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Any ambiguity in solving this equation is to be resolved by rotating to
imaginary time.

Note that if S' contains derivatives of the qs, these will just become
derivatives of propagators in the expansion. The familiar problem of
pushing time derivatives of quantum fields through a time-ordering
operator, the problem that makes perturbation theory for derivative
interactions such a combinatoric nightmare, has no counterpart here, for
we have no time-ordering operator and no quantum fields, just an integral
over c-number fields.

Thus, for any theory, if we can write the generating functional in the
form (4.49), we can just read off the Feynman rules from S' in the most
naive way, replacing every derivative of a field with a momentum factor,
etc., without making any mistakes. Unfortunately, at the moment, the only
theories for which we can write the generating functional in the form (4.49)
are those without any derivatives in the interaction, so this observation
is without immediate use. However, it will become very useful shortly.

4.4 Derivative interactions
There is a large class of theories with derivative interactions for

which it is possible to write a functional-integral representation of the
generating functional. These are theories where the Lagrangian is no more
than quadratic in time derivatives,

a-U (4.53)

where K, L, and U are functions of the qs. The only restriction I will place
on these functions is that K be invertible, so that the equation for the
canonical momenta,

pa = Kabq» + La, ' (4.54)
can be solved for the qs and the Hamiltonian constructed,

1)abT>.+• • •. (4.55)

where the triplet dots indicate terms of first and zeroth order in the ps.
For these theories, the appropriate generalization of our earlier result,

Eq. (4.42), turns out to be

fl (dq")[det K-\* (4.56)

In this equation, K is to be interpreted as a linear operator on the function
space, and the integral is to be interpreted in the same way our earlier
(Gaussian) integrals were interpreted. Everything is to be restricted to a
finite-dimensional subspace, the integral is to be done over that subspace,
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and the limit is to be taken. I do not know of any short argument for this
formula, and have to refer you to the literature for a proof.21 However, I
can try and make it plausible to you by showing that it obeys some simple
consistency checks. (1) If K is independent of the qs, and L vanishes, this
reduces to the previous case. The determinant can then be pulled out of the
integral and absorbed by the normalization factor, reproducing Eq. (4.42).
(2) If K is independent of the qs, but L does not vanish, then, by our earlier
remarks, the Feynman rules are the naive ones, with the derivative in the
interaction becoming a factor of momentum at the vertex. This may be a
familiar result to you if you have ever gone through the derivation of the
Feynman rules for ps-pv meson-nucleon theory, or the electrodynamics of
charged scalar bosons. (3) If K does depend on the qs, things are not so
simple. This may be familiar to you if you followed the discussion in the
literature a few years ago about the Feynman rules for chiral Lagrangians.

(4) Finally, a Lagrangian of the form (4.48) becomes one of the same form
if we change coordinates. To be more precise, let us trade the qs for new
variables, which we denote by q". Then

where
(4.57)

(4.58)

This takes care of the transformation of the Lagrangian, but we still have
to change variables in the functional integral. As always, we will figure
out how to do this by going back to the finite-dimensional case. Suppose,
in a finite dimensional space, we change from coordinates x to coordinates
x. Even though x may be a non-linear function of x, ~3x/<5x is a linear
operator (an n x n matrix, where n is the dimension of the space), and has a
determinant. The change-of-variables formula is the familiar Jacobian
formula,

(dx) = (dx) det (dx/dx). (4.59)
As always, we simply extend this to the infinite-dimensional case, obtaining

[det K] t(dq /dq)

Thus, Eq. (4.56) is independent of our choice of coordinates.
Eq. (4.56) is sometimes written in 'Hamiltonian form',22

e'"=j

(4.60)

(4.61)
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4.6 Ghost fields
We left the theory of derivative interactions in poor shape. It is

true that we had an expression for the generating functional, Eq. (4.56),
but it was not in the form of an integral of an exponential; there was a
determinant sitting in front. Therefore, we could not use Eq. (4.56) to
develop a diagrammatic perturbation expansion of the integral. We can
now use our knowledge of Fermi fields to get the determinant up into the
exponential. For, if we introduce a set of complex Fermi variables, n",
and denote by K* the matrix square-root of K, then

(4.68)

up to a multiplicative constant, which can always be absorbed in the
normalization factor, N. The ns are called ghost variables (in the field-
theory case, ghost fields). They are not true dynamical variables of the
system, simply devices for getting a determinant up into an exponential.

Thus, the Feynman rules for the theory can be read off from an 'effective
Lagrangian',

L«=L + L,, (4.69)
where Lg, the ghost Lagrangian, is given by

Lg = ̂ °KaW. (4.70)
It is instructive to work out in detail a field-theoretic example. Let us

consider the theory of a free field coupled to an external source,
Se^drff-Wtf + Jt. (4-71)

Let us make a change of variables to a new field, A, defined by
(4.72)

where g is a constant. (This transformation is not invertible, but that
shouldn't worry us; we're only going to do perturbation theory, and (4.72)
is invertible near 0=0.) In terms of A, the Lagrange density is given by

# =M,^)2(1 + 9A)2 -tfA\\2+JA(l +± gA). (4.73)
Thus we apparently have a very complicated interaction, with g some sort
of coupling constant. Of course, this interaction is just an illusion; the
vacuum-to-vacuum matrix element must be the same as in our original
theory. However, this is not the answer you will get if you just read the
Feynman rules naively out of (4.73). The right Feynman rules are obtained
from an effective Lagrange density

(4.74)
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where
2>g = r,*r,(l+gA). (4.75)

The unphysical nature of the ghost fields is doubly clear from this expres-
sion. (1) The ghost fields are spinless fields obeying Fermi statistics. (2)
The ghost propagator has no momentum dependence; it is a constant, i.

I recommend that you compute a few things to low orders of perturba-
tion theory, using this effective Lagrange density, to convince yourself
that everything works out as it should. A good starting point is the one-
point function (tadpole) to order g. This should vanish. Does it?

5 The Feynman rules for gauge field theories
5.1 Troubles with gauge invariance

The quantization of gauge field theories is notoriously tricky. We
can get an idea of the problem if we look at the simplest gauge-invariant
field theory, electromagnetism.

&=-&dl>Av-8vAlt)2 + &'. (5.1)
Let. us try and derive the Feynman propagators for A^ by straightforwardly
applying the methods of Section 4, without worrying about whether
electromagnetism is in fact in the class of theories we discussed there. The
computation is simplified by splitting the field into (four-dimensional)
transverse and longitudinal parts

**-ji == -f^-U I A-H

V. (5.2)
where the Ps are the transverse and longitudinal projection operators; in
Fourier space they are given by

Pl^g^-k^kjk2, P^k^/k2. (5.3)
(Remember, we are secretly doing all our computations in Euclidean space,
so there is no ambiguity in dividing by k2.) Then it is easy to see that

;-|d4) (5.4)

We obtain the propagators for the transverse and longitudinal parts of the
field by our standard formulae; thus

(5.5)

The second term is obviously unacceptable; something has gone wrong.
This debacle can be explained in two ways, either from Feynman's sum

over histories or from conventional canonical quantization. (1) Sum-over-


