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Abstract

This is a write-up of lectures delivered at TASI, 2006. We begin with a discussion of a model with a flat
extra dimension which addresses the flavor hierarchy of the Standard Model (SM) using profiles for the SM
fermions in the extra dimension. We then show how flavor violation and contributions to the electroweak
precision tests can be suppressed [even with O(TeV) mass scale for the new particles] in this framework by
suitable modifications to the basic model. Finally, we briefly discuss a model with a warped extra dimension
in which all the SM fields propagate and we sketch how this model “mimics” the earlier model in a flat extra
dimension. In this process, we outline a “complete” model addressing the Planck-weak as well as the flavor
hierarchy problems of the SM.

1 Introduction

Extra dimensions is a vast subject so that it is difficult to give a complete review in 5 lectures. The reader
is referred to excellent lectures on this subject already available such as references [1, 2, 3, 4] among others.
Similarly, the list of references given here is incomplete and the reader is referred to the other lectures for
more references.

We begin with some (no doubt this is an incomplete list) motivations for studying models with extra
dimensions:

(i) Extra dimensional models can address or solve many of the problems of the Standard Model (SM): for
example, the various hierarchies unexplained in the SM – that between the Planck and electroweak
scales [often called the “(big) hierarchy problem”] and also among the quark and lepton masses and
mixing angles (often called the flavor hierarchy). We will show how both these problems are solved
using extra dimensions in these lectures.

Extra dimensional models can also provide particle physics candidates for the dark matter of the
universe (such a particle is absent in the SM). We will not address this point in these lectures.

(ii) Extra dimensions seem to occur in (and in fact are a necessary ingredient of) String Theory, the
only known, complete theory of quantum gravity (see K. Dienes’ lectures at this and earlier summer
schools).



(iii) Although we will not refer to this point again, it turns out [5] that, under certain circumstances, extra
dimensional theories can be a (weakly coupled) “dual” description of strongly coupled four-dimensional
(4D) theories as per the correspondence between 5D anti-de Sitter (AdS) spaces and 4D conformal
field theories (CFT’s) [6].

The goal of these lectures is a discussion of the theory and phenomenology of some types of extra
dimensional models, especially their applications to solving some of the problems of the SM of particle
physics. The main concept to be gleaned from these lectures is that

• extra dimensions appear as a tower of particles (or modes) from the 4D point of view (a la the standard
problem of a particle in 1D box studied in quantum mechanics).

The lightest mode (which is often massless and hence is called the zero-mode) is identified with the
observed or the SM particles. Whereas, the heavier ones are called Kaluza-Klein (KK) modes and appear
as new particles (beyond the SM). It is these particles which play a crucial role in solving problems of the
SM, for example they could be candidates for dark matter of the universe or these particles can cut-off the
quadratically divergent quantum corrections to the Higgs mass. These particles also give rise to a variety of
signals in high-energy collider (i.e., via their on-shell or real production) and in low-energy experiments (via
their off-shell or virtual effects). This is especially true if the masses of these KK modes are around the TeV
scale, as would be the case if the extra dimension is relevant to explaining the Planck-weak hierarchy.

Here is a rough outline of the lectures. In lecture 1, we begin with the basics of KK decomposition in flat
spacetime with one extra dimension compactified on a circle. We will show how obtaining chiral fermions
requires an orbifold compactification instead of a circle. In lecture 2, we will consider a simple solution to
the flavor hierarchy using the profiles of the SM fermions in the extra dimension. However, we will see that
such a scenario results in too large contributions to flavor changing neutral current (FCNC) processes (which
are ruled out by experimental data) if the KK scale is around the TeV scale – this is often called a flavor
problem. Then, in lecture 3, we will consider a solution to this flavor problem based on the idea of large
kinetic terms (for 5D fields) localized on a “brane”. Another kind of measurement of properties of the SM
particles (not involving flavor violation), called Electroweak Precision Tests, will be also be studied in this
lecture, including the problem of large contributions to one such observable called the T (or ρ) parameter.
In lecture 4, we will solve this problem of the T parameter by implementing a “custodial isospin” symmetry
in the extra dimension. We will then briefly discuss some collider phenomenology of such models and some
questions which are unanswered in these models. Finally, we will briefly study models based on warped
spacetime in lecture 5, indicating how such models “mimic” the models in flat spacetime (with large brane
kinetic terms) studied in the previous lectures. We will sketch how some of the open questions mentioned
in lecture 4 can be addressed in the warped setting, resulting in a “complete” model.

2 Lecture 1

2.1 Basics of Kaluza-Klein Decomposition

Consider the following 5D action for a (real) scalar field (here and henceforth, the coordinates xµ will denote
the usual 4D and the coordinate y will denote the extra dimension):

S5D =

∫

d4x

∫

dy
[

(

∂MΦ
)

(∂MΦ) −M2ΦΦ
]

(1)

Since gravitational law falls off as 1/r2 and not 1/r3 at long distances, it is clear that we must compactify
the extra dimension. Suppose we compactify the extra dimension on a circle (S1), i.e., with y unrestricted
(−∞ < y <∞), but with y identified with y+ 2πR1. We impose periodic boundary conditions on the fields
as well, i.e., we require Φ(y = 2πR) = Φ(y). Then, we can (Fourier) expand the 5D scalar field as follows:

Φ =
1√
2πR

n=+∞
∑

n=−∞
φ(n)(x)einy/R (2)

1Equivalently, we can restrict the range of y: 0 ≤ y ≤ 2πR, imposing the condition that y = 0 same as y = 2πR.
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where the coefficient in front has been chosen for proper normalization.
Substituting this expansion into S5D and using the orthonormality of profiles of the Fourier modes in

the extra dimension (i.e., einy/R) to integrate over the extra dimension, we obtain the following 4D action:

S4D =

∫

d4x
∑

n

[ (

∂µφ
(n)
)(

∂µφ(n)
)

−
(

M2 +
n2

R2

)

φ(n)φ(n)
]

(3)

This implies that from the 4D point of view the 5D scalar field appears as an (infinite) tower of 4D
fields which are called the Kaluza-Klein (KK) modes: φ(n) with mass2, m2

n = M2 + n2/R2 (note that the
n2/R2 contribution to the KK masses arises from ∂5 acting on the profiles) [see Fig. 1 (a)].

The lightest or zero-mode (n = 0) has mass M (strictly speaking it is massless only for M = 0). The
non-zero KK modes start at ∼ 1/R (for the case M � 1/R) which is often called the compactification scale.
We can easily generalize to the case of δ extra dimensions, each of which is compactified on a circle of same
radius to obtain the spectrum: m2

n = M2 +
∑δ

i=1 n
2
i /R

2. However, in these lectures, we will restrict to only
one extra dimension.

Thus, we see that the signature of an extra dimension from the 4D point of view is the appearance of
infinite tower of KK modes: to repeat, the lightest (zero)-modes is identified with the SM particle and the
heavier ones (KK modes) appear as new particles beyond the SM.

2.2 Orbifold

Mathematically speaking, a circle is a (smooth) manifold since it has no special points. We can “mod out”
this smooth manifold by a discrete symmetry to obtain an “orbifold”. Specifically, we impose the discrete
(Z2) identification: y ↔ −y in addition to y ≡ y+ 2πR. Thus, the physical or fundamental domain extends
only from y = 0 to y = πR2 – this compactification is denoted by S1/Z2: see Fig. 2.

The endpoints of the orbifold (y = 0, πR) do not transform under Z2 and hence are called fixed points of
the orbifold. Also, note that the end points of this extra dimension are not identified with each other either
by the periodicity condition y ≡ y + 2πR (unlike the endpoints y = 0, 2πR on S1) or by the Z2 symmetry.

Let us consider how the KK decomposition is modified in going from a circle to an orbifold. We can
rewrite the earlier KK decomposition in terms of functions which are even and odd under y → −y:

Φ(x, y) =
1√
2πR

φ(0) +

∞
∑

n=1

1√
πR

[

φ
(n)
+ cos

ny

R
+

φ
(n)
− sin

ny

R

]

(4)

with the identification φ
(n>0)
± ≡ 1(i)/

√
2
(

φ(n) ± φ(−n)
)

.
We must require the physics, i.e., S5D, to be invariant under y → −y. For this purpose, we assign an

(intrinsic) parity transformation to Φ:

Φ(x,−y) = PΦ(x, y) (5)

with P = ±1, i.e., Φ being even or odd. This assignment sets φ
(n>0)
− = 0 for P = +1 and φ

(n)
+ = 0 [including

φ(0)] for P = −1 see Fig. 1 (b).
Thus, a summary of orbifold compactification is that3: (i) it reduces the number of modes by a factor of

2 and (ii) it removes or projects out the zero-mode for the case of the 5D field being odd under the parity.

2Equivalently, we can still pretend that it extends from y = 0 to y = 2πR as before, but with the region y = πR

to y = 2πR not being independent of the region y = 0 to y = πR.
3We will see later how an orbifold is “useful” in the case of 5D fermion/gauge fields because of these properties.
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Figure 1: KK decomposition of a 5D scalar on a circle (a) and an orbifold (b), choosing even parity.
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2.3 Fermions on a Circle: Chirality Problem

One possible representation of the 5D Clifford algebra for fermions:

{ΓM ,ΓN} = 2ηMN (6)

is provided by the usual Dirac (4 × 4) matrices

Γµ = γµ, Γ5 = −iγ5 (7)

Thus, we see that the smallest (irreducible) representation for 5D fermions has 4 (complex) components (cf.
2-component complex or Weyl spinor in 4D, where the 2×2 Pauli matrices form a representation of Clifford
algebra).

