single electrons. This can be pictured
in momentum space as the filling in of a Fermi
sphere. In our simplest possible model of a metal
m, Cooper, and Schrieffer, Phys. Rev. 108, 1175

(1957).
*F. Bloch, Z. Physik 52, 555 (1928).
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we will imagine that the Fermi surface is isotropic
and that it is far from the top of any band. With
the ground-state wave function Eq. (2) there is
no correlation between electrons of opposite spin,
and only a statistical correlation of electrons of
the same spin. [ The only way that electrons are
correlated with others is through the general
antisymmetry requirement on the total wave
function. ]

There are an enormous number of single parti-
cle excitations of very low energy. These will be
given by wave functions identical to the ground
state except that a single one electron state
k; <kpisreplaced by another k;> kr. This can be
pictured in momentum space as opening a va-
cancy below the Fermi surface and placing an
excited electron above. [See Fig. 1.] The energy
difference between the ground state ®, and the
excited state ®,; is

E=&j—8i=¢—e= e[ +]el, (4)

where for later convenience we define € as the
energy measured relative to the Fermi energy,
e;= &;— 8p. Since there are a large number of
such excitations with very small energy, the elec-
tronic specific heat (which is a measure of the
number of ways a given amount of energy can be
distributed among the electrons) goes to zero as
a linear function of the temperature, as men-
tioned by Professor Boorse.!

To understand a phenomenon like resistance,
we recall that any deviation from the perfect
lattice assumed in deriving the Bloch states will
provide a perturbation from which the Bloch
waves may be scattered. Such deviations fall
conveniently into two categories: static and dy-
namic. Static deviations are produced by im-
purities or lattice defects while the dynamic de-
viations are caused by the vibrations of the lattice
ions about their equilibrium positions.

The number of impurities or lattice defects is
temperature-independent and contributes a term
to the electrical resistance which is also inde-
pendent of the temperature. The lattice vibra-
tions on the other hand depend upon the tem-
perature of the lattice and thus contribute a
temperature-dependent term in the electrical re-
sistance. When these lattice vibrations are put
into normal modes or quantized, they can be
characterized as sound waves or phonons—they

F1G. 1. An excited state
of the normal metal is
produced by filling the one
electron state k;, k;>kr,
and leaving the vacancy
ki, ki <kr.

are essentially a wave of pressure variation
traveling through the metal. The interaction of
the phonons with the conduction electronsis often
spoken of as the electron-phonon interaction.

Either of the above scattering mechanisms
produces resistance in the same way. They pro-
vide a process whereby single electrons can be
scattered from one momentum state to another.
Thus any current carrying state, in the absence
of the field that produced it, is quickly random-
ized. The essential property of a superfluid (elec-
tron fluid or otherwise) is that such single particle
processes are severely inhibited, so that ordered
states, such as current carrying states, persist
even in the absence of external fields.

I1I. ELECTRON CORRELATIONS AND THE
INTERACTION THAT PRODUCES
SUPERCONDUCTIVITY

If we ask: What is the probability of finding an
electron with spin down a distance # from another
electron with spin up: p Tl (), in the normal
metal, we find that

p I () =3n, ©)

where n is the density of electrons. Thus, the
probability of finding the electron 2 T a distance
7 from electron 1 | without any consideration of
where electrons 3 to NV may be, is just the density
of electrons of spin T , or there is no correlation
at all between electrons of opposite spin in the
normal metal. For parallel spin there is a correla-
tion, but this is due solely to the fact that no
two electrons can be in the same single particle
state, and we will not concern ourselves further
with this. The properties of the normal metal
can be deduced from the single particle uncorre-
lated electron functions.

It is just in this respect that the supercon-
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ductor differs. For a description of the supercon-
ducting phase we expect that we will need a
correlated wave function and, it turns out, that
correlations between electrons of opposite spin
are the important ones.

We then ask: What is it that will produce cor-
relation between electrons? The answer is that if
there is interaction between the electrons, then
they will be correlated, e.g., if there was a very
strong two-particle repulsion between two elec-
trons, then the two electrons would never get
very close to one another. It is these correlations
that have been neglected in describing the normal
metal and, apparently, one is justified in doing
this at ordinary temperatures. On the other hand,
at very low temperatures, it is equally apparent
that the system can gain energy by going into a
highly correlated state, and it is this highly
correlated state that we want to find.

