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An explicit expression for the complex optical and AC conductivity of a homogeneous BCS superconductor with arbitrary 
electron mean free path is given. This compact expression and a fast self-contained FORTAN program may be used to fit experi- 
mental data. For comparison, we give also the complex AC conductivity of high-To superconductors containing an elastically 
pinned, viscously moving flux-line lattice with flux creep. 

1. Introduction 

Even five years after their discovery [ 1,2 ], high- 
Tc superconductors  (HTSCs)  remain a fascinating 
object o f  experimental  and theoretical research. One 
example are measurements  of  the infrared reflectiv- 
ity R =  I x / ~ -  l l 2 / I x / ~ +  112 f rom a planar  surface, 
or o f  the transmission of  HTSC films, which in prin- 
ciple allow the determinat ion of  the phonon struc- 
ture and electronic excitations in these oxides. For 
an excellent review see T imusk  and Tanner  [3].  
Usually the complex dielectric function E(to) 
( to=ci rcu lar  frequency of  the light) is assumed to be 
a linear superposit ion (for a nonlinear superposit ion 
see, e.g. [ 4 ] ) 

N Sito~ 
E ( t o ) =  j=IE t o2_ to2_ i toy  j 

topl ib 11- Eoo "31 - O'(to) 
+ tot2- to2-ito~% 

conduction electrons which we express in terms of  a 
complex conductivity a( to) .  

For normal  conductors this last term is well de- 
scribed by a Drude function, a n ( t o ) = a  o / (  1 -  itoQ, 
where a o = t o 2 z / 4 n = n e E z / m  * is the DC conductiv- 
ity of  electrons with density n, charge e, mass m*, 
plasma frequency top= ( 4 n n e E / m  *) 1/2 and collision 
t ime z. For superconductors,  a~c(to) has been ob- 
tained f rom the BSC theory in the impure  l imi t  
(z << h / 2 A )  by Mattis and Bardeen [ 5 ]. Numerous  
reflection measurements  on ceramics [6 -8 ] ,  mon-  
ocrystals [ 9, l0 ], and films [ 1 l, 12 ] of  HTSCs were 
fitted to this theory, usually by linearly superimpos- 
ing the contributions to asc(to) o f  various types of  
electrons with different gaps. However,  since the co- 
herence length ~ of  HTSCs is smaller than the elec- 
tron mean free path l =  vFz, these superconductors 
possibly are closer to the pure limit (z>> h / 2 d ) .  

2. Complex conductivity of a BCS superconductor 

o f N  phonon lines with oscillator strengths Sj, a broad 
mid-infrared band with three fit parameters  top1 ib, to1 
and ~'ib (electronic absorpt ion caused by interband 
transit ions),  a high frequency part  with a constant 
e~ ~ 4 ( f rom core electrons),  and the contr ibution of  

In this section we present the complex conductiv- 
ity a~( to)  o f  homogeneous isotropic BCS ( = w e a k  
coupling) superconductors with arbitrary purity as 
calculated from microscopic expressions derived first 
by Z i m m e r m a n n  [ 13 ] using the quasi-classical for- 
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malism of energy-integrated Green functions which 
was developed in this context by Rainer [ 14,15 ]. 
Similar expressions were derived from the usual BCS- 
formalism by Nam [ 16 ], Scharnberg [ 17 ], Bickers 
et al. [ 18 ], and Akis et al. [ 19 ]. Special cases were 
treated in the classical work [20] (clean limit) and 
in [21-23]. The optical conductivity was also cal- 
culated for strong coupling [ 15,19 ] and layered [ 24 ] 
superconductors or those with nodes in the energy 
gap [ 25,26 ], and from marginal Fermi liquid theory 
and bosonic mechanisms [27 ]. 

Our expression applies to isotropic BCS-supercon- 
ductors with a spherical Fermi surface. Its extension 
to superconductors with anisotropic gap or to the 
presence of several gaps may be achieved by linear 
superposition. For HTSCs (and for all type-II su- 
perconductors) the "local" limit q-~0 (q= wave 
vector of the light) is appropriate, since the BCS co- l 
herence length ~ is much smaller than the magnetic ¢ 
penetration depth 2 and the wavelength 2n/q of the 
light. The explicit expressions for a~c (co) reads (with 
h = l ) :  

aoi i "" rise(O)) = ~ X ( J +  /2dE) ,  ¢ 

t( 

~ o + d  C 

J(O)<2A)= I ItdE, 0 
1 

J(O)>-2A)= f 13dE+ f IldE, T 

I,= ' 
e4e~ _I P4 +P~ +i/~ ~, 

_[l+ :+e(e-o)).]  
P .  P2 J P4 -- P2 + i / z )  