Consider the following 5D action for fermions

S5D = Ψ̄
(

i∂MΓM −M
)

Ψ (8)

When the extra dimension is compactified on a circle, we can plug in the usual decomposition Ψα=1−4 =
∑

n ψ
(n)
α einy/R to find the 4D action:

S4D =
∑

n

¯ψ(n) (iγµ∂
µ −M − in/R)ψ(n) (9)

Thus, we obtain a tower of Dirac (4-component) spinors from the 4D point of view: m2
n = M2 +n2/R2: see

Fig. 3 (a).
Consider the case M = 0. We see that there are non-chiral massless (or zero) modes: explicitly, in the

Weyl representation of Dirac matrices, i.e.,

γµ =

(

0 σµ
σµ 0

)

(10)

γ5 =

(

1 0

0 −1

)

(11)

σµ = (σi=1..3,1) , (12)

ψ
(0)
α=1−4 decomposes as ∼

[

ψ
(0)
L (α = 1, 2), ψ

(0)
R (α = 3, 4)

]

, where L (R) refers to left (right) chirality (or

helicity) under the 4D Lorentz transformation. The problem is that if the 5D fermion transforms under
some 5D gauge symmetry, then the L and R (massless) chiralities (zero-modes) transform identically under
this gauge symmetry. Hence, such a scenario cannot correspond to the SM, where the fermions are known
to be chiral, i.e., the left-handed (LH) and right-handed (RH) ones transform as doublets and singlets,
respectively under the SU(2)weak gauge symmetry.

2.4 Fermion Chirality from Orbifold

We can obtain chiral fermions by compactifying the 5D theory on an orbifold instead of a circle as follows.
Suppose we choose ΨL to be even under the Z2 parity. Then, ΨR must be odd since the 5D action contains
the term Ψ̄Γ5∂5Ψ 3 Ψ†

L∂5ΨR, which must be even so that the 5D action is Z2-invariant (note that ∂5 is odd
under parity).

We obtain the following decomposition:

ΨL (R) ∼
∑

n

ψ
(n)
L (R) cos

ny

R
(sin

ny

R
) (13)

Thus, (for case of the 5D mass, M = 04) we get a massless zero-mode only for ΨL (even field): see Fig.
3(b). Of course, we could have chosen ΨR to be even instead to obtain a RH zero-mode.

4We will see in the next section that only a “special” form of mass term is allowed on an orbifold.
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Figure 3: KK decomposition for a 5D fermion on a circle (a) and an orbifold (b) with even parity
for ΨL.
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Figure 4: Profile of odd mass term (dashed line) and fermion zero-mode (solid line). Here and
henceforth, we set radius of extra dimension, R = 1 in all figures.

3 Lecture 2

3.1 Zero-Mode Fermion Profiles

We see that the massless (chiral) mode on an orbifold has a flat profile [see Eq. (13)]. So, if all the SM
fermions have M = 0, then the extra dimension does not provide any resolution of the flavor hierarchy, i.e.,
we need to put hierarchies in 5D Yukawa couplings (similar to the situation in the SM) in order to obtain
hierarchies in the 4D Yukawa couplings.

We must then consider modifying the profiles of the fermion zero-modes in order to solve the flavor
hierarchy problem using the extra dimension. We can try adding a bare mass term: Ψ̄Ψ = Ψ†

LΨR+h.c., but
such a mass term breaks the Z2 symmetry (again since ΨL,R transform oppositely under the parity) . The
solution to this problem [7] is to couple the 5D fermion to a Z2-odd scalar with the following 5D Lagrangian:

L5D = Ψ̄
(

i∂MΓM − hΦ
)

Ψ +

(∂MΦ)
2 − λ

(

Φ2 − V 2
)2

(14)

The point is that the potential V (Φ) = λ
(

Φ2 − V 2
)2

forces a vacuum expectation value (vev) for Φ which is
a constant in y in-between the endpoints of the extra dimension (often called the “bulk”). However, such a
vev tends to “clash” with Φ = 0 at the endpoints (as required by the scalar being odd under the Z2 parity).
As a result, we obtain a (approximately) “kink-anti-kink” profile for the scalar vev (see references [7] for
more details) as in Fig. 4. Such a profile for the scalar vev is equivalent to adding a Z2-odd 5D mass for
the fermion. The point is that with such a scalar vev we have a spontaneous breaking of the Z2 symmetry
– recall that it is this Z2 symmetry which prevented us from writing such a mass term to begin with, i.e., a
bare mass term would correspond to an explicit breaking of this symmetry.

Let us then consider how the KK decomposition is modified in the presence of such an (odd) bulk fermion
mass term. The 5D action is

S5D = Ψ̄
[

i∂MΓM +Mε(y)
]

Ψ (15)

where ε(y) = +1(−1) for πR > y > 0(−πR < y < 0). It is easy to see that the eigenmodes are no longer
single sin or cos, but instead are linear combinations of these basis functions. Hence, we have to work harder
to obtain the eigenmodes.
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3.2 General Procedure for KK Reduction

We will now take a slight detour to discuss the procedure to obtain the KK decomposition for a general 5D
action and return to apply this procedure to the above 5D fermion case.

For simplicity, consider a 5D scalar field decomposed into modes as follows: Φ(x, y) =
∑

n φ
(n)(x)fn(y).

Plug this expansion into the simple 5D action:

S5D =

∫

d4x

∫

dy
[

(

∂MΦ
)

(∂MΦ) −M2ΦΦ
]

(16)

We require that, after integrating over the extra dimension, we get

S4D =

∫

d4x
∑

n

[ (

∂µφ
(n)
)(

∂µφ(n)
)

−
(

M2 +
n2

R2

)

φ(n)φ(n)
]

(17)

so that we can interpret φ(n)’s as particles (KK modes) from the 4D point of view.
This requirement gives us the following two equations: matching kinetic terms in S4D of Eq. (17) to the

∂µ (or 4D) part of the kinetic term obtained from S5D gives us the following:

(i) orthonormality condition

∫

dyf∗
n(y)fn(y) = 1 (18)

whereas matching the mass terms in S4D of Eq. (17) to the 5D mass term (M) and the action of ∂5 on the
profiles in S5D gives us the

(ii) differential equation:

∂2
yfn(y) −M2f2

n(y) = −m2
nf

2
n(y) (19)

Thus the KK decomposition reduces to an eigenvalue problem, solving which gives us the KK masses (eigen-
values) mn and their profiles fn(y) (eigenfunctions). This is very reminiscent of solving the problem of
Schroedinger equation for a particle in a 1D box in quantum mechanics.

For the above simple case of a 5D scalar with a bulk mass, we get the following solutions to the differential

equation [i.e., Eq. (19)]: fn(y) ∼ e±i
√
m2

n
−M2y for m2

n ≥ M2. In addition, the periodicity condition, i.e.,
fn(y) = fn(y + 2πR) requires

√

m2
n −M2 = n2/R2 so that m2

n = M2 + n2/R2 (as before). The reader
should think about the possibility m2

n < M2 (where we get exponentially rising or decaying profiles) to show
that we cannot satisfy the continuity of derivative at y = 0, πR in this case and hence we cannot have such
solutions for a scalar.

The above procedure can be generalized to more complicated 5D actions and for other spin fields.

3.3 Solution to Flavor Puzzle

Next, we return to the problem of the KK decomposition of a 5D fermion with the (odd) mass term and
with ΨL (R) being even (odd) under Z2 parity. As outlined above, we plug ΨL,R = ψ(n)(x)fL,R n(y) into
S5D to obtain the differential equations:

[

− ∂5 +Mε(y)
]

fL n = mnfR (20)
[

∂5 +Mε(y)
]

fR n = mnfL (21)

Note that (as mentioned before) cos or sin are solutions only for M = 0, but not for M 6= 0 [On a circle, the
mass term M has no ε(y) so that fL,R n ∼ einy/R are indeed solutions.].
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Figure 5: Profiles for down (dashed line: 5D mass, M = −2), strange (thin solid line: M = −1)
and top quarks (thick solid line: M = +1). The SM Higgs is localized on the y = πR brane.

It is easy to solve for the zero-mode profile (mn = 0) even for M 6= 0 (the mn 6= 0 case is difficult to
solve due to the two differential equations being coupled):

fL 0(y) = NeMy (0 ≤ y ≤ πR)

= Ne−My (0 ≥ y ≥ −πR) (22)

(N is a normalization factor: see exercise 1 in appendix).
Note that for RH modes, fR 0 ∼ e∓My solves the eigenvalue equation, but it clashes with vanishing

of fR 0(y) at y = 0, πR as required by ΨR being odd under Z2 parity. Thus, as expected from the parity
choice, there is no RH zero-mode. Note that there is a discontinuity in the derivative of fL 0 at y = 0, πR
(Fig. 4), which precisely matches the ε(y) term (cf. scalar case earlier where such profiles cannot satisfy the
requirement of continuity of derivative at the fixed points). The point is that M 6= 0 still gives a massless
fermion mode (unlike for a scalar).

We will now see how the flavor hierarchy can be accounted for without any large hierarchies in the 5D
theory: see exercise 1 and Fig. 5. For simplicity, suppose the SM Higgs field is localized at y = πR (each
end of the extra dimension is often called a “brane”, motivated by String Theory) and add the following
coupling of 5D fermions to it:

S5D 3
∫

d4xdyδ(y − πR)HΨLΨ′
Rλ5D (23)

where Ψ and Ψ′ are two different 5D fermion fields which are SU(2)L doublets and singlets with M,M ′

being their 5D masses, respectively. Note that ΨL and Ψ′
R are chosen to be even under Z2 so that they give

the LH and RH zero-modes, respectively. Since ΨR and Ψ′
L vanish at the y = πR brane, they do not couple

to the Higgs as seen in Eq. (23). Plugging in the zero-mode profiles, we obtain the effective 4D Yukawa

coupling, i.e., λ4DHψ
(0)
L ψ

′ (0)
R :

λ4D ≈ λ5D × fL 0(πR)fR 0(πR)

∝ λ5De
(M−M ′) (24)

Let us consider the hierarchy between the down (d) and strange (s) quark masses for example. For
simplicity, we set λ5D to be the same for d, s and also M = −M ′ for each quark to obtain (up to small
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dependence of normalization on M ’s)

md

ms
∼ e2∆MπR

∼ 1/100 which is the required, i.e., experimental value (25)

so that ∆M ≡ Md −Ms ∼ −2 [for example, Md = −3,Ms = −1] in units of 1/(πR) suffices to obtain the
hierarchy in 4D masses (or Yukawa couplings).

The crucial point is that we did not invoke any large hierarchies in the 5D or fundamental parameters
(M or λ5D), but we can still obtain large hierarchies in the 4D Yukawa couplings.

3.4 Intermediate Summary: Basic Concepts

Before moving on, let us summarize:

(i) A 5D field appears as a tower of KK modes from 4D point of view, with each mode having a profile
in the extra dimension.