What interactions between electrons should
then be considered? This has always been a
difficult problem, because there are so many
interactions between the electrons in a metal,
and, in fact, the energy due to most of these
interactions, e.g., the Coulomb interaction, is
much larger than one actually observes in the
superconducting transition. For example, the cor-
relation eniergy due to the Coulomb repulsion is of
the order of one electron volt per atom, while the
energy involved in the superconducting transition
is of the order of 1078 electron volt per atom.
We thus expect that a large amount of the corre-
lation energy is not characteristic of the qualita-
tive change that occurs in the wave function in
the transition into the superconducting phase.

As Professor Boorse has said,! it was the dis-
covery of the isotope effect® that indicated to
theoreticians what interaction it was that was
responsible for the phenomenon of superconduc-
tivity. It was observed that the transition tem-
perature into the superconducting phase was
related to the mass of the ions which made up the
lattice by the relation

T/ M =const. (6)

Why should this be so unless, in some sense, the
interaction which produces the superconducting
phase is one which involves the dynamics of the

¢+E. Maxwell, Phys. Rev. 78, 477 (1950); Reynolds,
Serin, Wright, and Nesbitt, Phys. Rev. 78, 487 (1950).
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ion motion, or the phonons. From Eq. (6) we can
see that the transition temperature would be zero
if the mass of the ion was infinite or if the lattice
points were really fixed. This suggests strongly
that the nonzero transition temperature is a
consequence of the finite inertia of the ionms.
Frohlich® and Bardeen® pointed out that since
electrons could interact with lattice vibrations to
cause resistance, the electrons should also inter-
act with the virtual lattice vibrations, a self-
energy of electrons in a metal. This self-energy,
they pointed out, would be proportional to an
average phonon energy squared, and thus would
give the isotope effect. However, calculating the
effect of this self-energy, they were not successful
in finding a phase which had the qualitative
properties of superconductors.

It turns out that it is the interaction of the
electrons with the lattice vibrations which pro-
duces superconductivity. But it is an interaction
between two electrons via the lattice vibrations
which does this. When an electron collides with
a vibrating lattice point, or with a lattice wave,
it may be scattered and this scattering produces
resistance. At T=0, there are no lattice vibra-
tions and the phonon part of the resistance goes
to zero. However, it is still possible for an electron
to excite a lattice wave virtually. This virtual
lattice wave can interact with another electron,
producing an interaction between electrons.

In the language of field theory one can say that
if there is an interaction between electrons and
the free phonons of a phonon field (to produce
resistance), there will also be an interaction be-
tween electrons, due to the exchange of virtual
phonons, even at the absolute zero and independ-
ent of the number of free phonons present. This
is analogous to the situation in quantum electro-
dynamics. There, a photon can be scattered by
an electron and, of course, in order to produce
this effect, it is necessary to shine light, photons,
on electrons. On the other hand, the Coulomb
potential between two electrons, which is inde-
pendent of the presence of free photons, is the
result of the exchange of virtual photons.

The interaction between electrons, via the ex-
change of virtual phonons, can be thought of
classically in the following way. When an electron

5 H. Frolich, Phys. Rev. 79, 845 (1950).
¢ J. Bardeen, Phys. Rev. 79, 167 (1950).
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moves through a lattice, if the lattice points are
not rigidly fixed or infinitely heavy, the lattice
will be distorted or polarized. Another electron
moving through the polarized lattice will feel not
the original periodic potential used to derive the
Bloch wave functions, but rather the distorted
potential due to the fact that the lattice is po-
larized. The potential distortion is a function of
position and time and shows up as a retarded
interaction between two electrons. This interac-
tion would disappear if the spring constant were
very large, or if the mass of the ions were infinite.
Further, whether this interaction is attractive or
repulsive, will depend upon the relative phase of
the two electrons. (See Figs. 2, 3, and 4.)
Another interaction between electrons in a
metal, which turns out to be of importance in the
theory of superconductivity, is the short-range

Fic. 2. Two elec-
trons move, undis-
turbed, through a per- X X X X X
fect lattice whose ions
are infinitely heavy or
rigidly fixed.