0 

E+O){[ A 2 + E ( E + O ) )  1 l 
I2 = tanh 2--~- ~- 1 + P~P2 P~ -P2 +i/z 

[ A2+E(E+O)).] 1 i} 
- 1 P~P: J-P~-P~+i/~ ' 

+tanh 1 P~P2 ]P~ +Pz +i/z 

1 - [ 1 +  Z~2 "~" E ( E + m ) ]  -P2  + i /v}  
Pt P2 J P~ 

/3= tanh2-~--T{[l d2+E(E-o))l I 
J P3 +P~ + i / z  

- [ 1 +  ~ J P3-P2  + i /~ )  ' 

P,= x/(E+O))E-A ~, Pz= ~ , 

P3 = x / ( E - o ) ) 2 - a  ~, P~=i x/A ~-  (E-O))  ~ . 

The real and imaginary parts of a~c are presented 
in figs. l and 2 in reduced units, a~=ao×S(X, y, 4) 
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Fig. 1. Frequency dependent complex conductivity o,¢(to) of a 
BCS superconductor at temperature T=0 in reduced units 
s=o,c(oJ)/%, x=ho~/2d, and y=h/2z,~ (impurity parameter) for 
y= 500 ( ~ impure limit), 16, 8, 4, 2, 1, 0.5, 0.25, 0.125 and 0.0625 
(~  pure limit). Top: real part s, = Re{o,¢}/Oo; also shown is the 
normal conductivity Re{o,}/% =y2 / (x 2 +y2) (thin dashed Lor- 
entzians). Note that s~ =0 for to< 2d/h. Bottom: imaginary part 
s2 = Im{osc}/%. 
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Fig. 2. Complex conductivity, real part, plotted with impurity- 
dependent magnification as Re{a~}/Re{an(to=2zI/ 
h)} = ( l +y-2)sj (x),  x=hto/2d, for impurity parameters y=h/ 
2zd = 500, 16, 8, 4, 2, l, 0.5, 0.25, 0.125, 0.0625 as in fig. 1. Note 
the sharp cusp at x =  I in the pure case. Top: temperature T=0.  
Bottom: T=0.7  To. 

where s=s~+isz, x=toh/2d, and y=h/2dr. In the 
calculation it is convenient to introduce two reduced 
temperatures, 6=  T/T~ and t=kT/2~. We have used 
the approximate formula for the BCS gap ~ (T)  of  
ref. [28]. 

In order to facilitate fitting of experimental data 
we give here a very fast, compact, and self-contained 
FORTRAN program (fig. 4) which computes the 
complex conductivity from our formula by a rapid 
integration procedure using the reduced units given 
above and in figs. 1 and 2. The above expression was 
presented in ref. [29] and used for the first time in 
ref. [30]. 

The formula for the complex conductivity given 
above yields also the exact AC conductivity of BCS 
superconductors at lower (non-optical) frequencies, 
where also other theoretical approaches or approx- 
imations have been used, e.g. a two-fluid model. For 

a recent overview on microwave absorption of HTSC 
see ref. [31 ], and for a recent ab-initio calculation 
within a low-frequency approximation see [ 32,33 ]. 

3. AC conductivity of HTSC in a magnetic field 

Optical and microwave conductivities (or reflec- 
tivity, transmission, absorption, attenuation, surface 
impedance) are interesting material properties of su- 
perconductors also in the absence of an applied mag- 
netic field Ba. At lower than optical frequencies, 
however, the complex conductivity of type-II super- 
conductors is particularly interesting when a con- 
stant magnetic field generates Abrikosov vortices. 
Such experiments use, e.g. RF coils [34,35] or vi- 
brating superconductors [ 36 ] in form of reeds from 
HTSC performing flexural vibrations at 300 to 3000 
Hz [37], or HTSC platelets glued on a vibrating sil- 
icon tongue [38 ] or suspended on wires and oscil- 
lating at very low frequency < 1 Hz [39]. Generally 
speaking, a superconductor performing tilt vibra- 
tions in a constant magnetic field Ba behaves as if an 
AC magnetic field were applied to it perpendicular 
to Ba. 

In all these experiments the electromagnetic re- 
sponse of the type-II superconductor is determined 
by the behavior of the Abrikosov flux lines, in par- 
ticular by their viscous motion with respect to the 
atomic lattice and by their pinning by inhomoge- 
neities in the material. Flux lines have no inertial 
mass for frequencies to << d/h. I f  the flux lines were 
ideally pinned, a weak AC field with to << d/h would 
penetrate to the usual magnetic penetration depth 2, 
i.e. the London depth at T<< Tc and Ginzburg-Lan- 
dau penetration depth 2(T)  pc ( To-  T) -1/2 at T~  T~. 
In the opposite limit, if the flux lines are not pinned 
at all, the superconductor with a constant magnetic 
field plus a small AC field applied, behaves almost 
as a normal conductor. The resistivity is now a "flux- 
flow resistivity" PFV, due to the motion of flux lines 
driven by the Lorentz force. 