(ii) The profiles and the KK masses are obtained by solving an eigenvalue problem (or wave equations in
5D space-time).

(iii) The coupling of particles (i.e., zero and KK modes) is proportional to the overlap of their profiles in
the extra dimension.

3.5 Gauge Field on a Circle

Next, we consider 5D gauge fields with the following 5D action5:

S5D =

∫

d4xdy
1

4
FMNFMN (26)

=

∫

d4xdy
1

4

(

FµνFµν + Fµ5Fµ5
)

(27)

with

AM = Aµ + A5 (28)

As usual, the KK decomposition is achieved by plugging in the expansion Aµ, 5 =
∑

nA
(n)
µ, 5fµ, 5 n(y) into

S5D. It is easy to see that this procedure is similar to that for a 5D scalar, up to the presence of Lorentz
index and gauge fixing. It is straightforward to include the Lorentz index in the KK decomposition, but
there are subtleties with gauge fixing – we will not go into details of the latter issue in these lectures (for a
discussion of this issue, see, for example, 1st reference in [3]).

The end result is that, on a circle, both Aµ and A5 components have zero-modes – the former is a vector,
whereas the latter is a scalar from the 4D point of view: see Fig. 6(a).

Thus, we encounter a unification of spins in the sense that massless 4D scalars can be obtained from 5D

gauge fields. If the 4D scalar A
(0)
5 remains massless, then it will result in an extra long range force which

would be ruled out by experiments. However, this scalar does acquire a mass from loop corrections (see
lecture 5) so that such a light scalar (almost zero-mode) might not be a robust problem (unlike the chirality
problem with fermions on a circle).

5Once the SM fermions propagate in the extra dimension, we can show that the SM gauge fields also have to do
the same to preserve gauge invariance.
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Figure 6: KK decomposition for a 5D gauge field on a circle (a) and on a orbifold (b) with choice
of even parity for Aµ.
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3.6 Gauge Field on an Orbifold

In any case, it is possible to get rid of the A5 zero-mode using orbifold compactification as follows. Notice
that for

Fµ5 = ∂µA5 − ∂5Aµ (29)

to have a well-defined Z2 parity, we have two choices:

(i) Aµ is even – it has a zero-mode which is identified with the SM gauge boson – which implies that A5

is odd and so does not have a zero-mode [see Fig. 6(b)] or

(ii) Aµ is odd (no zero-mode gauge boson) so that A5 is even and has a zero-mode.

As we will see later, the A5 zero-mode in case (ii) can play the role of SM Higgs, but for now, we will
make the choice (i), i.e., Aµ (5) is even (odd) so that we do have a zero-mode (i.e., SM) gauge boson.

Hence, we obtain the following KK decomposition for this gauge field on an orbifold [Fig. 6 (b)]:

fµ 0 =
1√
2πR

(i.e., a flat profile) (30)

fµ n(y) =
1√
πR

cosny/R (31)

f5 n(y) =
1√
πR

sinny/R (32)

We have normalized the modes over −πR ≤ y ≤ +πR, even though the physical domain is from y = 0 to

y = πR. We can show that A
(n6=0)
µ “eats” A

(n)
5 to form a massive spin-1 gauge boson from the following

mass terms

F2
µ5 3 ∂µA5∂5Aµ (33)

∼
∑

n

A(n)
µ ∂µA

(n)
5 ∂yfµ n(y) (34)

These mass terms mixing A
(n)
µ and A

(n)
5 are similar to the ones in the SM: Wµ∂

µH〈H〉 (which indicate that
the longitudinal polarization of W is the unphysical component of Higgs, i.e., the equivalence theorem).

3.7 Couplings of Gauge Modes

We now calculate the couplings of the various gauge modes to the matter particles (in this case fermions)
based on their profiles. We can show that the coupling of zero-mode is the same to all fermion modes
(whether zero or KK):

∫

d4xdyΨ̄ΓM (∂M + g5AM ) Ψ 3
∑

n

¯
ψ

(n)
L γµψ

(n)
L ×

∫

dyf2
L n(y)

(

∂µ +A(0)
µ

g5√
2πR

)

(35)

=
¯

ψ
(n)
L γµψ

(n)
L

(

∂µ + g4A
(0)
µ

)

(for all n) (36)

with

g4 (or gSM) =
g5√
2πR

(37)
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Figure 7: Profiles for down (thick dashed line) and strange (thin solid line) quarks and the gauge
zero-mode (thick solid line) and 1st KK mode (thin dashed line). The SM Higgs is localized on the
y = πR brane.

The point is that the profile of the gauge zero-mode is flat so that the overlap integrals appearing in the
kinetic term for fermion mode and in the coupling to gauge zero-mode are identical. This universality of the
zero-mode gauge coupling is actually guaranteed by 4D gauge invariance.

However, the couplings of zero-mode fermions to gauge KK modes (coming from the overlap of profiles)
are non-universal, i.e., these couplings depend on the 5D fermion mass (see Fig. 7):

g(n,M) = g5

∫

dy
(

Ne−My
)2 × fµ n(y) (38)

≡ g4 × a(n,M) (39)

where a is an O(1) quantity (see exercise 1). The reason is that the gauge KK profile is not flat (unlike for
zero-mode) or equivalently there is no analog of 4D gauge invariance for the massive (KK) gauge modes.

3.8 Flavor Problem from Gauge KK Modes

Such non-universal couplings of gauge KK modes to fermion zero-modes results in flavor violation as follows
[8]. The point is that the couplings of the gauge KK modes to zero-mode fermions are flavor diagonal, but
non-universal in the interaction (or weak) basis:

g4
(

d̄Lweak s̄Lweak
)

(

ad 0
0 as

)

γµA(n)
µ

(

d
L weak
sL weak

)

(40)

which results in the appearance of flavor violating couplings after a unitary rotation to the mass basis:

...g4D
†
Ldiag (ad, as)DL... → g4 (as − ad) (DL)12 ×

d̄Lmassγ
µA(n)

µ sL mass (41)

where DL is the unitary transformation to go from the interaction (or weak) basis to the mass basis (for
left-handed down-type quarks).

Hence, we obtain a contribution to, for example, K − K̄ mixing amplitude:

MKK ∼ g2
4

M2
KK

(as − ad)
2
(DL)

2
12 (42)
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The SM contribution to K − K̄ mixing amplitude has a suppression mechanism (see below):

MSM ∼ g4
4

16π2

m2
c

M4
W

(VusVud)
2 (43)

where Vus, ud are the Cabibbo-Kobayashi-Maskawa (CKM) mixing angles. Since the data agrees with the
SM prediction, we must require the KK contribution to be smaller than the SM one and hence we can set a
bound on the KK mass. Using

(as − ad) ∼ O(1/10) (44)

(see exercise 1), i.e., the fact that the couplings of gauge KK modes to down and strange quarks are O(1)
different, we get

MKK
>∼ 20 TeV (45)

assuming that the the DL mixing angles are of order the CKM mixing angles. Such a large KK mass scale
could result in a tension with a solution to the Planck-weak hierarchy problem: we would like the KK scale
to be ∼ TeV for this purpose (we will see later how the KK mass scale is related to the EW scale).

For completeness, we briefly review FCNC’s in the SM below. We begin with the transformation of
quarks from weak to mass basis. The Yukawa couplings of the SM fermions to the Higgs (or the mass terms)
are 3×3 complex matrices (denoted by Md in the down quark sector) in the generation space. Such matrices
can be diagonalized by bi-unitary transformations, DL,R. For simplicity, consider the 2 generation case (this
analysis can be easily generalized to the case of 3 generations), where this transformation can be explicitly
written as

(

d̄Lweak s̄Lweak
)

(Md)2×2

(

d
R weak
sR weak

)

=

(

d̄Lmass s̄Lmass
)

M
diag.
d

(

dR mass
sR mass

)

(46)

where

(

dL,R weak
sL,R weak

)

= DL,R

(

dL,R mass
sL,R mass

)

(47)

M
diag.
d ≡ D†

LMdDR

=

(

md 0
0 ms

)

(48)

There are no tree-level FCNC in the SM since the gluon, γ and Z vertices preserve flavor in spite of
the above transformations. Of course, the reason is that the couplings of gluon, γ and Z in the weak (or
interaction) basis are universal. Explicitly,

gZ
(

− 1
2 + 1

3 sin2 θW
) (

d̄Lweak s̄Lweak
)

Zµγ
µ

(

1 0
0 1

)(

dL weak
sL weak

)

= ...
(

d̄Lmass s̄Lmass
)

Zµγ
µD†

L

(

1 0
0 1

)

DL

(

dL mass
sL mass

)

= ...
∑

i=d,s d̄
i
L massZµγ

µdiL mass (49)

as compared to Eqs. (40) and (41).
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However, the charged current (W ) couplings are non-diagonal in the mass basis:

g√
2

(

ūLweak c̄Lweak
)

Wµγ
µ

(

1 0
0 1

)(

dL weak
sL weak

)

= ... (ūLmass c̄Lmass)Wµγ
µU †

L

(

1 0
0 1

)

DL

(

dL mass
sL mass

)

= ...
∑

i=u,c j=d,s ū
i
L massW

µγµVCKM ijd
j
L mass (50)

where the CKM matrix

VCKM ≡ U †
LDL

6= 1 (51)

since the transformations in the up and down sectors are, in general, not related. Hence, the charged currents
do convert up-type quark of one generation to a down-type quark of a different generation. So, we can use
the charged current interactions more than once, i.e., in loop diagrams, to change one down-type quark to
another down-type quark, for example, to obtain a ∆S = 2 process via a box diagram.

Naively, we can estimate the size of this box diagram

MSM ∼ g4
2

∫

d4k

(2π)4
V ∗
CKM isV

∗
CKM jsVCKM idVCKM jd

1

k6 −mi

1

k6 −mj

1

k2 −M2
W

∼ g4
2 (VusVcd)

2 1

16π2M2
W

(52)

(neglecting mi,j in the up quark propagators: more on this assumption below) which turns out to be too
large compared to the experimental value!