Crystat Lattice XN ons
Coulomb repulsion. Long-range Coulomb forces
tend to be screened out by the other electrons, as
indicated in the work of Bohm and Pines.” At
very short distances, when the two electrons face
one another, so to speak, with no others between
them, there is felt the Coulomb repulsion, €*/7. It
is these two interactions between electrons in a
metal that have been omitted in forming a zero-
order picture which we will use to construct the
correlations between electrons.

In considering the kind of correlations that will
be produced by the electron-electron interactions
mentioned above we make the further step of
limiting ourselves to two-body correlations, ignor-
ing three, four, and many electron correlations.
This is not because we believe these other corre-
lations do not exist, but rather, that limiting
ourselves to two-body correlations is the next

7 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

__,@/M x x

Lattice wave produced by electron Q
one is fell by electron two, both are — T T
deflected from their paths.

F16. 3. Two electrons interact in a lattice whose ions
have finite inertia and are not rigidly fixed.

simplest step after no correlation at all, and we
hope that perhaps two-body correlations will be
sufficient to introduce the qualitative features of
superconductivity, just as the completely un-
correlated wave function was sufficient to account
for the properties of the normal metal.

What then will be the nature of the two-body
correlation produced by the interactions we have
just described ? Suppose we write the antiparallel
correlation function, which was a constant for
the normal metal, in the form

ol =in*+f(r.K), 7

where f(r,K) is the extra correlation produced by
the interactions between electrons, r is the rela-
tive coordinate of the two electrons involved, and
K is the total momentum of the two electrons.

In order to understand why some electrons are
strongly correlated while others are not, we re-
turn to our description of the normal-state wave
function in momentum space. For simplicity we
now let the Bloch functions ¢x(£) be plane
waves. ‘

We saw that, for the ground state, single parti-
cle states are filled to the Fermi surface. It is the

o-- o— ©-
o— Q— Q—
without with with
polarization polarization polarization
(0} {b)

F1G. 4. The interaction between two electrons due to the
polarization of the lattice can be attractive or repulsive
depending upon the relative phase of the two electrons.
In case (a) the interaction is repulsive while in case (b) it
is attractive.



96 LEON N.

F1G. 5. The shaded area is a cross section of the phase
space available for scattering, with conservation of the
total momentum K, of a pair of electrons with individual
momenta restricted to the shell kr—6<k<kr-+85. The
volume of available phase space has a sharp maximum
when K =0.

nature of the electron-electron interactions de-
scribed above that they seem to be both weak
and slowly varying over the Fermi surface. This
and the fact that the energy involved in the
transition into the superconducting state is small
leads us to guess that the correlated states will
involve single particle excitations, only in a small
shell near the Fermi surface. If we restrict our-
selves to pair correlations, we will be interested
in the interaction which takes a pair of electrons
from one state to another state in this shell near
the Fermi surface. Since the total momentum of
the pair must be conserved, it is clear that the
amount of phase space available for transition
from one state to another state, of given total
momentum, is a strong function of the total
momentum (see Fig. 5) and becomes maximum
when the total momentum K=0. It turnsout,
further, that due to exchange terms in the
electron-electron matrix element the effective in-
teraction between electrons of singlet spin is
much stronger than that between electrons of

triplet spin—thus our preoccupation with singlet h(¢)

spin correlations. One finds further that if all the
pair correlations have the same total momentum,
one gets the maximum correlation of the entire
wave function. This gives an interesting coher-
ence to the wave function. For a combination
of dynamical and statistical reasons there is a
strong preference for momentum zero, singlet
spin correlations while for statistical reasons alone
there is an equally strong preference that all of
the correlations have the same total momentum.

The basic approximation of the BCS theory of
superconductivity rests in their assumption that

COOPER

it is the two-body correlations that are responsi-
ble for the qualitative features of superconduc-
tivity and that of the two-body correlations there
is a very strong preference for singlet zero mo-
mentum pairs—so strong that one can get an
adequate description of superconductivity by
treating these correlations alone.