The main two differences to normal conducting 
metals are (a) that this flux-flow resistivity Pvv is re- 
duced from its normal value p , =  1lap roughly by a 
factor B/B~z(T), where B~B~ is the magnetic in- 
duction (flux density) and Be2 the upper critical field 
above which the bulk superconductor turns normal, 
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and (b) that this resistivity is anisotropic (even in 
isotropic materials) because the flux lines (or B) de- 
fine a direction along which the resistivity vanishes. 
A phenomenological theory of this flux flow, and of 
a modified flux flow caused a HTSC by thermally 
activated depinning, is given in [40]. For recent the- 
ories of the complex AC penetration depth into type- 
II superconductors and of the related AC resistivity 
and surface impedance, with complete consideration 
of elastic pinning, flux flow, and thermally activated 
depinning (creep) see [41,42]. 

For comparison with the above microscopic BCS 
conductivity crsc(t~) we give here the result of the 
phenomenological theory [42] for the complex AC 
resistivity caused by supercurrents and moving flux 
lines [we give this in the above notation where all 
fields are oc exp( - iog t )  ], 

PAC(O)) = 1/trAC = 4 n J .  2 . 1 - i o . ) T  
--  C - ' - 'T -  ltoq-PTAFF 1 --'----iOgZ-'--'O 

(fig. 3). Here PTAFF-----PAC(0) = ( I " 0 / T ) P F F ( < P F F ~  

pnB/B~2 (T )  is the "thermally assisted flux-flow re- 
sistivity", z=po exp(U/kT)  >> zo is the "creep t ime" 
with an activation energy U for flux jumps (ther- 
mally activated depinning), and T 0 = r / / a L  is the re- 
laxation time of the flux-line lattice with t/-----B2/PVF 

the flux-flow viscosity per unit volume and olL ( L a -  

busch parameter) the restoring force per unit vol- 
ume of an elastically pinned flux-line lattice. 

One interesting difference to the complex optical 

PFF 

PTAFF 
1 II; 1/'~o - o~ 

Fig. 3. Complex AC resistivity PAC = | / O'AC of a high- T¢ supercon- 
ductor in which a constant magnetic field generates an equilib- 
rium flux-line lattice, ro is the relaxation time of the elastically 
pinned vortex lattice slowed down by viscous drag. r :~ TO is the 
creep time of the vortex lattice caused be thermally activated 
depinning. 

conductivity p~ is that here the conductivity a~, and 
in the flux-line case the resistivity PAC, yield the sim- 
pler expression, a sum in both cases. Physically, this 
is due to the additive contributions of all electrons 
to crsc, and of the losses caused by the viscous motion 
of flux lines to PAC" However, if the pinning forces or 
viscous forces (otto) are sufficiently weak, the AC 
field penetrates much deeper than the magnetic pen- 
etration depth 2, namely to the Campbell depth 
).C-~(B2/4~OLL) t/2 [43] or to the skin depths 
t~= (2pFFC2/4~09) t/2, whatever is smaller; in both 
these cases the first term in PAc(OJ) (caused by the 
Meissner shielding currents) may be disregarded and 
one simply gets O'AC--~- O'TAFF( 1 -iogzo) / ( 1 -i~oz). At 
low frequencies this result formally coincides with a 
Drude conductivity, but with z being a creep time 
(which is typically very large) rather than a collision 
time (which is typically very short). 

Note that our expression for PAc does not explic- 
itly depend on the gap frequency since the order pa- 
rameter was effectively assumed to be constant in 
space (London vortices) [42]. In contrast, the more 
complicated expression for PAC(( .O)=ia~22c  (o9)4n/ 
c 2 obtained from the complex penetration depth 
)~AC(tO) of ref. [41 ] includes pair-breaking effects 
within the two-fluid model and thus depends on zl or 
Tc when T comes close to T~. Anyway, one may state 
that the two conductivities given in this paper de- 
scribe essentially two different physical problems, the 
only common feature being the AC Meissner effect 
which follows, respectively, for to<<A/h, where 
G~= ic2/47r22o9, and for rigid pinning (aL--~OO , TO-*0, 

r - ,  oo), where PAC = -- i4r~2209/C 2 = 1/a~. 
The theory [ 41,42 ] even as the above BCS expres- 