However, this is where the Glashow-Iliopoulos-Maiani (or GIM) mechanism comes in. Using the unitarity
of the CKM matrix,

∑

i

V †
siVid = 0, (53)

we find that MSM vanishes if mi = mj , in particular if we neglect the quark masses as we did above. Hence,
the amplitude must be proportional to the non-degeneracy of the up-type quark masses, i.e., for the two
generation case we find that

MSM ∼ g4
2

16π2
(VusVcd)

2 m
2
c −m2

u

M4
W

(54)

which was used earlier in Eq. (43). The point is that we get an extra suppression of ∼ m2
c/M

2
W ∼ 10−4

compared to the naive estimate in 2nd line of Eq. (52).

4 Lecture 3

As we saw in the previous lecture, the extra dimensional model which addresses the flavor hierarchy does
not have analog of the GIM suppression in the gauge KK contribution to flavor violation. The reason is that
the couplings of the strange and down quarks to the gauge KK modes, denoted by as,d (in units of g4), are
O(1), and different.

In order to solve this problem, we would like to modify the gauge KK profile, for example, a more
favorable picture would be as in Fig. 8, where gauge KK modes are localized near the y = πR brane whereas
light fermions are localized near the y = 0 brane as usual. The point is that in this case couplings of fermions
to the gauge KK modes (even though still non-universal) are � 1 (in units of g4) so that the FCNC’s are
suppressed. So, the question is how to modify KK decomposition in general and, in particular, how to obtain
the profiles as in Fig. 8.
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Figure 8: Same as Fig. 7, but with brane kinetic term, r/R = 10, for gauge fields on y = 0 brane.

4.1 Brane Kinetic Terms

We consider a modification to the extra dimensional model by adding interactions for the 5D gauge fields
which are localized at the fixed points (branes). The point is that such interactions are allowed for an orbifold,
but not on a circle, where there are no such “special” points in the extra dimension. In fact, consistency of
the model at the quantum level requires the presence of such terms since such terms are generated by loops
even if they are absent at tree-level [9].

Specifically, we study the Lagrangian:

L5D = −1

4

[

FMNFMN + δ(y)rFµνFµν
]

+

Ψ̄ (∂M + g5AM ) ΓMΨ (55)

Simple dimensional analysis gives
[

AM

]

= 3/2,
[

Ψ
]

= 2,
[

g5

]

= −1/2 (here
[

...
]

denotes mass dimension)

so that the brane kinetic term has mass dimension −1 (i.e., it has dimension of a length) and is therefore
denoted by r.

It is sometimes convenient to use a different normalization for AM : AM → ÂM/g5 in terms of which
the action is:

L5D = −1

4

[ 1

g2
5

F̂MN F̂MN + δ(y)
r

g2
5

F̂µνF̂µν
]

+

Ψ̄
(

∂M + ÂM

)

ΓMΨ (56)

With this normalization, we have
[

ÂM

]

= 1 (as in 4D) so that the brane kinetic term is dimensionless: we

can then define a brane-localized “coupling” as 1/g2
brane ≡ r/g2

5 .
We will now study how the KK decomposition is modified in the presence of these brane kinetic terms.

Consider the case of a scalar field for simplicity (the gauge case which we are really interested in is similar).
Here, we will only give a summary: for details, see exercise 2 and reference [10] for example.

Following the procedure outlined in lecture 2, we find that the orthonormality condition is modified
(relative to the case of no brane terms):

∫

dyf∗
n(y)fm(y)

[

1 + rδ(y)
]

= δmn (57)

17



and the profiles and mass eigenvalues are given by solving the differential equation:

[

∂2
y +m2

n + rδ(y)m2
n

]

fn(y) = 0 (58)

The solutions fn(y) of this equation are linear combination of sin and cos, in particular, a different one for
y = 0 to y = πR and y = −πR to y = 0.

In addition, in order to solve for the coefficients of sin, cos in these linear combinations, we must impose
conditions such as continuity of fn(y) at y = 0, periodicity of fn(y) and matching the discontinuity in
derivative of fn(y) to δ(y) in Eq. (57).

4.2 Couplings of gauge modes

It turns out that the zero-mode of the gauge field continues to have a flat profile: only its normalization
affected by brane term such that

g4 =
g5√

r + 2πR
(59)

For large brane kinetic terms,

g4 ≈ g5√
r

(60)

Let us now consider couplings of gauge KK modes to particles localized on the branes in the limit of
large brane terms. We find that

(i) the coupling of gauge KK mode to a particle (say light SM fermion) localized at y = 0 is suppressed
(compared to zero-mode): g5 × fn(0) ∼ g4/

√

r/R.

(ii) Whereas, the coupling to particles (such as the Higgs) localized at y = πR is enhanced compared to
the zero-mode (or SM) gauge coupling : g5 × fn(πR) ∼ g4 ×

√

r/R

The intuitive understanding is that large brane kinetic terms “repel” gauge KK mode from that brane
(see Fig. 8).

4.3 Solution to Flavor Problem

In reality, the light SM fermions are not exactly localized at the y = 0 brane, but we find a similar suppression
in their coupling to gauge KK mode for the actual profiles of the light fermions which are exponentials peaked
at y = 0. Hence, based on the rough size of the coupling mentioned in point (i) above, we can show that
FCNC’s from exchange of gauge KK modes are suppressed by a factor of r/R relative to the case of without
brane kinetic terms, i.e., large brane kinetic terms provide an analog of GIM suppression in the SM.

One might wonder if we are introducing a new hierarchy since we need r/R � 1. However, that’s not
really the case since a mild hierarchy of O(10) is enough. In fact, we will see in lecture 5 how we can
effectively obtain the same effect as that of such large brane kinetic terms in a warped extra dimension
without introducing any brane terms and therefore any hierarchy in the 5D theory at all.

4.4 Electroweak Precision Tests

Having seen how to suppress contributions of the gauge KK modes to FCNC’s, we will now consider their
contributions to flavor-preserving observables called electroweak precision tests (EWPT). There are 3 such
effects which we discuss in turn.
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Figure 9: 4-fermion operators generated by exchange of zero and KK modes of Z.

4.4.1 4-fermion operators

Tree-level exchange of gauge KK modes also generates flavor-preserving 4-fermion operators, Fig. 9. We can
compare these effects to SM (i.e., zero-mode) Z exchange which has coefficient ∼ g2

Z/m
2
Z and use the fact

that the experimental data on these operators agrees with the SM prediction at the ∼ 0.1% level. For r = 0
(no brane term), we found that gauge KK coupling ≈

√
2g4 for fermions localized at y = 0 (recall that light

fermions are localized near y = 0) so that we obtain a limit of mKK
>∼ a few TeV. However, for large brane

kinetic terms, the gauge KK couplings and hence the coefficients of these operators are further suppressed
by a factor of ∼ r/R so that mKK ∼ TeV is easily allowed by the data.

The other 2 effects originate from the mixing of zero and KK modes for W , Z via the Higgs vev which
we now discuss. The gauge group in the bulk is SU(2)L × U(1)Y . We first perform the KK decomposition
(i.e., obtain zero and KK modes) for Wi=1,2,3 and B (hypercharge) setting v = 0. At this level, there is no
kinetic or mass mixing between these modes.

Next, we turn on the Higgs vev. For v 6= 0, we obtain masses for zero-modes of B and Wi and mass

mixing between W3 and B zero-modes (as in the SM). We define photon and Z zero-modes, Z
(0)
µ and A

(0)
µ ,

to be combinations of W
(0)
3 and B(0) such that the zero-mode mass mixing is diagonalized (as in the SM).

We first define the zero-mode gauge couplings (we neglect the brane terms for simplicity here, but it is
straightforward to include them): gW (0) = g5 2/

√
2πR, gZ(0) = g5 Z/

√
2πR, where (g2

5 Z = g2
5 2 + g′ 2

5 ). The

weak mixing angle between W
(0)
3 and B(0), i.e., sin2 θW is the ratio of these zero-mode gauge couplings.

It turns out to be convenient to define the KK modes, Z(n) and A(n) (n 6= 0), using same (0-mode)

mixing angles. The reason is that with this definition, the KK photon modes A
(n)
µ do not couple to Higgs

(just like zero-mode) and hence decouple from the other modes.
However, the crucial point is that the W± zero mode mixes with the KK modes of W± via mass terms

coming from the Higgs vev localized at y = πR (similarly for Z). Therefore, the mass eigenstates, i.e., SM
W± and Z, are admixtures of zero and KK modes. To understand this effect, we can diagonalize the 2 × 2
mass matrix (for zero and 1st KK mode) for simplicity (see exercise 3).
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4.4.2 Shift in coupling of SM fermions to Z

The above zero-KK mode mixing for W , Z induced by Higgs vev results in a shift in the coupling of SM
W , Z to a fermion localized at y = 0 from the pure zero-mode coupling, i.e., SM Z has a (small) KK Z
component so that gZ = gZ(0) + δgZ . We can estimate this effect via mass insertion diagrams as in Fig.
10 which are valid for v × couplings � mKK to find δgZ/gZ(0) ∼ g2

Z(0)v
2/m2

KK : see exercise 3 for a more
accurate calculation. Note that there is no enhancement in δgZ for large brane kinetic terms (r/R � 1).
The point is that the enhancement in the coupling (relative to the zero-mode coupling) at the Higgs-KK
Z vertex cancels the suppression in the coupling at the fermion-KK Z vertex (cf. the effect on the W , Z
masses below). Just like the case of 4-fermion operators, the measured couplings of SM fermions to Z agree

with the SM prediction at the ∼ 0.1% level so that we obtain a limit of mKK
>∼ a few TeV.

4.4.3 Shift in ratio of W and Z masses or ρ parameter

The mixing of zero and KK W modes induced by the Higgs vev also results in a shift in SM W mass from
the pure zero-mode mass (a similar effect also happens for SM Z) as in Fig. 11:

M2
W = M2

W (0) + δM2
W , where (61)

M2
W (0) =

1

4
g2
W (0)v

2 (62)

δM2
W ∼ g4

W (0)

v4

m2
KK

r

R
(63)

This effect, in turn, shifts the ρ parameter defined as

ρ =
M2
W

M2
Z

× g2
Z

g2
2

(64)

The point is that ρ = 1 in the SM (at the tree-level) and ∆ρexpt. ≡ ρexpt. − 1 ∼ 10−3. Actually, there is
a subtlety in this definition for the 5D model due to the fact that the couplings of the Z boson to the SM
fermions are also modified from the pure zero-mode Z coupling: gZ = gZ(0) + δgZ. However, as we discussed
earlier, δgZ, W are not enhanced by r/R � 1 so that we can set gZ ≈ gZ(0) in ∆ρ to find

δρ ≡ ρ− 1 ∼
(

g2
Z(0) − g2

W (0)

) v2

m2
KK

× r

R
(65)

The crucial point is that ∆ρ is enhanced by the presence of large brane kinetic terms such that we must

require mKK
>∼ 10 TeV for r/R ∼ 10 (as needed to solve the flavor problem).