IV. GROUND STATE OF THE
SUPERCONDUCTOR

Within this approximation one is able to write
down the exira energy due to the pair correlations
introduced into the wave function. This is given

by

W.=2 3 lel(l—=k(e)+2 X ehle)
—Fiw <e<0 fiw > >0
=V X [eA=hr()h(e)
lel €' <fiw

XA=r(H ] (8)

where % (e) is the probability that the pair state ¢
is occupied (see Fig. 6), 2e is the energy of the
pair measured relative to the Fermi surface,
e= E— 8y, and V is the matrix element between
the Bloch pair state of relative momentum k and
k'. Here we have made the simplifying but not
essential assumption that the interaction matrix
element (k'|Hy|k) between the pair states of
relative momentum k’ and k is the constant — V/,

_______ h(€) (normal metal)
—— h(€)

== h(1€1) superconductor

superconductor

-\

F1G. 6. The probability, % (€), that the pair state of energy
e is occupied in the ground-state wave function. For the
normal metal all states below the Fermi energy are oc-
cupied, while those above are empty. In the superconduct-
ing ground state there are vacancies below the Fermi sur-
face and occupied states above; k(|e|) gives the sym-
metrical probability of electron pairs above kr and vacancy
pairs below. The extra kinetic energy due to the mixing in
of these pair states can be written

Te=2 Z |e]h(]e€]).
| <l

e

k

K —— €=0
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for |e|,] €' | €%w (an average phonon energy), and
zero elsewhere. This implies that the Fermi sur-
face is isotropic so that & is a function of e alone.

The first two terms give the increase in kinetic
energy due to the fact that single particle states
with k> kp have been included in the wave func-
tion, while the third term gives the change in
potential energy due to the correlations that have
been introduced. This energy is now minimized
with respect to k. If it can be made smaller than
zero then the correlated state has the lower
energy. There is an obvious solution which makes
W.=0 (no correlation energy), that is,

h=0
r=1

e>0,

e<0. ©)

But this is just the normal state; there all the
Bloch states below the Fermi surface are occupied
while those above are empty.

Setting the variation of W, with respect to &
equal to zero, one finds the following relations:

h=3(1—¢/E),
E= (62‘*—602)%, (10)
and
V Z €9
€ —— ——,
2 €] Sl (€2+€02)%

The last equation for ¢ is the basic nonlinear
integral equation which determines whether or
not a superconducting solution exists. We see
immediately that this equation has no nonzero
solutions for e if V' <0. This provides a criterion
for the potentials that will produce a supercon-
ducting state, since the electron-electron inter-
action due to phonon exchange is attractive,
while the screened Coulomb interaction is re-
pulsive. The criterion

V= — (& |Hi|F) >0 (11)

will be satisfied roughly if the electron-phonon
interaction is large enough. This provides a reso-
lution of an often noted paradox—that good
conductors (copper, silver, gold) do not become
superconductors. A large electron-phonon inter-
action which means a large resistance in the
normal state is conducive to the formation of the
resistanceless superconducting phase.

If V>0 we have (changing the summation to

an integration)

hw de
1=N(o) Vf ——
o (e+ed)?
or (12)

1
€0 =hw/sinh ,
N(o)V

where N(o) is the density per unit energy of
electrons of one spin at the Fermi surface. In the
weak coupling limit [ N (o) V<17, which seems to
be the region of interest empirically,

g~ 2Fwet IV (@)

(13)

The energy difference between the normal and
superconducting states becomes (again in the
weak coupling limit)

Ws—~Wy=W,=—2N(0) (hw)2e 2NV (14)

The dependence of the correlation energy on
(hw)? gives the isotope effect while the exponen-
tial factor reduces the correlation energy from
the dimentionally expected N(o){%w)? to the
much smaller observed value. The correlation
function between two electrons of opposite spin is
now given by the following expression:

o1l (r) = (21”)

1\3
(LY - |
2

It thus turns out that in the superconducting
ground-state wave function there are strong cor-
relations between pairs of electrons with opposite
spins and zero total momentum. These correla-
tions are built from single particle Bloch state
excitations, near the Fermi surface, and extended
over spacial distance of the order of 10~* cm
(see Fig. 7). The reason that these correlations
can be constructed is that even the noninter-
acting electrons have very large wave numbers
available, due to the exclusion principle. Thus
with a small additional expenditure of kinetic
energy given by first two terms in W, there can
be a great gain in the potential energy term.