sion for the optical conductivity, are linear response 
results. However, in the pressure of a flux-line lat- 
tice, non-linear dissipation may occur even at very 
small AC amplitudes. This non-linearity is mainly 
due to depinning processes [42 ] which occur, even 
at T =  0, when the flux-lines vibrate. Due to the ran- 
domness of the pinning centers and the elasticity of 
the flux-line lattice [44 ], this non-linearity sets in at 
extremely small flux-line amplitudes of a fraction of 
an/~. Interestingly, the origin of the early onset of 
non-linear dissipation in HTSC is related to the or- 
igin of the late onset (at 09~ 2.4/h) of structure in 
the optical conductivity as 09 is increased: both ef- 
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THESE 2 SUBROUTINES CALCULATE COMPLEX CONDUCTIVITY OF SUPERCONDUCTORS: 
SUBROUTINE BERS(x, y, t t ,  s) 
C a l c u l a t i o n  of complex c o n d u c t i v i t y  sigma(q=O, omega) fo r  
superconductors  with a r b i t r a r y  e l e c t r o n  c o l l i s i o n  t ime t au  
from BCS-theory; q=O means l o c a l  e lec t rodynamics ,  London l i m i t ;  

omega = c i r c u l a r  f requency;  no rma l i za t i on :  sigma(omega=O) = 1. 
Inpu t :  x=omega/2Delta, y= l / (2*Del t a* tau ) ,  t t= tempera ture /Tc  

(Delta=gap, T c = c r i t i c a l  temp.,  one needs t= tempera ture /2Del ta)  
Output: s=sigma = sigmal + i,sigma2 [E.H. Brandt, 18.12.1989] 

Remark: Since the integrands (variable e=E/2Delta) diverge 
at the boundaries, one substitutes e=e(u) with de/du=O at the 
integration boundaries. The new integration variable u goes from 
0 to I with step width dx=I/integer (try: integer M =10...40). 

complex s, sl, s2, s3, GK 
parameter(M= 40 , dl=l./M ) 
dx = l./int(M*max(l.,sqrt(x))) 
t = tt/(3.528*sqrt(l-tt)*(0.9963 + 0.7733.tt)) 

s l=(O. ,  o .)  
s2=(o., o.) 
s3=(0., o.)  

do 2 u= dx*.5, I., dx 
s2 = s2 +GK(.5 +(ul(i.-u))**2, x, y, t, 2)*ul(1.-u)**3 
s = s2*dx*2. 

if(x .It. i) then 
do 4 u= dx*.5, 1., dx 

sl = sl +GK(.5 +x*u*u*(3.-u-u), x, y, t, l)*u*(l.-u) 
s = s + sl*dx*6.*x 

else 
do 6 u= dx*.5, 1. ,  dx 

s3 = s3 +GK(.5 +(x-1.)*u*u*(3.-u-u), x, y, t, 3)*u*(1.-u) 
do 8 u= dl*.5, 1., dl 

si = sl +GK(x-.5 +u*u*(3.-u-u), x, y, t, l)*u*(1.-u) 
s = s + (s3*dx*(x-l.) +sl*d1)*6. 

end if 
s = s *cmplx(O.,y)*.5/x 

end 
COMPLEX FUNCTION GK(e, x, y, t, k) 
Three different integrands gl, g2, g3 (=gk, k=1,2,3) 

complex cy,p4,c42 
if(k.eq.2) pl=sqrt((e+x)**2 -.25) 

p2=sqrt( e*e -.25) 
if(k.eq.3) p3=sqrt((e-x)**2 -.25) 
if(k.eq.l) p4=cmplx(0., sqrt(.25 -(e-x)**2)) 

cy=cmplx(O., y) 
if(k.eq.1) c42=(.25 +e*(e-x))/(p4*p2 +1E-20) 
if(k.eq.2) c12=(.25 +e*(e+x))/(pl*p2 +IE-20) 
if(k.eq.3) c32=(.25 +e*(e-x))/(p3*p2 +1E-20) 

th=tazth(e/(t+t+.O01)) 
eq.1) GK= th* ((1-¢42)/(p4+p2+cy) -(1+c42)/(p4-p2+cy)) 
eq.2) GK= t anh( (e+x) / ( t+ t+ .O01) )*  

((l+cl2)/(pl-p2+cy) -(l-cl2)/(-pl-p2+cy)) 
+ th* ((1-c12)/(pl+p2+cy) -(1+c12)/(pl-p2+cy)) 

eq.3) GK= th* ((l-c32)/(p3+p2+cy) -(1+c32)/(p3-p2+cy)) 
end 

i f ( k .  
if (k. 

& 
if(k. 

Fig. 4. FORTRAN program. 

fects are due to the short BCS coherence length (or 
flux-line core radius)  ~ 30 A which corresponds to 
a large BCS gap A. 
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