5 Lecture 4

In this lecture, we will show how to solve the problem of large corrections to the ρ parameter discussed in
lecture 3. For this purpose, we have to introduce a “custodial isospin” symmetry in the extra dimension.
We will then discuss some signals of this extra dimensional scenario.

5.1 Custodial Isospin in SM

We will first review why ρ = 1 in the SM at the tree-level. The starting point is that the Higgs potential,
V (|H |) in the SM with the complex doublet Higgs written as

H = (h1, h2, h3, h4) (66)

has a global SO(4) symmetry (corresponding to rotations among the 4 real fields, hi). Moreover, SO(4) is
isomorphic to SU(2)× SU(2) – one of these SU(2)’s in fact corresponds to the usual gauged SU(2)L group
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Figure 10: Shift in the coupling of a SM fermion to SM Z from the zero-mode gauge coupling due
to the mixing of zero and KK modes of Z.
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Figure 11: Shift in the masses of SM W , Z from the zero-mode masses due to the mixing of zero
and KK modes.
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and the other one is usually denoted by SU(2)R. The crucial point is that the global symmetry of the Higgs
potential is enhanced compared to the gauged SU(2)L symmetry. The Higgs vev:

〈H〉 = (0, 0, 0, v) (67)

breaks the global SO(4) symmetry of the Higgs sector (in isolation) to SO(3) – the gauged SU(2)L symmetry
is broken in this process so that the WL

i gauge bosons acquire masses. The unbroken SO(3) symmetry (which
is global) is isomorphic to an SU(2) – clearly this unbroken SU(2) is the diagonal subgroup of the 2 original
SU(2)’s and is often called custodial isospin. It is this remnant symmetry which enforces equal masses for
WL
i=1,2,3.

Of course, WL
3 only mixes with B (there is no mixing for W±

L ). This mixing results in the neutral mass,

M2
Z = 1/4 v2

(

g2
2 + g′

2
)

, not being equal to the charged mass, M2
W = 1/4 v2g2

2 . That is the reason why

there is a factor of g2
Z/g

2
2 in the definition ρ = M2

W /M
2
Z g

2
Z/g

2
2 : this factor takes the “violation of custodial

symmetry” due to the gauging of hypercharge into account.

5.2 Custodial Isospin Violation in 5D

Based on the above discussion, the sizable ∆ρ in the 5D model signals violation of custodial isospin symmetry
somewhere in the 5D theory. First we begin with identifying the precise origin of custodial isospin violation
and then we will come up with a solution to this problem. As we saw in lecture 3, ∆ρ from gauge KK modes
∝
(

g2
Z(0) − g2

W (0)

)

∼ g2
B(0) just as in the SM. So, the origin of large ∆ρ or custodial isospin violation seems

to be similar to that in the SM, i.e., it is due to gauging of hypercharge and the resulting mixing of W3 with
B. However, the point is that there are additional mixing effects (compared to the SM) in the 5D model
due to the presence of KK modes (the mixing of zero-modes amongst each other is same as in the SM).

In particular, W
(0)
L 3 − B(n) mixing occurs only in neutral sector and has no charged counterpart, whereas

W
(0)
L −W

(n)
L mixing is symmetric between charged and neutral sectors.

The origin of this dichotomy between charged and neutral sectors is the fact that the symmetry gauged
in 5D is same as in the SM, i.e., SU(2)L × U(1)Y , so that we have KK modes only for W 3, ±

L and B: there
are no no charged partners for the B KK modes. This new effect (the custodial isospin violation due to
B KK modes) is not taken into account by the factor of g2

Z/g
2
2 in the definition of ρ – the point is that

this factor only accounts for the mixing only amongst zero-modes, i.e., the W
(0)
L 3 − B(0) mixing. To repeat,

W
(0)
L 3 − W

(n)
L 3 mixing does have a counterpart in the charged sector. Moreover, W

(0)
L 3 − B(n) mass term

∼ gW (0)g′5 × fn(πR)v2 ∼ gW (0)gB(0)v2
√

r/R so that this effect is enhanced for large brane terms!

5.3 Custodial Isospin Symmetry in 5D

It is clear that we need extra charged KK modes to partner B(n) if we wish to suppress ∆ρ. We can achieve
this goal by promoting the hypercharge gauge boson to be a triplet. Hence, we can restore custodial isospin
symmetry in the 5D model by enlarging the 5D gauge symmetry to SU(2)L × SU(2)R [11]. It turns out
that we need something like SU(2)L × SU(2)R × U(1)B−L to obtain the correct fermion hypercharges as
follows. Hypercharge is identified with a subgroup of U(1)R and U(1)B−L: Y = T3R + (B − L)/2, with
T3R = ±1/2 for (u, d)R and (ν, e)R and B−L = 1/3,−1 for q, l (it is easy to check that this reproduces the
SM hypercharges). Note that we still have extra neutral KK modes from U(1)B−L (which have no charged
counterpart), but these KK modes do not couple to Higgs since the Higgs has B−L charge of zero: only KK
W 3, ±
L,R couple to Higgs such that the KK exchanges which give the shifts in masses respect custodial isospin

(i.e., they are the same in the charged and the neutral channels).
Of course, we must break SU(2)R × U(1)B−L down to U(1)Y , i.e., we must require that there are no

zero-modes for W±
R and the extra U(1) which is the combination of U(1)R and U(1)B−L orthogonal to

U(1)Y . However, this breaking must (approximately) preserve degeneracy for (at least the lighter) W±
R and

W 3
R modes such that ∆ρ continues to be (at least approximately) protected. It is clear that for this purpose

we require degeneracy in both the mass of these modes and their coupling to the Higgs. This might seem
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to be challenging at first, but note that, for large brane kinetic terms (r/R � 1), KK modes are localized
near y = πR. Therefore, if we break custodial isospin on the y = 0 brane, then the degeneracy between W 3

R

and W±
R is not significantly affected by this breaking. Specifically, we write down a large mass term for W±

R

and the extra U(1) at y = 0 which can originate from a localized scalar vev (different from the SM Higgs).
We can show that this is equivalent to requiring vanishing of these gauge fields at y = 0 (odd or Dirichlet
boundary condition: section 3.3 of reference [2]). This illustrates the general idea that breaking a 5D gauge
symmetry by a large mass term localized on a brane is equivalent to breaking by boundary condition.

5.4 Signals

Let us consider some of the signals of this extra-dimensional set-up. A quick glance at Fig. 8 tells us that the
coupling of gauge KK modes to top quark is enhanced compared to the SM couplings, whereas the couplings
to the light SM fermions are suppressed (all based on the profiles for these modes).

We begin with real production of gauge KK modes, for example, the KK gluon. Due to the ∼ TeV
mass for these particles, it is clear that we have to consider such a process at the Large Hadron Collider
(LHC). Based on the above couplings, we typically find a broad resonance decaying into top pairs making it
a challenge to distinguish the signal from SM background. It turns out that due to a constraint from a shift
in the Z → b̄b coupling6, we cannot localize bL and hence its partner tL too close to the Higgs brane, forcing
us to localize tR near the Higgs brane in order to obtain the large top mass. Hence the KK gluon dominantly
decays to RH top quark. We can use this fact (and noting that the SM tt̄ production is approximately
same for LH and RH top quarks) for the purpose of signal versus background discrimination [12]. It is easy
to distinguish this signal for the extra dimension from SUSY: there is no missing energy (at least in this
process) and top quark is treated as “special” in the sense that it has a larger coupling (than the other SM
fermions) to the new particles, namely KK modes, unlike in SUSY.

We can also consider virtual exchange of gauge KK modes.

(i) In analogy with the shift in the coupling of SM fermion to the Z that we considered earlier, we see
that t̄tZ is shifted compared to the SM prediction (or compared to ūuZ and c̄cZ) since top quark
(up quark) is localized near y = πR (y = 0) brane. Such an effect can be easily measured at the
International Linear Collider (ILC) [13].

(ii) From the above discussion, it is clear that the couplings of the top and charm quarks to the KK Z are
diagonal, but not universal in the weak or interaction basis. Once we rotate to the mass basis, there
is a flavor violating coupling to KK Z to the top and the charm quark. In turn, this effect induces a
flavor violating coupling of the SM Z to the top and charm quarks (via mixing of KK and zero-mode
Z), resulting in a flavor violating decay of the top quark: t → cZ. Such decays can be probed at the
LHC [14].

5.5 Summary of Model and Unanswered Questions

So, far we have considered a model with the SM gauge and fermion propagating in the bulk of a flat extra
dimension, with the Higgs localized on or near one of the branes. The other SM particles (gauge bosons and
fermions) are identified with zero-modes of the corresponding 5D fields.

We have seen that a solution to the flavor hierarchy of the SM is possible using profiles for the SM
fermions (again, these are the zero-modes of the 5D fields) in the extra dimension; in particular, top and
bottom quarks can be localized near the Higgs brane, whereas the 1st and 2nd generation (or light) fermions
can be localized near the other brane. Moreover, the resulting flavor problem due to non-universal couplings
of gauge KK modes to the SM fermions (for a few TeV KK scale) can be ameliorated with large brane kinetic
terms for 5D gauge fields on non-Higgs brane (i.e., where the light fermions are localized).

6This shift in the coupling originates from diagrams similar to the ones we considered earlier for the shift in
coupling of SM fermion to the Z: see Fig. 10. Such shifts are enhanced if SM fermion is localized near y = πR brane,
where gauge KK mode is peaked.
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We also studied constraints from electroweak precision tests on this set-up and found that these con-
straints can also be satisfied for mKK ∼ TeV, provided there is a custodial isospin symmetry in the bulk to
protect the observable related to the ratio of W/Z masses (the ρ parameter).