It is also possible to build a similar correlated
wave function giving the singlet pairs the same
nonzero total momentum. This corresponds to a

(15)
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Correlgted state

N

@ o
no correlation: O
=

o ////////////;//// 4

10°*cm

Wil

Fic. 7. The envelope of the antiparallel correlation
function in the superconducting state.

current-carrying state. The energy of this cur-
rent-carrying state is higher than the energy of
the ground state.

It is a typical property of these correlated wave
functions that not a single pair can be broken up
nor can a single element of phase space be re-
moved without a finite expenditure of energy.
If a single pair correlation is broken up, one loses
its correlation energy which is finite. If one re-
moves an element of phase space from the sys-
tem, the number of possible transitions of all of
the pairs is reduced causing again a finite change
in the energy. Thus, compared to the situation
in a normal metal, one finds that one can produce
single particle excitations from this correlated
wave function only with the expenditure of a
small but finite amount of energy, and this
amounts to the introduction of an energy gap into
the single particle spectrum. The energy differ-
ence between this correlated phase and the
normal phase is, in fact, very small, but the na-
ture of the wave function, qualitatively, is en-
tirely different. The correlated wave function
has a high degree of coherence and a great
resistance to any kind of change, whereas in the
normal metal, it is very easy through normal
perturbations to change the electronic part of
the wave function.

V. EXCITED STATES

In considering the excited states of the super-
conductor, it is useful to distinguish single parti-
cle excitations from collective excitations such
as plasmons or the current carrying states men-
tioned in the previous section. It is the single
particle excitation spectrum whose alteration is

COOPER

responsible for superfluid properties. The collec-
tive modes of excitation can remain quite similar
for the normal and superconducting states.

For the normal metal, we recall that for the
ground state, single particle states are occupied
up to the Fermi momentum. A single particle
excitation is obtained by occupying a single
particle state k; above kg, leaving a vacancy ks
below kr. The energy of this excited state, meas-
ured with respect to the ground state, is

81— 8= (81— &r)— (82— ér)

=61—62=I€1[+[€21y

(16)

which can be made as small as desired for a
macroscopic sample.

For the superconductor excited states (quasi-
particle states) can be defined in a one-to-one
correspondence with the excitations of the normal
metal.? One then finds that the excitation energy
(again measured from the ground state) for the
excitation corresponding to the normal one whose
energy is given by Eq. (16) is

E\Ey=(e?Fe?) i+ (e +e?)t.  (17)

In contrast to the normal excitation energy for
the superconductor even as ¢; and e; go to zero,
E;+E; remains larger than zero; in fact the
lowest possible excitation energy is given by

E1+E2=2€o. (18)

Thus one says that there is an energy gap be-
tween the ground state and the lowest single
particle excitations. This energy gap inhibits
severely single particle processes and is responsi-
ble for the superfluid behavior of the electron gas.

We can draw the following picture of the ‘ex-
cited states. In the ground state of the super-
conductor all the electrons are in singlet pair
correlated states of zero total momentum. In an
n electron excited state z electrons are in “‘quasi-
particle’ states—these let us say are the normal
single particle Bloch states—they are not strongly
correlated with any of the other electrons. These
excited electrons exist against a background of
all the other electrons which are still correlated—
very much as they were in the ground state. The

8 An equivalent but simplified method of constructing
the single particle excitations has been given by N. N.
Bogolyubov, Nuovo cimento 7, 794 (1958) and J. G.
Valatin, Nuovo cimento 7, 843 (1958).
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excited electrons behave very much like normal
electrons; they can be easily scattered or excited
further. On the other hand, the background elec-
trons—those which remain correlated—behave
still like a superfluid and are very hard to scatter
or to excite. Thus, one can identify two almost
independent fluids. The correlated portion of the
wave function has the properties of the super-
fluid : the resistance to change, the very small
specific heat, whereas the excitations behave very
much like normal electrons, and have an almost
normal specific heat and resistance. When a
steady electric field is applied to the metal the
superfluid electrons short out the normal ones, but
with higher frequency fields the resistive proper-
ties of the excited electrons can be observed.?