This set-up still leaves some questions unanswered:

(i). We have assumed so far that mKK ∼ TeV, but why is it �MPl.?

(ii). Is there a mild hierarchy problem associated with having large brane kinetic terms? Moreover, it seems
a bit arbitrary that such terms appear only at y = 0 brane (where light SM fermions are localized)
and not at y = πR.

We will see in the next lecture that both these questions can be answered by using a warped geometry
(instead of flat extra dimension).

Furthermore,

(iii). Why does Higgs have a negative (mass)2 or why does electroweak symmetry breaking (EWSB) occur?
What sets this mass scale? Specifically, can the hierarchy mH �MPl be due to some dynamics giving
mH ∼ mKK which, in turn, is ∼ TeV?

(iv). Why is the Higgs localized on or near one of the branes?

These questions will be answered by a combination of Higgs being A5, i.e., the 5th component of bulk
gauge field and warped geometry.

6 Lecture 5

In this lecture, we will be brief: for details and a more complete set of references, see the excellent set of
lectures by Sundrum [3].

6.1 Warped Extra Dimension (RS1)

We begin with a review of the original Randall-Sundrum model (RS1) [15]: see Fig. 12. It consists of
an extra-dimensional interval (y = 0 to πR as before), but with the gravitational action containing a bulk
cosmological constant (CC) and brane tensions (localized or 4D CC’s):

S5D =

∫

d4xdy
√
−det G

(

M3
5R5 − Λ

)

Sbrane 1, 2 =

∫

d4x
√

−det g1, 2T1, 2 (68)

with gµν 1(x) = Gµν(x, y = 0) and gµν 2(x) = Gµν(x, y = πR), where gµν ’s are the induced metrics on the
branes and GMN is the bulk metric. Also, M5 is the 5D Planck scale and R5 is the 5D Ricci scalar.

With the following two fine-tunings:

T1 = −T2 = 24kM3
5 , (69)

where the (curvature) scale, k is defined using Λ = 24k2M3
5 , we obtain a flat (or Minkowski), but y-dependent

4D metric as a solution of the 5D Einstein’s equations:

(ds)2 = e−2kyηµν(dx)
µ(dx)ν + (dy)2 (70)

Thus, the geometry is that of a slice of anti-de Sitter space in 5D (AdS5). The y-dependent coefficient of
the 4D metric, i.e., e−ky is called the “warp factor”.

4D gravity: The 4D graviton (which is the zero-mode of the 5D gravitational) corresponds to fluctua-

tions around the flat spacetime background, i.e., g
(0)
µν (x) ≈ ηµν + h

(0)
µν (x). As usual, we plug this fluctuation
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into the 5D action and integrate over the extra dimensional coordinate to find an effective 4D action for

g
(0)
µν (x):

S4D =
M3

5

k

(

1 − e−2kπR
)

∫

d4x
√

−det g(0)R4[g
(0)] (71)

from which we can deduce the 4D Planck scale:

M2
Pl =

M3
5

k

(

1 − e−2kπR
)

≈ M3
5

k
for kR� 1 (72)

We choose k
<∼M5 so that the higher curvature terms in the 5D action are small and hence can be neglected.

Thus, we get the following order of magnitudes for the various mass scales:

k
<∼ M5

<∼ MPl ∼ 1018 GeV (73)

It turns out that the 4D graviton is (automatically) localized near y = 0 (which is hence called the Planck
or UV brane) - that is why the 4D Planck scale is finite even if we go to the decompactified limit of R → ∞
in Eq. (72). Specifically, its profile is ∼ e−2ky.

6.2 Solution to Planck-Weak Hierarchy

The motivation for the RS1 model is to solve the Planck-weak hierarchy problem. Let us now see how this
model achieves it. Assume that a 4D Higgs field is localized on the y = πR brane which is hence called the
TeV or IR brane:

SHiggs =

∫

d4x
√

−det g2

[

gµν
ind.

∂µH∂νH −

λ
(

|H |2 − v2
0

)2
]

(74)

where the natural size for v0 is the 5D gravity or fundamental scale (M5). Using the metric induced on the

TeV brane, gµν 2 = Gµν(y = πR) = g
(0)
µν e−2kπR, the action for the Higgs field becomes

SHiggs =

∫

d4x
√

−det g(0)
[

e−2kπRg(0) µν∂µH∂νH −

e−4kπRλ
(

|H |2 − v2
0

)2
]

(75)

Now comes the crucial point: we must rescale the Higgs field to go to canonical normalization, H ≡
ĤekπR, which results in

SHiggs =

∫

d4x
√

det g(0)
[

g(0) µν∂µĤ∂νĤ −

λ
(

|Ĥ |2 − v2
0e

−2kπR
)2 ]

(76)

Note that the Higgs mass is “warped-down” to ∼ TeV from the 5D (or the 4D) Planck scale if we have the
following modest hierarchy between the radius (or the proper distance) of the extra dimension and the AdS
curvature scale.

kπR ∼ log (MPl/TeV)

∼ 30 or

R ∼ 10

k
(77)

26



6

xµ

6

xµ

-

yy = 0

Planck/UV brane

y = πR

TeV/IR brane

M4, eff. ∼M5

∼MP l

y0

M4, eff. ∼M5e
−ky0 M4, eff. ∼M5e

−kπR

∼ TeV

T1

(brane tension)

- T2

(brane tension)

�

Higgs�

−Λ (bulk CC)

ds2 = e−2kyηµνdxµdxν + dy2

Figure 12: The Randall-Sundrum (RS1) model.
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Moreover, the quartic coupling is unchanged and hence the Higgs vev (or weak scale) is also at the TeV
scale, assuming λ ∼ O(1).

Note that the radius of the extra dimension is not a fundamental or 5D parameter, rather it is determined
by the dynamics of the theory. Hence, in order to have complete solution to the hierarchy problem (without
any hidden fine-tuning), we must show that the radius can be stabilized at the required size without further
(large) fine-tuning of parameters of the 5D theory. In fact, stabilization of such a radius can be achieved
using a bulk scalar (Goldberger-Wise mechanism)[16], provided we invoke a mild hierarchyM2/k2 ∼ O(1/10),
where M is the 5D mass of the scalar.

Thus, we see that the Planck-weak hierarchy can be obtained from O(10) hierarchy in the fundamental
or 5D theory! In general, a large (“exponential”) hierarchy for the 4D mass scales can be obtained from a
small hierarchy in the 5D parameters.

The central feature of a warped extra dimension is that the effective 4D mass scale depends on position
in the extra dimension. In order to have a more intuitive understanding of this feature, consider the position
y ∼ y0 where the metric is:

(ds)2y∼y0 ∼ e−2ky0ηµν(dx)
µ(dx)ν + (dy)2 (78)

In terms of the rescaled coordinate and mass scale: x̂ ≡ e−ky0x, m̂4D ≡ eky0m4D, we get

(ds)2y∼y0 ∼ ηµν(dx̂)
µ(dx̂)ν + (dy)2 (79)

The advantage of the new coordinates x̂ is that we have a “flat” metric in terms of it so that we expect
m̂4D ∼ m5D (such a relationship is valid in the absence of warping). Converting back to original mass scales,
we find m4D ∼ e−ky0m5D, i.e., 4D mass scales are warped compared to 5D mass scales. An analogy with
the expanding Universe is useful: just as 3D space expands with time, in the warped extra dimension, the
4D space-time “expands” (or contracts) with motion along the 5th dimension.

6.3 Summary of RS1

The preceding discussion leads us to the “master equation” for a warped extra dimension:

M4, eff.(y) ∼ M5 × e−ky

relating the effective 4D mass scales on the left-hand side (LHS) of the above equation to the fundamental or
5D mass scale on the right-hand side (RHS) by the warp factor. Applying it to the case of the 4D graviton
localized at y ∼ 0, we get

MPl ∼ M5 (80)

so that we must choose the 5D Planck scale to be

M5 ∼ 1018GeV (81)

Whereas, the Higgs sector is localized at y ∼ πR so that

M weak ∼ M5 × e−kπR (82)

so that

Mweak ∼ TeV (83)

provided we have a mild hierarchy

kπR ∼ log (MPl/TeV)

∼ 30 (84)
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6.4 Similarity with Flat TeV-Size Extra Dimension with Large Brane Terms

In the original RS1, it was assumed that the entire SM, i.e., including fermion and gauge fields, is localized
on the TeV brane. However, it was subsequently realized that, in oder to solve the Planck-weak hierarchy
problem, only the SM Higgs boson has to be localized on or near the TeV brane – the masses of non-Higgs
fields, i.e., fermions and gauge bosons, are protected by gauge and chiral symmetries, respectively.

So, we are led to consider RS1 with the SM gauge [17] and fermion fields [18] propagating in the bulk
(with the Higgs still being on or near the TeV brane). It turns out that the profiles for the SM fermions in the
bulk can address the flavor hierarchy just as in the case of flat extra dimension. Moreover, solving the wave
equation in curved spacetime, we can show [19, 17, 18] that all KK modes are localized near the IR brane
(that too automatically, i.e., without actual brane terms) and the KK masses are given by mKK ∼ ke−kπR

and not 1/R [note that, based on Eqs. (73) and (77) 1/R is of the size of the 4D Planck scale!]. Hence,
we find mKK ∼ TeV given the choice of parameters to solve the Planck-weak hierarchy problem! A very
rough intuition for localization of KK modes near the TeV brane is that the KK modes can minimize their
mass by “living” near IR brane, where all mass scales are warped down. In this sense, the warped extra
dimension “mimics” large brane kinetic terms of flat geometry – recall that the large brane kinetic terms in
a flat extra dimension result in a similar localization of KK modes. In addition, the hierarchy mKK �MPl.

is explained by the warped geometry. This addresses the 1st and 2nd questions outlined at the end of the
previous lecture.

Because of this localization of KK modes near the TeV brane, we find that the solution to the flavor
problem and the discussion of the electroweak precision tests (including custodial isospin) goes through
(roughly) as in the case of a flat extra dimension.

6.5 Unification of Spins: Higgs as A5

We now return to the other (3rd and 4th) questions asked at the end of the previous lecture, namely, what
sets the scale of EWSB or Higgs mass and why is Higgs localized on the TeV brane?

We will show in this and the next subsection that obtaining the SM Higgs as the 5th component of 5D
gauge field (or A5) can resolve the 3rd question and then outline in the final subsection how combining the
idea of Higgs as A5 with the warped geometry answers the 4th question, resulting in a “complete” model.

As a warm-up for the idea of Higgs as A5 (see the review [20] for references), consider an SU(2) gauge
theory in an extra dimension which is compactified on a circle (S1). As we saw earlier, for n 6= 0, the

A
(n)
µ modes “eat” A

(n)
5 modes to form massive spin-1 states. Moreover, there is a (massless) zero-mode A5,

which is in adjoint representation of SU(2), i.e., it is charged under the SU(2) gauge symmetry. We can
introduce a SU(2) doublet fermion in the bulk which will acquire a Yukawa coupling ∼ g to the A5 zero-mode
from the interaction Ψ̄LA5ΨR coming from the 5D covariant derivative. Hence, this scenario is often called
“Gauge-Yukawa unification”.

Note that this scalar has no potential at the tree-level since it is part of a 5D gauge field. We will
now discuss the potential for A5 zero-mode induced by loop effects to find that it is finite. Naively, the
scalar (mass)2 gets quadratically divergent loop corrections: m2

A
(0)
5

∼ g2
4/
(

16π2
)

Λ2
UV . However, from the

5D point of view, it is clear that 5D gauge invariance protects the A5 scalar mass from receiving divergent
loop corrections (there is no counter-term to absorb such divergences and so these must be absent). The
reader is referred to the 1st reference in [3] for a detailed calculation of m2

A
(0)
5

coming from a fermion loop

for the simpler case of a U(1) gauge field in the bulk. The summary is that loop contributions to m2

A
(0)
5

are

“cut-off” by R−1:

m2

A
(0)
5

∼ g2
4

16π2
R−2 (85)

Intuitively, the understanding is that A5 behaves as a “regular” scalar till E ∼ R−1: see Fig. 13(a). Beyond
these energies, the quantum corrections “realize” that A5 is part of a 5D gauge field. Therefore, the loop

contributions from E
>∼ R−1 are highly suppressed, in particular, there is no divergence. Thinking in terms
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of KK modes, there is a cancellation in the loop diagram among the different modes. We can then ask:
what did we gain relative to a “regular” scalar (which is not an A5 zero-mode, but is localized on a brane or
originates in a 5D scalar field)? To answer this question, we need to know what is ΛUV , the scale which cuts
of the divergence in the case of a regular scalar. The 4D SM (without gravity) is renormalizable so that the
cut-off is the Planck scale (where quantum gravity becomes important). However, the 5D gauge theory, even
without gravity, is non-renormalizable and therefore must be defined with a cut-off (which is not related to
the Planck scale): see Fig. 13(b). The reason is that the 5D gauge coupling constant is dimensionful so that
the 5D loop expansion grows with energy: g2

5E/
(

16π2
)

. Since we cannot extrapolate the 5D gauge theory
beyond the energy scale where the loop expansion parameter becomes ∼ 1, we must introduce a cut-off at
this scale:

ΛUV ∼ 16π2

g2
5

∼ 16π

g2
4

R−1 (86)

where we have set the brane terms to be small so that g4 ∼ g5/sqrtR. Note that this cut-off is not much
larger than the compactification scale since g4 ∼ 1 in the SM. Thus, we find that m2

A
(0)
5

is suppressed relative

to the mass2 in the case of a regular scalar by ∼ (ΛUVR)2 ∼
(

16π/g2
4

)2
: we do gain by going to A5.

Next, we discuss how to use A5 for radiative symmetry breaking (often called Hosotani mechanism) [21].

Continuing with the case of SU(2) on S1, we see that a vev for the A5 zero-mode, 〈A(0)
5 〉 can break SU(2)

gauge symmetry to a U(1) gauge symmetry. The point is that fermion loops typically give m2

A
(0)
5

< 0,

whereas gauge loops are of opposite sign. However, the fermion contributions can win if the number of
fermion degrees of freedom is larger than that of gauge bosons.

Thus, we have a “cartoon” of the SM in the following sense. We can identify the SU(2) gauge group
that we considered above with the SM W ’s. We will then get MW± ∼ R−1 (coming from 〈A5〉), whereas W3

[corresponding to the unbroken U(1) gauge symmetry] remains massless (it is the “photon”). Finally, the
Ψ̄LA5ΨR coupling mentioned above gives a fermion mass Mψ(0) ∼ R−1 ∼ MW which is roughly correct for
top quark (since mt ∼MW ).

Of course, this model is far from being realistic:

(i). We must require 1/R� 100 GeV since we have not seen any KK modes in experiments so far which
have probed energy scales up to ∼ TeV (either directly in the highest energy colliders or indirectly
via virtual effects of new particles). To satisfy this constraint, we can fine-tune the fermion versus the
gauge loop contributions to A5 mass such that MW± or 〈A5〉 ∼ 100 GeV � R−1.

(ii). More importantly, we do not have fermion chirality on a circle.

6.6 Towards Realistic Higgs as A5: Chirality and Enlarging the Gauge Group

As we saw earlier, we can obtain chiral fermions by going to an orbifold: S1/Z2. However, if we require
Aµ of SU(2) to be even under Z2 (such that we get a corresponding zero-mode, i.e., a massless 4D gauge
boson), then the A5’s are necessarily odd. Thus, we lose the scalar zero-mode. In any case, the scalar was
in the adjoint representation of SU(2), whereas we need a doublet for EW symmetry breaking.

The trick is to enlarge the gauge group to SU(3) and to break it down to SU(2) × U(1) by boundary
condition as follows. Choose the following parities under Z2 for the fundamental representation



 3



 → P



 3



 , where

P =





+
+

−



 (87)
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Figure 13: Contributions to mass of A5 (a) and various energy scales in the 5D model (b).
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Given this parity choice, can derive the transformation of any other representation under Z2. For example,
consider fields in the adjoint representation, Φa (a = 1...8), written as a 3× 3 matrix, ΦaT

a, where T a’s are
generators of the fundamental representation. This matrix transforms as



 8



 → P †



 8



P ∼





+ + −
+ + −
− − +



 (88)

This implies that if the Aµ’s belonging to SU(2)×U(1) are chosen to be even (and hence have a zero-mode),

then the Aµ’s of the coset group SU(3)/
[

SU(2) × U(1)
]

are odd (i.e., do not have a zero-mode). This

choice of parities thus achieves the desired breaking pattern SU(3) → SU(2) × U(1). Moreover, the A5’s

of SU(3)/
[

SU(2) × U(1)
]

are even, giving us a scalar zero-mode which is a doublet of the unbroken SU(2)

group as desired.
Furthermore, just like in the case of the breaking SU(2) → U(1) discussed earlier, the breaking of

SU(2)× U(1) can be achieved by vev of A5 which is generated by loop corrections. Moreover, due to usage
of fundamental representation for this radiative symmetry breaking, the rank of the gauge group is also
broken, i.e., we have an unbroken U(1) symmetry.

A 5D fermion which is a triplet of SU(3) gives zero-modes for LH SU(2) doublet and RH singlet:

ΨL =

(

ΨD
L +

ΨS
L −

)

ΨR =

(

ΨD
R −

ΨS
R +

)

(89)

where D and S denote SU(2) doublet and singlet, respectively – recall that the parities of the RH and
LH fields must be opposite. Moreover, the Yukawa coupling for the zero-mode fermions comes from the
interaction Ψ̄D

LA5Ψ
S
R. Thus, we are getting closer to the SM!

6.7 Realistic Higgs as A5 in Warped Extra Dimension

When we construct the previous model in a warped extra dimension, it turns out that the A
(0)
5 is automati-

cally localized near the TeV brane [22] – recall that in order to solve the hierarchy problem, we would like
the Higgs to be localized precisely there. Thus, A5 zero-mode is an excellent candidate for SM Higgs!

As “finishing touches”, we can add an extra U(1) to obtain the correct hypercharges for the fermions
and similarly a custodial isospin symmetry to protect the ρ parameter [23]. Also, it turns out that the ΨD

L

and ΨS
R have (effectively) “opposite” sign of 5D mass, M (recall that this mass is not coming from 〈A(0)

5 〉) in
the sense that if the LH zero-mode is localized near y = 0, then the RH zero-mode must be near y = πR (or
vice versa): see exercise 1. To relax this constraint, i.e., to obtain more freedom in localization of LH versus
RH zero-modes, we can instead obtain LH and RH SM fermions as zero-modes of different bulk multiplets.
However, then the question arises: since A5 only couples fermions within the same fermionic multiplet, how
do we obtain Yukawa couplings? The solution is to mix fermionic multiplets by adding mass terms localized
at the endpoints of the extra dimension.

6.8 Epilogue

Due to lack of time, we have not considered other extra dimensional models with connections to the weak
scale (and gravitational aspects of extra dimensional models in general). Here, we give a summary of the
essential features of these other models: for details, see the references below and other lectures [1, 2, 3, 4].
Arkani-Hamed, Dimopoulos and Dvali (ADD) proposed a scenario where only gravity propagates in extra
dimensions, with all the SM fields localized on a brane [24]. The idea is that the fundamental or higher-
dimensional gravity scale is ∼ TeV (and not the 4D Planck scale), while the weakness of gravity (or largeness
of 4D or observed Planck scale) is accounted for by diluting the strength of gravity using extra dimensions
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which are much larger in size than the fundamental length scale, i.e., R � 1/ TeV. The crucial point is
that the gravitational force law has been tested only for distances larger than O (100)µm so that such very
large extra dimensions could be consistent with current experiments. Only the graviton has KK modes
in this framework, that too very light, resulting in interesting phenomenology both from real and virtual
production of these KK modes. These KK modes couple with the usual 4D gravitational strength, but their
large multiplicity can compensate for this very weak coupling.