V1. THERMAL PROPERTIES

We are now able to deduce the thermal proper-
ties of the superconductor using the ground state
and excitation spectrum previously described.
The free energy of the system is given by

F=W.(T)-TS, (19)

where T is the absolute temperature and .S is the
entropy. The entropy of the system comes en-
tirely from the excitations as the correlated por-
tion of the wave function is nondegenerate. The
free energy turns out to be a function of f(k) and
h(k) where f(k) is the probability that the state
of momentum £k is occupied by an excitation or a
quasi-particle, and % (k) is the relative probability
that the state k is occupied by a pair given that
it is not occupied by a quasi-particle. Thus
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F1G. 8. Ratio of the energy gap for single particlelike
excitations to the gap at T=0°K vs temperature.

*R. E. Glover and M. Tinkham, Phys. Rev. 108, 243
(1957); Biondi, Forrester, Garfunkel, and Satterthwaite,
Revs. Modern Phys. 30, 1109 (1958). (See Sec. V, in par-
ticular, where further references will be found.)
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Fi1G. 9. Ratio of the critical field to its value at T'=0°K
vs (T'/T.)% The upper curve is the 1 —(T/T,)? law of the
Gorter-Casimir theory and the lower curve is that of the
idealized BCS theory in the weak coupling limit. Experi-
mental values generally lie between the two curves.

some states are occupied by quasi-particles ac-
cording to f(k); then the remaining phase space
is available for the formation of coherent states
of the remaining electrons.

Setting the variation of F with respect to f and
k equal to zero yields the following relations:

h=3(1—¢/E),
1
f= : (20)
1-4-efE

E=[e+e(T) 1,

and

eo(T) =N (o) Veo(T)j;M%tanh(%). 1)

The form of these equations is the same as that
at I'=0, except that e, the energy gap, varies
with the temperature. The variation of ¢, with T
is given by Eq. (21) and plotted in Fig. 8. There
we see that the equation for (7)) can be satisfied
with nonzero values of (7) only in a restricted
temperature range. The upper bound of this
temperature range is defined as T, the critical
temperature. For T'<T,, singlet spin zero mo-
mentum electrons are strongly correlated, there
is an energy gap associated with exciting elec-
trons from the correlated part of the wave func-
tion and E(k) is modified according to Eq. (20).
In this region the system has properties qualita-
tively different from the normal metal.

In the region T>T,, ¢=0 and we have in
every respect the normal solution. In particular
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F16. 10. Ratio of the electronic specific heat in the super-
conductor to its value in the normal state at T, vs T/T..
Experimental values for tin are shown for comparison.

f, the distribution function for excitations, be-
comes just the Fermi function for excited elec-
trons 2>k, and for holes & <kg:

1

=, 22
! 1+exp(|e|/ET) 22

Using f, and % as given by Eq. (20), we can
calculate the free energy of the superconducting
state and with this determine all of the equi-
librium thermal properties of the system. The
results of these calculations for the specific heat
and the critical field are given in Figs. 9, 10,
and 11.

In particular one finds that at 7. (in the ab-
sence of a magnetic field) there is a second-order
transition (no latent heat: W,=0 at 7) but a
discontinuity in the specific heat. At very low
temperatures the specific heat goes to zero expo-
nentially. This idealized theory also predicts a
law of corresponding states in which the ratio

yT2

=0.170,

Hy?

where
y=2r*N(0)k2.

The experimental data scatter about the number
0.170. The ratio of & to kT, is given as a uni-
versal constant

eo/kT.=1.75.

For actual superconductors both of the above
ratios seem to range about the numbers given
above. A more realistic choice of the electron-

LEON N.