At the other extreme is the model called Universal Extra Dimensions (UED) [25]. This scenario has a
flat extra dimension(s) in which all the SM fields (including Higgs) propagate. The 5D fields have no brane
localized interactions at the tree-level: of course, loops will generate small brane terms. Moreover, there
are no 5D masses for fermions and Higgs so that profiles for all zero-modes (including all fermions, gauge
fields and Higgs) are flat. Hence, we do not have a solution to the flavor hierarchy of the SM unlike in the
scenario considered in these lectures. The motivation for UED is more phenomenological: there is a remnant
of extra dimensional momentum or KK number conservation (dubbed KK parity) which forbids a coupling
of a single lightest (level-1 and in general, odd level) KK mode to SM particles. Such a coupling is allowed
for level-2 (and in general, even level) KK modes, but it is still suppressed by the small (loop-induced size)
of brane kinetic terms.7 Hence, the contributions from KK exchange to precision tests are suppressed (in
particular, tree-level exchange of odd level modes is forbidden), easily allowing KK mass scale below a TeV
for level-1 and even level-2 modes (cf. the lower limit of a few TeV in the scenario studied in these lectures).
Thus, KK modes can be more easily produced at colliders (even though it is clear that the odd level KK
modes have to be pair produced). Moreover, the lightest KK particle (LKP) is stable and can be a good
dark matter candidate [26].

Finally, we mention the 5D Higgsless models [27], where EW symmetry itself is broken by boundary
conditions like the breaking of 5D custodial isospin symmetry mentioned in lecture 4 [or the breaking
SU(3) → SU(2)× U(1) considered in lecture 5 in order to obtain Higgs as A5]. The idea is that there is no
light Higgs in the spectrum in order to unitarize WW scattering, which is instead accomplished by exchange

of gauge KK modes. These KK modes then must have mass
<∼ 1 TeV. It turns out that due to such a low

KK scale, the simplest such models are severely constrained by precision tests, but it is possible to avoid
some of these constraints by suitable model-building.
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[Excercises]

A Exercise 1

A.1 Zero-Mode Fermion and 4D Yukawa Coupling

Show that the normalized profile for LH zero-mode fermion (i.e., choosing ΨL to be even) is (lecture 2):

fL 0(y) =

√

M

e2MπR − 1
eMy (0 ≤ y ≤ πR)

=

√

M

e2MπR − 1
e−My (0 ≥ y ≥ −πR) (90)

7This coupling does not preserve KK number conservation or extra dimensional translation invariance and hence
must arise from interactions localized on the branes which violate these symmetries.
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where the normalization is over 0 ≤ y ≤ 2πR (even though the physical domain is from y = 0 to y = πR).
Similarly, if we choose ΨR to be even instead of ΨL, then the RH zero-mode profile is

fR 0(y) =

√

−M
e−2MπR − 1

e−My (0 ≤ y ≤ πR)

=

√

−M
e−2MπR − 1

e+My (0 ≥ y ≥ −πR) (91)

Note the opposite sign of M in the LH versus RH zero-mode profiles [following from Eqs. (20) and 21)].
Assuming that the SM Higgs field is localized at y = πR, we see that we need M < 0 (> 0) for LH (RH)
fermion to obtain small fermion wavefunction at the location of the Higgs and hence small 4D Yukawa
couplings for light fermions (1st and 2nd generations). So, we can neglect e±MπR compared to 1 wherever
appropriate.

The zero-mode (4D or SM) Yukawa coupling in terms of the 5D Yukawa coupling:
∫

dyd4xδ(y)λ5DHΨLΨ′
R

[where ΨL is SU(2)L doublet and Ψ′
R is SU(2)L singlet] is:

λ4D ≈ λ5DMe2MπR (92)

and the 4D mass of fermion is

m ≈ λ4Dv, (93)

where, for simplicity, we assume equal size of 5D masses, i.e., M = −M ′, for doublet and singlet fermions.

A.2 Coupling of Zero-mode Fermion to Gauge KK mode: No Brane Kinetic
Terms

The profile for nth gauge KK mode (mn = n/R) is:

fn(y) =
1√
πR

cos (mny) (94)

Calculate the coupling of zero-mode fermion to gauge KK modes in terms of the coupling of zero-mode gauge
field (i.e., SM gauge coupling), g4 ≡ g5/

√
2πR:

g (n,M) = g4a (n,M) (95)

You should obtain:

a(n,M) ≈
√

2
4M2

4M2 + (n/R)
2 (96)

Use md,s = 1 MeV, 100 MeV and the Higgs vev v ≈ 100 GeV. Assume, for simplicity, that λ5DM = 1
for both s, d – otherwise, we have to solve a transcendental equation to obtain M (given the 4D Yukawa
coupling). Calculate the 5D masses Ms,d and show that a(1,Ms) − a(1,Md) ≈ 0.1.

Compare K − K̄ mixing from KK Z exchange as in lecture 2

g2
Z

m2
KK

[

a (1,Ms) − a (1,Md)
]2

(mixing angle)
2

(97)

to the SM amplitude

g4
2

16π2

m2
c

M4
W

(mixing angle)
2

(98)

to obtain bound on mKK of ≈ 20 TeV, using gZ ≈ 0.75 and g2 ≈ 0.65 for the SM Z and SU(2)L gauge
couplings.

It turns out that another observable called εK (which is the imaginary or CP-violating part of the above
K − K̄ mixing amplitude) gives a stronger bound on KK mass scale of ∼ 100 TeV.
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B Exercise 2

B.1 General Brane Kinetic Terms

The Lagrangian is

L5D 3 −1

4
FMNFMN − 1

4
δ(y)rFµνFµν (99)

where r has dimension of length.
Go through the derivation outlined in lecture 3, i.e., fn satisfies the orthonormality condition:

∫

dyf∗
n(y)fm(y)

[

1 + rδ(y)
]

= δmn (100)

and the differential equation:

[

∂2
y +m2

n (1 + rδ(y))
]

fn(y) = 0 (101)

The solution is

fn(y) = an cos (mny) + bn sin (mny) for y ≥ 0

= ãn cos (mny) + b̃n sin (mny) for y ≤ 0 (102)

Use the following 4 conditions to obtain relations between coefficients a, b’s and to solve formn: (i) continuity
at y = 0, (ii) discontinuity in derivative matches brane term, (iii) fn is even and (iv) periodicity of fn. In
particular, condition (iv) is satisfied by repeating (or copying) fn between −πR and πR to between πR and
3πR and so on. However, continuity of fn at y = πR has to be imposed and similarly that of derivative of
fn (assuming no brane kinetic term at y = πR).

You should find

an = ãn
bn
an

= −rmn

2

bn = −b̃n
bn
an

= tan (mnπR) (103)

so that eigenvalues are solutions to

tan (mnπR) = −rmn

2
(104)

Finally, calculate

1

a2
n

= πR

(

1 +
1

4
r2m2

n +
r

2πR

)

(105)

from normalization.

B.2 Large Brane Kinetic Terms

Verify approximate results shown in lecture 3 for large brane kinetic terms, r/R � 1, namely,

(i) mn ≈ (n+ 1/2)/R,
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(ii) 1/g2
4 ≈ r/g2

5

and for lightest KK modes (small n)

(iii) coupling of a fermion localized at y = 0 to gauge KK mode ∼ g4/
√

r/R

(iv) coupling of gauge KK mode to a fermion/Higgs field localized on y = πR brane ∼ g4
√

r/R.

We can generalize these couplings of gauge KK mode to the case of a zero-mode fermion with a profile
in the bulk – it’s just that we have to do an overlap integral as in problem 2 of exercise 1. Calculate the new
a(1,Ms) − a(1,Md). For r/R � 1, show that it is smaller than before (i.e., without brane terms) so that
K − K̄ mixing is suppressed and a lower KK mass scale is allowed.

C Exercise 3

As discussed in lecture 3, the zero and KK modes of Z are defined by setting the Higgs vev to zero. However,
due to non-zero Higgs vev, the zero and KK modes of Z mix via mass terms – kinetic terms are still diagonal.
The Z(0)-Z(1) (i.e., 1st KK mode of Z) mass matrix is:

Lmass 3
(

Z(0)
µ Z(1)

µ

)

(

m2 ∆m2

∆m2 M2

)(

Zµ (0)

Zµ (1)

)

(106)

where m2 = 1/4 g2
Z(0)v

2, mixing term ∆m2 = 1/4 gZ(0)g5 Zf1 (πR) v2 and M2 = m2
KK + 1/4 g2

5 Zf
2
1 (πR) v2.

Here, f1 (πR) is wavefunction of Z(1) evaluated at the Higgs brane (y = πR). Also, gZ(0) = g5 Z/
√

2πR+ r
denotes the coupling of Z(0) (where r is the brane kinetic term at y = 0) and g5 Z =

√

g2
5 2 + g′ 2

5 denotes the
5D coupling of Z, with g5 2 and g′5 being the 5D gauge couplings of SU(2) and U(1)Y , respectively (assume,
for simplicity, the same brane kinetic term r for all gauge fields).

Diagonalize this mass matrix, assuming v2/m2
KK × gauge couplings � 1 where appropriate, i.e., deter-

mine

(i) the unitary transformation to go from
(

Z(0)Z(1)
)

to physical basis and

(ii) the eigenvalues of the mass matrix.

There are 2 effects of this diagonalization.

C.1 Shift in Coupling of a Fermion to Z

Given couplings of a fermion to Z(0) and Z(1) (KK basis)

Lcoupling 3 ψ̄γµ(g,G)

(

Z
(0)
µ

Z
(1)
µ

)

ψ (107)

use the above unitary transformation to calculate the couplings to the fermion in the physical basis, denoted
by Zlight (which is SM Z) and Zheavy .

Specifically, calculate the coupling of a fermion localized at y = 0 to the SM Z using g = gZ(0) and
G = g5 Zf1 (0) in the above equation, where f1(0) is wavefunction of Z(1) evaluated at the fermion brane
(y = 0).

Verify that the shift in the coupling of this fermion to the SM Z from the zero-mode Z coupling (i.e.,
gZ(0)) is as shown in lecture 3: δgZ/gZ(0) ∼ g2

Z(0)v
2/m2

KK , in particular, that there is no enhancement for
large brane kinetic terms, r/R � 1.
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C.2 Shift in Z mass

The lighter eigenvalue of mass matrix is the SM Z mass. Verify that the shift in the SM Z mass from the
purely zero-mode mass, i.e., 1/4g2

Z(0)v
2, is as shown in lecture 3, in particular, that there is an enhancement

in this shift due to r/R � 1 (when the shift is expressed in terms of gZ(0)).
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