COOPER

electron interaction modifies these results some-
what and makes possibie a variation of these
constants from metal to metal, leaving open the
possibility of more detailed agreement of theory
with experiment.

There are no arbitrary parameters in the
theory. In the region of empirical interest all the
thermal properties are determined by the quan-
tities v and fwe /¥ )V, The first, v, is found by
observation of the normal specific heat, while the
second is found from the critical temperature,
given by

kT, =1.14hwe 1IN (@Y,

VII. ELECTRODYNAMIC PROPERTIES AND
SUPERFLUIDITY

With ground state and excitation spectrum de-
scribed above, one can also calculate the electro-
dynamic properties of the superconductor. As the
detailed calculations are quite intricate, we will
not reproduce them here. One can refer to the
original calculations of BCS. There it is found
that the material will expel magnetic fields,
giving a Meissner effect’®; also one obtains a
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F1c. 11. A logarithmic plot of the ratio of the electronic
specific heat to its value in the normal state at T vs T,/T.
The simple exponential fits the experimental data for tin
and vanadium well for T./T>1.4.

1 For a discussion of problems concerning gauge invari-
ance and collective excitations in the theory of super-
conductivity one can refer to P. W. Anderson, Phys. Rev.
112, 1908 (1958).
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penetration depth, and a variation of the pene-
tration depth with temperature as mentioned by
Professor Boorse.!

Fortunately a qualitative picture of the phe-
nomenon for which superconductivity was named
can be easily drawn. To choose the simplest
possible situation imagine the metal at absolute
zero. In this case, there would be no resistance
even for a normal metal other than resistance
caused by impurities, since there are no free
phonons. We then consider an impure normal
specimen at the absolute zero, where the resist-
ance is due to the scattering of Bloch waves from
the impurities.

Suppose one places a field on this normal speci-
men. Then the Fermi sphere is displaced so that
the electrons have some total momentum, and
there is a current. As long as the field is on, there
is a certain equilibrium current, because the
acceleration caused by the field is balanced by the
deceleration due to scattering of electrons from
the impurities. If the field is turned off, the elec-
trons will very rapidly return to a state of no
current, as the scattering by impurities will
randomize their motion.

We can now contrast this with the situation in
the superconducting state. Here the electron
wave function is very highly correlated. Each
electron near the Fermi surface where the current
is flowing is correlated to another with opposite
spin. Once this coherent pattern is established,
it is very difficult to break up the state via the
mechanism of impurity scattering. The reason
for this is found in the basic properties of corre-
lated wave functions. To break up correlated pair
or to get any single particle excitation requires
finite energy. Thus, any single particle scattering
process increases the energy of the electron sys-
tem if the current is not too large in spite of the
fact that the total energy is larger than the
ground state energy. Unless the extra kinetic
energy of the electron due to the current flow is
larger than the energy gap, the scattering process
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F16. 12. Persistent currents are maintained in the impure
superconductor at T'=0°K, even though the energy of the
current state is larger than that of the ground state. This
is due to the energy gap in the single particle excitation
spectrum, which (for small enough currents) prevents the
elastic scattering of electrons by the impurities. As elastic
scattering by impurities is the mechanism which destroys
the current in the normal state, with this mechanism

suppressed, the current is metastable and the metal is a
superconductor.

will be severely inhibited. At any finite tempera-
ture, the situation is very similar. The excitations
act as normal electrons against the background
of the superfluid. If the system is put into a state
of current, the current will be carried entirely by
the superfluid electrons (as the normal electrons
are shorted out). For a particular current the
system is in a minimum of free energy. Single
particle excitations can only increase the free
energy and the system is metastable (see Fig. 12).

This final illustration again reveals the basic
property of the superconducting state wave func-
tion: its tremendous coherence and resistance to
change via single particle mechanisms, which is
essentially the criterion for superfluidity. Since
most of the dissipative processes which appear
macroscopically as resistance or friction are single
particle processes, a system in which such single
particle processes are severely inhibited, in spite
of the fact that collective motions (such as states
of nonzero total momentum in which a current
or a fluid flows) are possible, appears macro-
scopically as a superfluid.



